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Abstract: Airborne laser scanner (ALS) data are used to map a range of forest inventory attributes
at operational scales. However, when wall-to-wall ALS coverage is cost prohibitive or logistically
challenging, alternative approaches are needed for forest mapping. We evaluated an indirect
approach for extending ALS-based maps of forest attributes using medium resolution satellite and
environmental data. First, we developed ALS-based models and predicted a suite of forest attributes
for a 950 km? study area covered by wall-to-wall ALS data. Then, we used samples extracted from
the ALS-based predictions to model and map these attributes with satellite and environmental data
for an extended 5600 km? area with similar forest and ecological conditions. All attributes were
predicted well with the ALS data (R? > 0.83; RMSD% < 26). The satellite and environmental models
developed using the ALS-based predictions resulted in increased correspondence between observed
and predicted values by 13-49% and decreased prediction errors by 8-28% compared with models
developed directly with the ground plots. Improvements were observed for both multiple regression
and random forest models, and for the suite of forest attributes assessed. We concluded that the
use of ALS-based predictions in this study improved the estimation of forest attributes beyond an
approach linking ground plots directly to the satellite and environmental data.

Keywords: boreal forest; forest attributes; imagery; inventory; LIDAR; modeling; random forest;
regression; Sentinel-2; PALSAR

1. Introduction

The increasing availability and decreasing cost of commercial airborne laser scanning (ALS)
systems have resulted in widespread application of ALS data for enhancing forest inventories [1-4].
Forest attributes commonly predicted and mapped using ALS data include average tree height,
density, mean diameter at breast height (DBH), gross total volume, gross merchantable volume,
and biomass [5-7]. Most operational applications employ an area-based approach [8-12], whereby
regression and other statistical techniques are used to relate metrics derived from the ALS data to
attributes measured at ground sample plot locations [13-15]. The statistical models are then used to
predict the attributes of interest at unsampled locations. The success of ALS data for predicting forest
attributes has resulted in ALS data becoming a key data source for enhancing forest management
inventories [16-18].
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However, ALS data acquisition is not always possible for an entire area of interest due to limited
resources or difficulties associated with covering remote or large areas. In such cases, alternative
remote sensing data have been used to generate attribute predictions. For example, forest attributes
have been linked directly to relatively inexpensive satellite data [19-21] using a variety of modeling
methods (reviewed by Brofoske et al. [14]). Among the most common methods are regression [22-24],
k-nearest neighbors (kNN) [25-27], and random forests [28]. Multispectral imagery such as Landsat
Thematic Mapper (TM) [29,30] or Sentinel-2 (S2) [31] enhance the efficiency and cost effectiveness in
mapping forest attributes over large forest landscapes. However, the use of multispectral imagery
alone does not normally reach the level of accuracy possible with wall-to-wall ALS data [32].

Several studies have demonstrated the combined use of ALS data and satellite imagery to map
forest attributes. Not surprisingly, models combining ALS with satellite variables generally provide
better estimates than models using satellite imagery alone [32,33]. However, models using both ALS
and satellite metrics can only be applied to areas that are sampled by ALS. One of the earliest studies
to explore integration for the purpose of mapping locations unsampled by ALS was conducted by
Hudak et al. [19]. These authors tested five aspatial and spatial methods for extending canopy heights
and concluded that integration of ALS and Landsat data improved the utility of both datasets. Other
studies have used ALS-derived estimates as a substitute for field plots and extended the ALS estimates
with satellite imagery. For example, Mclnerney et al. [34] extended ALS-derived canopy heights
using moderate resolution imagery from the Indian Remote Sensing satellite. Also focused on canopy
height, Pascual et al. [35] developed multiple regression models between ALS-based height predictions
and Landsat Enhanced Thematic Mapper (ETM+) band transformations and spectral indices for the
purpose of extrapolating ALS height measurements across a broad landscape. Maselli et al. [36]
evaluated both regression and kNN for extending stem volumes derived from mean stand heights
obtained from ALS using Landsat ETM+ images. Subsequently, the concepts of “lidar plots” [37,38]
and “lidar sampling” (reviewed by Wulder et al. [39]) were proposed to mitigate the need for extensive
ground plot data for large-area forest characterization and mapping. In that context, Matasci et al. [40]
used ALS plots and multitemporal Landsat composites to model cover, height, biomass, and other
structural attributes for the entire boreal forest area of Canada. Although the spatial extent of that
study is remarkable, the authors acknowledge that accuracy metrics reported in that study are to be
interpreted with caution, as the ALS-predicted attribute values with variable accuracies were used as
response variables.

The conceptual basis for a multilevel approach combining ground plots, ALS data, and satellite
data for forest inventory is described in detail by Andersen et al. [41] and further demonstrated by
others [42-50]. In a multilevel approach, relationships are first established between forest attribute
values of ground plots and ALS data covering a portion of the area of interest. Then, relationships are
established between samples extracted from the ALS data and spatial layers covering the entire area of
interest. The multilevel approach thus allows estimation or map extension beyond the area covered by
ALS using the spatially comprehensive layers. In Andersen et al. [41], implementation of the multilevel
approach combining ground plots, ALS strip sampling, and satellite imagery provided total biomass
estimates for the boreal forests of interior Alaska. Strunk et al. [42] demonstrated that the multilevel
approach—referred to as an indirect approach—resulted in reduced estimates of residual variability
for biomass by up to 36% relative to using Landsat imagery alone. Saarela et al. [43] reported relative
standard errors in the range of 1-4% for model-assisted estimation of growing stock volume using
multilevel sampling. Others have combined field, airborne, and spaceborne LiDAR (i.e., Geoscience
Laser Altimeter System (GLAS) data) to produce regional maps of stand attributes [44] and to estimate
aboveground biomass and carbon of boreal forests using multilevel sampling strategies [45-50].
Although these studies have demonstrated improved mapping and estimation capabilities using
indirect or multilevel approaches, further evaluation is warranted with different data sets, at different
scales, and for different forest conditions.
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In this study, we hypothesized that the indirect approach including ALS samples would capture
an extensive range of forest structure and environmental conditions, and thus improve prediction over
a direct modeling approach that links a more limited set of ground plots to spatially comprehensive
satellite and environmental data. We tested this hypothesis using parametric and nonparametric
modeling methods commonly used for predicting forest attributes with ALS or satellite data, including
multiple regression (e.g., [1,20,42]) and random forest (e.g., [51-53]). We developed ALS-based
prediction models for a suite of forest attributes using ground plots and we predicted these attributes
for a study area covered by wall-to-wall ALS data. Then, we used samples extracted from the
ALS-based predictions to model forest attributes with multispectral, radar, and topographic data.
We evaluated predictions from models developed using the ALS samples with those from models
developed with only the ground plots using independent validation data. Finally, we produced maps
of forest attributes for an extended area of boreal forest of western Newfoundland, Canada.

