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Abstract: An efficient satellite image segmentation method based on a hybrid grasshopper 
optimization algorithm (GOA) and minimum cross entropy (MCE) is proposed in this paper. The 
proposal is known as GOA–jDE, and it merges GOA with self-adaptive differential evolution (jDE) 
to improve the search efficiency, preserving the population diversity especially in the later 
iterations. A series of experiments is conducted on various satellite images for evaluating the 
performance of the algorithm. Both low and high levels of the segmentation are taken into account, 
increasing the dimensionality of the problem. The proposed approach is compared with the 
standard color image thresholding methods, as well as the advanced satellite image thresholding 
techniques based on different criteria. Friedman test and Wilcoxon’s rank sum test are performed 
to assess the significant difference between the algorithms. The superiority of the proposed method 
is illustrated from different aspects, such as average fitness function value, peak signal to noise ratio 
(PSNR), structural similarity index (SSIM), feature similarity index (FSIM), standard deviation 
(STD), convergence performance, and computation time. Furthermore, natural images from the 
Berkeley segmentation dataset are also used to validate the strong robustness of the proposed 
method.  

Keywords: satellite image; image segmentation; image thresholding; hybrid optimization; 
grasshopper optimization algorithm; differential evolution; minimum cross entropy 

 

1. Introduction 

Image segmentation is one of the most important techniques in image processing, which 
partitions a given image into several unique and disjoint classes according to color, texture, edge, and 
other parameters [1–5]. In the last few decades, many segmentation methods have been proposed by 
researchers, such as clustering, edge detection, region growing, and thresholding [6–8]. Among the 
available methods, thresholding is extensively used due its simplicity and efficiency [9]. In fact, the 
thresholding method can be divided into two categories: bi-level thresholding and multilevel 
thresholding. Bi-level thresholding is suitable for simple segmentation tasks, and splits the image 
into two classes, namely, foreground and background [10]. However, if the given image is 
informative and contains multiple objects, then classical bi-level thresholding is insufficient. The bi-
level thresholding is, therefore, extended into multilevel thresholding to enhance applicability.  

Several techniques have been introduced into this domain to determine the segmentation 
thresholds. Minimum cross entropy (MCE) is one of the most popular techniques and has attracted 
widespread attention in recent years [11]. The optimal thresholds were selected by minimizing the 
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cross entropy between the original classes and the segmented classes. In 2015, Sarkar et al. introduced 
an MCE-based method for color image segmentation [12]. Three hundred distinct images from the 
Berkeley segmentation dataset were used to comprehensively evaluate the performance of the 
proposed method. From the results, it was found that the proposed thresholding method is superior 
over not only the meta-heuristic-based methods, but also other prominent algorithms. Pare et al. used 
an MCE-based approach to segment various color images with low resolution and poor illumination 
[13]. Both natural images and satellite images were selected for testing. Experimental results reveal 
that the proposed method can determine the thresholds more efficiently and accurately compared to 
other methods. In 2017, Oliva et al. proposed thresholding using MCE for magnetic resonance (MR) 
image segmentation [14]. The experimental results indicate that the obtained well-delimited regions 
were easier to distinguish than when other techniques [14]. These phenomena convincingly 
demonstrate the remarkable performance of the MCE method in the field of image segmentation.  

However, there are still some drawbacks that limit the MCE method from wide application. For 
example, the computational complexity increases exponentially as the number of thresholds 
increases, and the exhaustive search that is used makes the algorithm inefficient. To overcome these 
drawbacks, many meta-heuristic algorithms and their modified versions have been adopted and 
combined with thresholding techniques, such as particle swarm optimization (PSO) [15], differential 
evolution (DE) [16], bat algorithm (BA) [17], dragonfly algorithm (DA) [18], and grey wolf optimizer 
(GWO) [19]. Suresh and Lal introduced a chaotic Darwinian particle swarm optimization (CDPSO)-
based satellite image segmentation method [20]. Ten chaotic maps were used for testing, and the best 
one was chosen. MCE and Tsallis entropy criteria were used as objective functions. Mlakar et al. 
presented a hybrid differential evolution (hjDE)-based method for finding the optimal segmentation 
thresholds [21]. The reset strategy of cuckoo search (CS) was added into the hybrid model with the 
purposed of avoiding local optimization. In 2018, Satapathy et al. employed and validated a 
multilevel image thresholding technique based on chaotic bat algorithm (CBA) [22]. The chaotic Ikeda 
map was combined with the traditional BA to maintain population diversity and enhance search 
efficiency. Several standard test images, with different sizes, were used to evaluate the performance 
of the proposed method. In 2018, Díaz-Cortés et al. applied a DA-based thresholding approach to 
breast thermogram analysis [23]. The introduction of DA greatly reduced the computational 
complexity of the traditional thresholding method. Furthermore, the promising experimental results 
indicate that the proposed algorithm can provide reliable technical support for clinical decisions and 
has a certain application value. Khairuzzaman and Chaudhury proposed a multilevel thresholding 
approach based on GWO for gray image segmentation [24]. Two other meta-heuristic algorithm-
based thresholding methods were utilized for comparison. Relevant results suggest that the GWO-
based method can provide solutions of higher accuracy and stability. Additionally, some other 
algorithms were also applied to the field of multilevel image thresholding, including whale 
optimization algorithm (WOA) [25], Lévy flight firefly algorithm (LFA) [26], multiverse optimizer 
(MVO) [27], social spider optimization (SSO) [28], teaching–learning-based optimization (TLBO) [29], 
krill herd optimization (KHO) [30], adaptive wind driven optimization (AWDO) [31], modified firefly 
algorithm (MFA) [32]. These examples of successful applications have motivated us to introduce 
some novel and efficient meta-heuristic algorithms into this domain, and then obtain a high-
performance method for multilevel satellite image thresholding.  