2. Materials and Methods

2.1. Geographic Area

Our geographic area of interest was Forest Management District 15, which covers an area of
~5600 km? centered around 49.04° N and 57.93° W, and corresponding closely with the Corner Brook
Subregion of the Western Newfoundland Ecoregion (Figure 1). This ecoregion is located within the most
eastern Boreal Forest Region of North America [54] and contains some of the most favorable sites for
forest growth on the Island of Newfoundland [55]. Balsam fir (Abies balsamea (L.) Mill.)) is the dominant
tree species of the region, and black spruce (Picea mariana (Mill.) Britton, Sterns & Poggenb.), white birch
(Betula papyrifera Marsh.), yellow birch (Betula alleghaniensis Britton), and white spruce (Picea glauca
(Moench) Voss) are also present. This region includes high productivity mountainous slopes underlain
by orthic or gleyed podzols where seepage waters ensure good forest growth and profuse regeneration
after cutting. In contrast, the region also includes the lower productivity coastal plain, dominated by
coarse-textured deposits such as glacio-fluvial deposits, eskers, drumlins, and kames.

2.2. Ground Plots

We used two independent data sets of ground plots for calibrating and validating models of
forest attributes. Both datasets were measured following ground sampling guidelines established for
Canada’s National Forest Inventory [56]. The sample design aimed to capture the range of variability
in the forest structure of the study area. For calibration, we selected potential sample locations using
ALS data (described in Section 2.3) as a basis for stratification—following others who found improved
accuracies using ALS-assisted plot selection for area-based inventory [57-59]. Instead of using specific
ALS metrics (e.g., mean and standard deviation [58]), we performed a principal component analysis
(PCA) [60] and represented forest structure by the first two components, which accounted for ~83%
of the variance in ALS metrics. We used photo-interpreted forest inventory stand polygons to create
stand-level dominant species masks and divided the range of values for each PCA component into
10 equal strata under each mask. We then selected a random sample location for ground-based
assessment from each combination of species mask and PCA strata that existed within our study area.
For validation, we selected potential sample locations using a stratified random sampling design
using total volume predictions for conifer-dominated stands (result from Section 2.6) as the basis
for stratification. We stratified the range of values of volume into 20 strata and randomly selected a
minimum of two sample locations per strata.

We established circular plots with 11.28 m radius and recorded species, DBH (measured at 1.3 m),
height, and status (live or dead) for all merchantable trees (trees > 9 cm DBH). We recorded these same
attributes for all trees with a minimum height of 1.3 m for a subplot of radius 3.99 m located in the
center of each plot. We recorded the center location of each plot with a Trimble GeoExplorer, 6000
series XH global positioning system (GPS) with floodlight technology and used base station data to
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differentially correct the roving receiver data to within submeter accuracy. In total, we measured 89
calibration plots in 2016 and 2017, and 43 validations plots in 2018.
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Figure 1. Spatial extent of the airborne laser scanner (ALS) study area with the extended area of Forest
Management District 15 and the Corner Brook Subregion of the Western Newfoundland Ecoregion of

Newfoundland, Canada.

From the standard measurements of species, height, and DBH, we derived a suite of structural
attributes for all plots. We calculated basal area of each tree from DBH. We estimated total and gross
merchantable volumes as a function of DBH and height according to region- and species-specific
equations from Warren and Meades [61,62]. We estimated above ground biomass (organic dry
mass per unit area) with equations and coefficients published by Lambert et al. [63]. We used the
individual attributes of live trees to estimate plot-level attributes including basal area weighted height
(i.e., Lorey’s mean height) (HGT), basal area (BA), gross merchantable volume (GMV), total volume
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(TVOL), and aboveground biomass (B). We calculated attributes based on live trees (i.e., growing
stock) for consistency with volume tables used by provincial and industrial agencies and because
live-tree attributes are of interest for most operational and planning applications in the region. For the
calculation of BA and GMYV, we used only merchantable trees. With the exception of HGT, we converted
values to per-hectare estimates. We also calculated species-specific basal areas as a percentage of the
total BA of each plot and used these percentages to determine coniferous, broadleaf and mixed wood
forest types.

We stratified the ground plots according to dominant forest type as is common practice for
area-based modeling [60]. We labeled plots with > 75% coniferous or broadleaf species as coniferous or
broadleaf, respectively, and we labeled all other plots as mixed forest. For the current study, we focused
on the coniferous forest, which represents ~90% of the productive forest of our study area and is the
forest type of commercial importance to the region. Of the 89 calibration plots, 58 plots representing
coniferous forest were used for calibration. Of the 43 validation plots, we removed four plots with
GMV or TVOL that exceeded the range of the calibration data and were, therefore, not representative
of the conditions modeled. This left 39 coniferous plots for validation and evaluation of our hypothesis
(Table 1).

Table 1. Descriptive statistics of forest attributes for ground plots.

Calibration (n = 58) Validation (n = 39)
Variable ! Units - -
Min Max Mean Std. Dew. Min Max Mean Std. Dew.

HGT m 34 17.1 10.1 3.6 3.7 17.0 10.5 3.6
BA m? ha-l 0.4 63.2 30.1 18.1 0.9 62.7 33.8 16.5
GMV m3hal! 08 4015  156.9 118.7 1.7 3768  175.2 109.5
TVOL m3hal 36 4399  190.1 128.6 25.1 4010 2117 109.5

B tha! 6.7 2602 1219 67.1 337 2145 1322 52.3

1 HGT is Lorey’s height; BA is basal area; GMV is gross merchantable volume; TVOL is total volume; B is
aboveground biomass.

2.3. ALS Data

Wall-to-wall ALS data were acquired between 15 August and 24 September 2016 representing
an area of ~950 km? centered at 48.77° N and 58.19° W. The ALS data were acquired with a Riegl
LMS-Q680i. The approximate flight altitude was 1000 m above ground level, with an approximate
speed of 100 knots. The scan angle was + 30° with 50% minimum overlap between flight lines.
The aggregate pulse density was specified to be a minimum of six pulses m~2. We calculated the
resulting average point density to be 7.3 points m~2 with a standard deviation of 2.4 points m~2. Points
were classified according to standard LAS specification classes [64] by the service provider.

We processed the ALS data to generate a digital terrain model (DTM) and a canopy height model
(CHM) with spatial resolutions of 1 m X 1 m using the LTK™ extension for ArcGIS [65]. For the DTM,
we generated a triangular irregular network (TIN) using returns classified as ground and interpolated
a raster surface from the TIN using natural neighbor interpolation. We used first returns classified as
vegetation to generate the CHM, also using natural neighbor interpolation. We set the binning cell
assignment to the maximum value, and replaced negative values with zeros.

We calculated metrics commonly used in forestry studies from normalized LiDAR point cloud
data. The metrics consisted of height, structural, density, and cover statistics of each plot computed
using LTK™ [65]. We calculated all height, structural, and density metrics using vegetated returns
> 2 m representing treed vegetation [57] and <30 m to avoid erroneous points that exceeded that
maximum tree height of the dominant trees species in the region [66]. Height metrics represented the
basic statistics of mean (MEAN) and max (MAX) height and the heights of various percentiles of first
returns (i.e., P10, ... , P90, P95) [6]. Structural metrics were statistical measures of skewness (SKEW),
coefficient of variation (COVAR), vertical distribution ratio (VDR) [67] and vertical complexity index
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(VCI) [68]. To compute density metrics, we divided the range of LiDAR heights into 10 equal intervals
and calculated the cumulative proportion of LIDAR returns found in the first nine intervals (i.e., D1,
..., D9) [6]. We calculated cover metrics at 2 m height intervals (i.e., CC2, ..., CC14) from the CHM as
the number of 1 m X 1 m cells with a height value > 2 m divided by the number of nonvoid 1 m X 1 m
cells [53]. Finally, we selected a reduced set of metrics for this study avoiding very highly correlated
predictor variables within each group (Pearson correlation coefficient, » > 0.95) (Table 2).

Table 2. Description of airborne laser scanner (ALS), satellite and environment data used as
predictor variables.

Name Units Description
ALS Variables
MAX m Maximum height of first returns
Height Metrics ! P95 m Height of the 95th percentile of first returns
MEAN m Mean height of first returns
SKEW Skewness of first returns
S | Metrics 1 COVAR Standard deviation of first returns/mean of first returns
tructural Metrics VDR Vertical distribution ratio [67]
VCI Vertical complexity index [68]

Percentage of all returns found in bins 1 through 2 of 10 where bin

[
Density Metrics | b2 o 2 represents the 20th percentile height of all returns .
D5 % Percentage of all returns found in bins 1 through 5 of 10 where bin
5 represents the 50th percentile height of all returns
D8 % Percentage of all returns found in bins 1 through 8 of 10 where bin
8 represents the 80th percentile height of all returns
cc2 % Number of 1 m X 1 m canopy height model cells that have a height
CHM Metrics value > 2 m divided by the num'ber of nonvoid I m X 1 m cells.
CCé % Number of 1 m X 1 m canopy height model cells that have a height
value > 6m divided by the number of nonvoid 1 m x 1 m cells
CcCl4 % Number of 1 m X 1 m canopy height model cells that have a height
value > 14m divided by the number of nonvoid 1 m x 1 m cells
Satellite Variables
S2_B2 % Blue band; original resolution 10 m
S2_B4 % Red band; original resolution 10 m
Sentinel 2 2 S2_B5 % Vegetation red edge; resolution 20 m
S2_B8 % NIR; original resolution 10 m
S2_Bl11 % SWIR; resolution 20 m
PALSAR HH DN Radar backscatter — HH polarization; original resolution 25 m
HV DN Radar backscatter — HV polarization; original resolution 25 m

Environmental Variables

Elevation m Elevation above mean sea level from 0.75 arc second CDEM [69]
Topographic and CosAspect -1to1l cos(Aspect) transformation representing northness
Solar Radiation SCOSA Slope X cos(Aspect) transformation [70]

SINA Slope X sin(Aspect) transformation [70]

1 Metrics computed from returns classified as vegetation with heights > 2 m and < 30 m. 2 Pixel radiometric
measurements are LevellC Top of Atmosphere (TOA) reflectances.

2.4. Spatially Comprehensive Data

We used spectral, structural, and topographic data that were readily available and spatially
comprehensive for our area of interest. For the spectral data, we mosaicked four Level-1C orthorectified
Sentinel-2 (52) images [71] acquired on 27 June 2017 under virtually clear skies. The S2 images consisted
of 13 spectral bands; however, bands 1, 9, and 10 were not used in this study due to their coarse
resolution (60 m X 60 m), and bands 3, 7, 8A, and 12 were omitted to minimize redundancy with
other bands (Pearson correlation coefficient, r > 0.95). We resampled bands with an original spatial
resolution of 10 m x 10 m to 20 m X 20 m prior to mosaicking. Similarly, we resampled Advanced Land
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Observing Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (PALSAR) HH and HV
polarization mosaic data available at 25 m x 25 m spatial resolution [72] and Canadian Digital Elevation
Model (CDEM) raster data [69] with a base resolution of 0.75 arc seconds (~23 m) in the north—-south
direction to 20 m X 20 m. We generated solar radiation transformations including CosAspect, SCOSA,
and SINA [70] by combining slope and aspect information derived from the CDEM.

2.5. Overview of the Approach

Our implementation of the indirect mapping approach consisted of two phases with an
independent evaluation. In the first phase, we built predictive models between the calibration plot
attributes and ALS plot metrics. For the second phase, we built predictive models between ALS-based
predictions and variables derived from the spatially comprehensive satellite and environmental data.
For comparative purposes, we also built predictive models directly between the calibration plot
attributes and the satellite and environmental variables. In all cases, we developed both random forest
and multiple linear regression models and we evaluated model goodness-of-fit by regressing observed
vs. predicted values for independently measured validation plots [73,74]. We produced maps by
applying the predictive models to 20 m X 20 m raster grids.

2.6. Development of ALS-Based Inventory (Phase 1)

In phase 1, we built random forest models [75] in R [76] with ModelMap [77]. ModelMap
automates the process of model building and map construction by providing an interface with several
R packages, including randomForest [78]. Each random forest model consisted of 500 trees by default
whereby each tree was developed with a random subset of the reference data and a random selection
of predictors at each node of the tree to determine the split. We assessed variable importance during
initial model development and retained only those predictors with a %IncMSE greater than 3% for
the final models. We used tuneRF to determine the optimal number of predictor variables to retain at
each node (mtry) for each model. The tuneRF algorithm starts with a default value of mtry (i.e., the
number of predictors divided by three) and searches for the optimal value according to out-of-bag
error estimates. The optimal values of mtry varied depending on the attribute modeled. During model
development, we evaluated the random forest models according to out-of-bag errors.

We developed regression models using a subset regression technique available in the R package
Leaps [79]. Leaps exhaustively searches all pathways to choose the best variable subsets for a
given number of predictors. For each response variable, we used Leaps to identify the 10 best
models for each combination of predictors according to the method of Mallows” Cp [80], where
the Cp statistic is an indicator of balance between models that are too simple and may suffer from
biased coefficients and biased prediction, or too complicated, resulting in large variances in both the
coefficients and the prediction [81]. We used statistical tests to determine whether each model met the
assumptions of linear regression, including the Shapiro-Wilk Test for normality of residuals [82] and
the Breusch—Pagan Test for homogeneity of variance [83]. Variance inflation factors (VIF) identified
problems with collinearity [81]. We removed models from the candidate set where model tests indicated
heteroscedasticity, non-normality of residuals (p < 0.05) or collinearity (VIF > 7). Of the remaining
models, we selected the model with the lowest Akaike’s information criterion (AIC) [84] score. During
model development, we assessed the regression models using leave-one-out cross validation.

We generated raster grids for each predictor variable at 20 m x 20 m spatial resolution for the ALS
site, and we used the models to predict the response variable for each raster cell. We implemented
the random forest models using the R package ModelMap [77] and the regression models using the R
package raster [85].

2.7. Development of Extended Inventory (Phase 2)

The ALS-based raster products from phase 1 provided more than two million potential samples
(i.e., raster cells) for calibrating the satellite and environmental models. We converted the raster cells
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to a points shape file using ESRI ArcGIS [86] and we input the points shape file in R [76], where
we filtered the potential samples to provide calibration data that were representative of the relevant
forest conditions as follows. First, we assumed—due to our sampling design—that our ground plots
represented the range of forest conditions of interest to this study. Therefore, we removed potential
samples that had ALS metric values outside the range of those observed at the ground plots (e.g.,
MAX < 3.44 m & > 21.54 m). We also removed potential samples located in areas of cloud or cloud
shadow and areas harvested on the satellite imagery since the time of ALS acquisition. To do this, we
established thresholds for band 2 (> 0.7 & < 0.09), 3 (> 0.6 & < 0.11) and 4 (> 0.03 & < 0.08) by visually
assessing the imagery. Finally, we removed samples from areas with < 75% coniferous forest according
to a recent forest management inventory of the area as models only represented the coniferous forest.
After filtering, 828,853 potential samples remained. We subsampled the remaining samples by dividing
the range of the predicted response variable into 10 equal strata and randomly selected 500 samples
within each strata for a total of 5000 samples for each attribute of interest. We used the R package
BalancedSampling [87] and the Spatially Balanced Local Pivotal Method [88,89] to select samples
that were spatially, spectrally, structurally, and topographically representative of the forest conditions
within each strata. We balanced the samples spatially on longitude and latitude, spectrally on S2 band 4
reflectance values, structurally on the PALSAR HV polarization radar backscatter, and topographically
on elevation. Using the resulting samples as calibration data sets, we developed random forest and
regression models using the same methods as applied in phase 1. We assessed out-of-bag errors
(random forest) and leave-one-out cross validation results (regression) to evaluate the quality of the
phase 2 models for capturing the relationship between the ALS predictions of forest attributes and the
satellite and environmental predictor variables.

2.8. Independent Plot Evaluation

We evaluated the indirect modeling approach relative to the direct modeling approach using
the independent validation plots and common measures used to evaluate area-based model
performance [60,74]. Evaluation statistics included: correspondences between observed and predicted
values as indicated by the coefficient of determination (R?), the root mean square deviation (RMSD
Equation (1)), relative root mean square deviation expressed as a percentage of the mean (RMSD%,
Equation (2)), absolute measure of model bias, (Bias, Equation (3)), and relative bias expressed as a
percentage of the mean (Bias%, Equation (4)):

n AV
RMSD — % 6
RMSD% = SM5D 100 @)
n ¢ — A,
Bias = # 3)
Bias% — % % 100 @)

where y; is the observed value, §; is the predicted value for case i, and 7 is the number of observations.
The absolute RMSD and Bias provide error estimates in the units of the respective forest attributes,
whereas the relative RMSD and Bias allow for comparisons between different forest attributes.

We repeated the direct and indirect approaches with five random seeds whereby the seeds
influenced the selection of samples and predictors for the random forest models and the selection
of spatially balanced samples in phase 2 for both the random forest and regression models. We
implemented the Vuong test [90] with the R package nonnest2 [91] to determine significant differences
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between the results of the direct and indirect approaches and between the random forest and
regression methods.

3. Results

3.1. ALS Models of Forest Attributes (Phase 1)

The phase 1 models developed with ALS predictors resulted in high correspondence between
predicted and observed values for both the calibration (R? > 0.90) and validation data sets (R> > 0.83)
(Table 3). Prediction errors were low for the calibration set (RMSD% < 20; Bias% < 0.9) but slightly
higher for the validation set (RMSD% < 26; Bias% < 13), as we would expect. Observed versus
predicted scatter plots showed most plots near the 1:1 line (e.g., TVOL, Figure 2a; other attributes not
shown). Overall, the evaluation statistics indicated strong prediction models for all attributes reported.
Moreover, differences in the error statistics for the random forest and regression models were minimal
(R? < 0.03; RMSD% < 3; Bias% < 3). Therefore, we deemed the ALS-based predictions from both the
random forest and regression models as suitable for use as calibration data for phase 2.

Table 3. Evaluation statistics for ALS-based prediction of forest attributes !.

Random Forest Regression
R? RMSD RMSD% Bias Bias% R?> RMSD RMSD% Bias Bias%
Calibration 2 (1 = 58)

HGT 0.93 0.95 9.37 0.09 0.84 0.95 0.84 8.27 0.00 0.00
BA 0.90 5.67 18.86 0.08 0.28 0.92 522 17.37 0.00 0.00
GMV 0.94 29.11 18.56 1.35 0.86 094 3031 19.33 0.00 0.00
TVOL 0.94 31.29 16.46 0.04 0.02 09  27.72 14.58 0.00 0.00

B 0.90 21.49 17.63 0.43 0.35 0.93 18.74 15.37 0.00 0.00
Validation (n = 39)

HGT 0.94 1.14 10.86 -0.53 -5.09 0.95 1.03 9.79 -0.54 -5.17
BA 0.83 7.56 22.40 -3.03 -8.97 0.86 6.71 19.87 —-2.44 -7.23

GMV 0.88 4476 2555 -2219 12,67 0.90 40.07 22.87 -18.40 -10.50
TVOL 091 37.84 1787  -17.03 -8.04 091 37.21 17.57 -13.32 -6.29
B 0.85 22.14 16.75 -5.86 -4.43 083 23.71 17.93 —4.28 -3.24

I Random forest values represent average results of five random seeds. 2 Calibration results are calculated from
out-of-bag samples for random forest and leave-one-out cross validation for regression.

3.2. Satellite and Environmental Models (Phase 2)

The phase 2 models with satellite and environmental predictors had moderate correspondence
between predicted and observed values for the calibration (R? = 0.58-0.74) and validation (R? = 0.56-0.84)
data sets (Table 4). However, in this case, the random forest models consistently outperformed the
regression models, with R? values increasing by 4-9% based on the calibration data and by 5-12%
based on the independent validation data. Similarly, RMSD% values decreased for all attributes by
1-7%. These results suggest that the random forest models may better capture the complex relationship
between the forest attributes and the satellite and environment variables, compared with the more
simple regression models. Bias was low in all cases (Bias% < 8%). Surprisingly, the error statistics
of the independent validation results were not markedly poorer than those of the calibration data
sets assessed via out-of-bag samples for random forest and using leave-one-out cross validation for
regression. These results further suggest that the ALS predictions provided suitable calibration data
for developing the satellite and environmental models.
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Figure 2. Observed versus predicted scatter plots of total volume (m® ha™!) modeled with (a) ALS
metrics, (b) direct approach, and (c) indirect approach. Graphs represent independent validation
results of a single seed shown for illustrative purposes. Black lines are 1:1 reference lines; gray lines are

regression lines.



Remote Sens. 2019, 11, 1092 11 of 22

Table 4. Evaluation statistics for prediction of forest attributes with satellite and environmental variables
1

Random Forest Regression
R? RMSD RMSD% Bias Bias% R*> RMSD RMSD% Bias Bias%
Calibration 2 (n = 5000)

HGT 0.71 1.81 17.85 0.01 0.09 0.68 217 21.16 0.00 0.00
BA 0.70 8.14 27.11 0.04 0.14 0.66 9.80 32.20 0.00 0.00
GMV 0.67 59.40 31.66 0.50 0.26 0.58 73.06 36.49 0.00 0.00
TVOL 0.70 61.64 28.30 0.14 0.06 0.61 76.73 34.73 0.00 0.00
B 0.74 30.43 23.31 0.21 0.16 0.67 3943 30.63 0.00 0.00

Validation (n = 39)

HGT 0.84 1.66 15.88 -0.09 -0.91 0.79 1.74 16.59 0.31 2.94
BA 0.76 8.87 26.27 -2.39 -7.08 0.64 9.93 29.43 -0.75 -2.24
GMV 0.79 55.14 31.47 -3.04 -1.74  0.67 63.41 36.20 10.13 5.78
TVOL 0.74 56.55 26.71 —6.60 -3.11 0.64 66.66 31.48 7.64 3.61
B 0.65 31.36 23.72 -3.07 -232  0.56 37.15 28.10 4.47 3.38

I Random forest values represent average results of five random seeds. 2 Calibration statistics are calculated from
out-of-bag samples for random forest and leave-one-out cross validation for regression.

3.3. Direct vs. Indirect Approach

For all attributes studied, the indirect approach resulted in higher correspondence between
observed and predicted values than the direct approach (e.g., TVOL, Figure 2b and c; Figure 3).
R? values increased by 13-49% for random forest and 13-36% for regression depending on the attribute.
Similarly, mean deviation of predicted values with respect to the observed ones was consistently
lower for the indirect approach than the direct approach by 8-28% for random forest and 14-20% for
regression. These error statistics favor the indirect approach over the direct approach—when using
the satellite and environmental models to map the extended area. Not surprising, the ALS-based
predictions had the most favorable error statistics overall, with the exception of bias. Bias was negative
for all attributes for the ALS-based predictions, but more variable for the direct and indirect approaches.
However, bias was less than 13% for all attributes regardless of the approach used.

Although the ALS models predicted all attributes well (R? > 0.83, Table 3), HGT had the most
favorable error statistics for the satellite and environmental models (Figure 3). Better results were
achieved for the indirect approach (R? > 0.79; RMSD% < 17 Bias% < 3), whereas the results of the
direct approach were poorer (R? < 0.70; RMSD% > 20; Bias% < 4) for both random forest and regression
models. The attribute with the least favorable results based on the satellite and environmental variables
was GMV. Again, the results of the indirect approach (R? > 0.67; RMSD% < 37; Bias% < 6) were more
favorable than those of the direct approach (R? < 0.66; RMSD% > 38; Bias% < 6).

For illustration, we present observed versus predicted scatter plots for TVOL for each approach
based on the independent validation data (Figure 2). The results represent a single seed, however,
the scatter plots and associated statistics were similar regardless of the seed selected (results not
shown). The correspondence between the observed and ALS-based predictions was strong (R? > 0.90;
RMSD% < 18) for both random forest and regression (Figure 2a). Not surprisingly, the predictions from
the satellite and environmental variables showed weaker correspondence with higher prediction errors
than those achieved with ALS. However, the indirect approach (Figure 2c) provided more favorable
results than the direct approach (Figure 2b) for random forest (R? =0.73 vs. 52; RMSD =58 vs. 76.3 m3
ha~!) with the exception of bias, which increased and switched from positive to negative (Bias = —8.23
vs. 6.06 m3 ha™!). For regression, the indirect approach provided more favorable results for all three
error statistics (R? = 0.65 vs. 0.54; RMSD = 66.8 vs. 82 m> ha™!; Bias = 10.1 vs. 15.8 m3 ha™!).

Vuong tests indicated that the differences in the relationship between observed and predicted
values between the direct and indirect approaches were statistically significant (Pprr < 0.05) for all
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attributes. Moreover, there was sufficient evidence that the indirect approach performed better than
the direct approach (Pinpyspir < 0.05) for all attributes except BA for random forest (PiNpyspir = 0.05)
and B for regression (Pinpyspir = 0.10) (Table 5a). Vuong tests comparing the relationships between
observed and predicted values for random forest and regression suggest sufficient evidence that the
random forest models performed better than the regression results for the indirect approach (PrpysreG
< 0.05) and for the direct approach for GMV (PrpysreG = 0.02), but not so for the direct approach and
the remaining forest attributes (PrpysreG > 0.05) (Table 5b).

Table 5. Vuong test comparing observed versus predicted values from (a) the direct and indirect
approaches and (b) random forest and regression models.

(a) Direct vs. Indirect

Random Forest Regression

Rpik  R?’Np  PDIFF  PDIRvsIND PINDvsDIR R?DIR~ R2ND  PDIFF PDIRvsIND  PIND vsDIR

HGT 0.67 0.86 0.000 0.999 0.001 0.70 0.79 0.001 0.996 0.004
BA 0.68 0.77 0.000 0.947 0.053 0.54 0.65 0.000 0.982 0.018
GMV 0.67 0.80 0.000 0.977 0.023 0.50 0.68 0.000 1.000 0.000
TVOL 054 0.76 0.000 0.993 0.007 0.54 0.65 0.000 0.960 0.040
B 0.44 0.66 0.000 0.991 0.009 0.47 0.56 0.000 0.895 0.105

(b) Random Forest vs. Regression

Direct Indirect

R%gg R’REG  PDIFF PRFvsREG  PREGvsRF R%gg R’gEG  PDIFF PRFvsREG  PREGvsRF

HGT 0.67 0.70 0.000 0.626 0.374 0.86 0.79 0.000 0.025 0.975
BA 0.68 0.54 0.000 0.060 0.940 0.77 0.65 0.000 0.000 1.000
GMV 0.67 0.50 0.000 0.018 0.982 0.80 0.68 0.000 0.004 0.996
TVOL  0.54 0.54 0.000 0.491 0.509 0.76 0.65 0.000 0.002 0.998
B 0.44 0.47 0.000 0.617 0.383 0.66 0.56 0.000 0.008 0.992

poirr: variance test if the models are significantly different; ppirysinp: likelihood ratio test that the direct (DIR)
model fits better than the indirect (IND) model; pinpvspir: likelihood ratio test that the indirect (IND) model fits
better than the direct (DIR) model; preysrec: likelihood ratio test that the random forest (RF) model fits better than
the regression (REG) model; pregvsrr: likelihood ratio test that the regression (REG) model fits better than the
random forest (RF) model.

3.4. Landscape Patterns

Maps illustrate landscape patterns of the attribute predictions (e.g., TVOL, Figure 4). The phase
1 maps of the study site generated with ALS metrics are visually similar regardless of the modeling
method used. This observation is consistent with the fact that both the random forest and regression
models were strong with low prediction errors. The maps generated with the satellite and environmental
variables exhibit greater variation between the direct and indirect approaches and between the random
forest and regression models. Based on the independent evaluation, the optimal results were achieved
for the indirect approach over the direct approach and for the random forest models over the regression
models. The map of TVOL produced with the indirect approach and the random forest models showed
the greatest similarity with the ALS predictions. There appears to be a slight overestimation of the low
volume areas and a slight underestimation of high volume areas, as is also evident from the scatter
plots (Figure 2c) and in the more limited range of values mapped with the random forest models.
The maps from the direct approach and from the regression models had more low values (TVOL <
50 m® ha~') and more high values (TVOL > 400 m? ha~!) throughout the ALS area and the extended
district. These map observations are consistent with the slight underestimation of the low volume plots
and overestimation of the high volume plots observed in the corresponding scatter plots of Figure 2.
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Figure 4. Illustrative maps of total volume (m3 ha™1) predicted with (a) ALS, (b) direct and (c) indirect
modeling approaches. The corresponding ALS area is outlined in black.
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4. Discussion
4.1. ALS-Based Inventory

We generated a suite of ALS-based models for predicting attributes of conifer-dominated forests
of western Newfoundland, Canada. All models had R? values of 0.83 or greater and relative RMSD
values < 26% of mean values based on independent validation data. The model prediction errors and
mapped products were similar using both regression and random forest models. These results are
consistent with many other studies demonstrating the use of ALS for area-based estimation of forest
attributes in boreal forest conditions [1,6,7,53]. However, in many instances, wall-to-wall ALS coverage
is not available. Therefore, we evaluated the use of a subarea of ALS coverage to calibrate satellite and
environmental data that offers spatially comprehensive coverage over an extended area.

4.2. Extension of ALS-Based Inventory

The approach used in this study combines information measured at ground plots with a subarea
of wall-to-wall ALS data and spatially comprehensive satellite and environmental data to map forest
attributes for an extended area of interest. More specifically, we used ALS-based predictions to provide
thematic and spatial balance, a highly desirable property of area-based inventory design. We used S2
spectral bands and PALSAR L-band SAR backscatter combined with topographic and solar radiation
variables to provide complementary information for extending the ALS-based inventory over an area
with similar ecological conditions. The ALS-based predictions improved representation of the range of
forest and environmental conditions available for calibrating the spatially comprehensive data in an
indirect estimation and mapping approach.

The practical justification for such an approach requires demonstration that the prediction of
inventory attributes exceeds that achieved by linking ground plots directly to spatially comprehensive
satellite and environmental data [42]. Accordingly, we tested the hypothesis that the indirect modeling
approach using ALS-based predictions as calibration data improves prediction over a direct modeling
approach using a more limited set of ground plots. In evaluating the hypothesis, we used an
independent set of ground plots measured within two years of the ALS and satellite data acquisitions.
Improvements in R* and RMSD were observed for the indirect approach over the direct approach
for all attributes analysed in this study. The satellite and environmental models developed using
the ALS-based predictions resulted in increased correspondence between observed and predicted
values by 13-49% and decreased prediction errors by 8-28% compared with models developed directly
with the ground plots. Significance tests suggested that there was sufficient evidence that the indirect
approach was better than the direct approach for four of the five attributes regardless of whether
random forest or regression models were used. Thus, the evaluation with independent validation plots
confirmed our hypothesis for several key forest attributes of western Newfoundland boreal forests.
This finding is important because the added cost of ALS data acquisition for a portion of an area of
interest can be justified if the prediction accuracy exceeds an approach using only the ground plots.

4.3. Parametric vs. Nonparametric Models

Random forest (nonparametric) and regression (parametric) models have advantages and
disadvantages when it comes to operational prediction of forest inventory attributes [53]. Random
forest models take full advantage of the data set and do not require prior specification. As random forest
models never predict outside the range of the data, there are no concerns with extreme predictions,
but regression allows for model fitting with more limited data. However, there are additional
considerations when developing regression models as regression models must satisfy conditions of
normality, heterogeneity, significance of predictors, and collinearity. Furthermore, the number of
possible predictors is limited by the sample size to avoid overfitting.

Our results suggest that both random forest and regression models were suitable for predicting
forest inventory attributes from ALS data. In our study, the differences between the random forest
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and regression model predictions with ALS metrics were not significant. Similarly, for the direct
approach, we did not find sufficient evidence that the random forest models fit better than the regression
models, with the exception of GMV. On the contrary, the indirect approach implemented with random
forest models resulted in better correspondence between predicted and observed values and reduced
prediction errors relative to the direct approach. This may be in part due to the ability of random forest
models to capture the more complicated relationships between forest attributes and the satellite and
environmental data, whereas the regression models are based on the linear relation hypothesis.

4.4. Data and Technical Considerations

The results of this study are likely dependent upon the quality of the remote sensing data sets used.
For phase 1, we acquired ALS data with parameters optimized for forest applications [92] including
50% overlap between flight lines with minimum aggregate pulse densities of six points per square
meter. Single-pass ALS data with lower pulse densities may result in lower quality ALS models, the
errors of which are propagated through the indirect approach. For phase 2, we used medium resolution
optical and radar satellite data combined with topographic and solar radiation indices for building the
models. In particular, we used high quality cloud free S2 imagery all acquired on the same day, which
reduced the requirement for normalization. Any normalization of imagery across scenes could reduce
the radiometric quality of the imagery. Additionally, the use of imagery from different dates and times
of year in order to expand across large areas could further introduce noise and limit the predictability
of the attributes from the satellite imagery. On the other hand, other types of remote sensing data
may offer complementary information with the potential for improved results. For example, many
researchers have shown that GLAS data are useful for extension purposes [44-50] and that metrics
derived from Landsat time-series data have improved the estimation of forest attributes beyond the use
of single-date imagery [93,94]. Spaceborne LiDAR from the Advanced Topographic Laser Altimeter
System (ATLAS) sensor on board ICESat-2 or future Global Ecosystem Dynamics Investigation (GEDI)
mission could also facilitate estimation across large regions when used in combination with ground
and airborne LiDAR data.

In addition, several important technical aspects may have influenced the results achieved [41]. For
phase 1, it was important to ensure that the range of forest structural conditions was well-represented
by the calibration plots. Herein, we used principle components extracted from the ALS data [13] prior
to the selection of field plots to ensure that the range of structural conditions captured by the ALS data
was sampled. In theory, any pixels with values outside the range of the calibration data should be
nonforested or not the forest type of interest. Furthermore, the ground plots established for calibrating
the ALS data were designed specifically for ALS-based modeling [51]. We used precisely located
circular plots representing an area of 400 m? to correspond with the desired mapping resolution from
the ALS data. We differentially corrected GPS measurements to minimize positional errors to the extent
possible. As coniferous forest was the primary commercial interest in this area, our study was limited
to areas with coniferous trees representing > 75% of the total basal area. For these conditions, both the
ALS random forest and regression models were strong, allowing us to generate accurate predictions
for the area covered by ALS. However, we expect that any factors that affect the quality of the ALS
predictions (e.g., geolocation and representativity of the ground plots, ALS acquisition parameters,
and forest conditions) will affect the results achieved by the indirect approach.

For phase 2, the advantage of using ALS predictions of the response variables over ground
plots alone was that the ALS predictions represented the broader range of conditions of the spatially
comprehensive predictor variables. In order to extract representative calibration samples from the
ALS predictions, we applied “balanced” sampling [88,89], whereby the samples were more or less
evenly distributed over the extent of the population of interest. We sampled equally across 10 strata
of the response variable, and within each strata, we balanced the sample across the auxiliary space
to ensure that the samples were distributed across the range of conditions in the predictor variables.
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A less representative sample of ALS calibration samples may have resulted in poorer phase 2 models
as thematic and spatial balance are highly desirable aspects of inventory sample designs [41].

4.5. Implications for Forest Inventory

Forest inventories require information on a broad suite of forest attributes. In this study, we focused
on key attributes commonly mapped with ALS that characterize the structure of vegetation. However,
forest type and tree species information is a key information requirement of forest management [17].
Although substantive research has been conducted on species characterization with ALS data (reviewed
by Vauhkonen et al. [95]), methods for mapping species have not yet reached the same level of maturity
as those for mapping structural attributes such as height and volume. As a result, we did not address
individual species. Rather, we stratified our plot database into coniferous, broadleaf, and mixed forest
types as is common practice for area-based modeling, and we based our study on the coniferous forest
strata. We did not produce models for broadleaf and mixed forest because of the limited ground sample
data representing these forest types. Furthermore, we did not include the broadleaf and mixed forest plots
in the models because preliminary analysis showed that doing so resulted in substantive underestimation
of the high volume coniferous stands. Given that coniferous forest represents ~90% of the productive
forest of this region and is the primary forest of industrial interest, we decided to sacrifice coverage for
better estimation of attributes of the commercial forest. This limited application of the models to the area
of coniferous forest and required a spatial layer representing forest type for mapping purposes, which
we obtained from a conventional photo-based inventory of the area. Further work (and additional field
sampling) is required to develop models for the broadleaf and mixed forest types.

The indirect approach used in this study does not preclude the requirement for ground plots.
On the contrary, spatially precise and well-distributed ground plots are essential for building high
quality ALS models. However, the indirect approach has the potential to optimize the efficiency of
ground plot acquisition. For example, in this study, we used a priori ALS data to characterize the range
of forest structural conditions across the study area prior to field sampling. There is general consensus
that the use of a priori ALS data can maximize efficiency and reduce costs of ground plot acquisitions
for area-based ALS modeling and mapping [59]. Recent research on the transferability of ALS-attribute
models suggests potential for cost savings of some attributes by applying models to data with different
point cloud characteristics or different areas [96]. Furthermore, in this study, we demonstrated that
supplementing ground plots with ALS samples improved prediction over a direct modeling approach
that uses the more limited set of ground plots. Other studies have also shown improved estimation of
volume and biomass by combining field plots, ALS data and satellite data [41-43]. Supplementation of
ground plots with ALS samples could significantly reduce inventory costs for remote and less accessible
areas. Further research is needed in the design of ground and ALS sampling systems for multilevel
mapping and estimation and to make inventories most cost-efficient (e.g., [97]).

Finally, our study was carried out in the boreal forest conditions of western Newfoundland,
Canada. The practical objective was to extend ALS-based mapping of key forest structural attributes
from an area covered by wall-to-wall ALS data to an area of similar ecological conditions representing
a full forest management district. Extending the mapping beyond these ecological conditions would
result in predictions with unknown and likely increased errors. Additionally, the performance of the
approach under different conditions (i.e., forest types, stand structures, difficult terrain) and with
different datasets requires further research.

5. Conclusions

In this study, we evaluated an indirect approach for extending ALS-based mapping of forest
attributes with medium resolution satellite and environmental data for coniferous-dominated forests
of western Newfoundland. In the first phase, we used ALS data to map a suite of forest attributes with
high accuracy. In the second phase, we used ALS-based predictions from phase 1 to calibrate spatially
comprehensive satellite and environmental data for an extended area. The indirect approach improved
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estimation beyond an approach linking ground plots directly to spatially comprehensive data for a
suite of forest inventory attributes. The results were consistent using both regression and random
forest models. Therefore, we concluded that the indirect mapping approach resulted in improved
prediction over a direct approach for mapping coniferous forest attributes of an extended area with
similar ecological conditions. In this study, we believe that suitability of calibration plots at both phases
of the modeling were critical to the implementation. Moreover, the quality of the ALS data and of
the satellite and environmental data likely affected the model accuracy of each phase. Therefore, we
suggest that further research is needed to evaluate improvements offered by the indirect approach for
different data and environmental conditions.
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