On the other hand, the grasshopper optimization algorithm (GOA) is a recently proposed swarm 
intelligence (SI) technique that mimics the swarm behavior of grasshoppers in nature. Since being 
presented by Saremi et al. in 2017 [33], it has been widely used and shown a remarkable performance 
in many fields, such as financial stress prediction [34], feature selection [35], analysis of vibration 
signals from rotating machinery [36], optimal reconfiguration of partially shaded photovoltaic (PV) 
array [37], and more. In fact, the optimization ability of the GOA algorithm still needs to be effectively 
strengthened to better cope with different engineering problems. In [34], three strategies, namely 
Gaussian mutation, Lévy flight, and opposition-based learning (OBL), were adopted to achieve a 
more suitable balance between exploration and exploitation. In [38], the OBL strategy was introduced 
into the initialization and update stages of the optimization process, which can enhance the search 
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efficiency and avoid local optimum to some extent. In [39], a natural selection strategy and democratic 
decision-making mechanism were used to avoid local best trap. In addition, the dynamic feedback 
mechanism based on the 1/5 principle was also introduced to adjust the parameter 𝑐  for better 
balancing global and local search [39]. The above phenomena motivate us to combine GOA with an 
efficient strategy to overcome the drawbacks, such as slow convergence speed, unbalanced 
exploration–exploitation, and local optimization. 

Another interesting technique for optimization is differential evolution (DE) [16]. DE is a simple 
but powerful algorithm, which has been combined with other algorithms to enhance search efficiency 
and maintain population diversity. In 2017, Jadon et al. proposed a hybridization of artificial bee 
colony (ABC) and DE algorithms to develop a new meta-heuristic algorithm with better convergence 
speed and a better balance between exploration and exploitation abilities [40]. Dash et al. introduced 
a hybrid meta-heuristic technique known as hybrid firefly differential evolution (HFDE) [41]. The 
firefly movement was used as an additional search of DE to avoid local optimization and improve 
convergence performance. In 2018, Xiong et al. presented a hybrid WOA with DE, called DE/WOA, 
for extracting the accurate parameters of photovoltaic (PV) models [42]. DE also served as an 
additional search technique, and the crossover probability (𝐶𝑅) was the criterion for using DE. To 
sum up, these promising results indicate the remarkable performance of DE in hybrid meta-heuristic 
algorithms. In fact, some of the available hybrid models still have drawbacks, for instance, a two-
layer position update mechanism is often adopted, that is, after the first strategy completes the 
position update, the second one will be utilized to continue to update the position that has been 
updated once [43]. This type of approach does have certain advantages, especially the introduction 
of greedy selection strategy, which can prevent population stagnation and degradation caused by 
additional searching. However, the computational complexity of these methods is high, which is 
determined by the hybrid model used. In this paper, an alternative hybrid algorithm of GOA and jDE 
is proposed to overcome the above shortcoming.  

Satellite images are one of the important sources of information which have been widely used 
in the field of geographic information systems, astronomy, and earth science [44]. Generally speaking, 
it is difficult to locate objects and boundaries in satellite images with poor illumination and complex 
backgrounds. Therefore, developing a high-performance color satellite image segmentation method 
is of significance and can provide reliable theoretical support for engineering practices. In this paper, 
a novel hybrid GOA with jDE is introduced for multilevel satellite image segmentation. The MCE 
technique is used to select the segmentation thresholds. In order to evaluate the algorithm 
performance objectively, a series of experiments are conducted on various satellite images. Both low 
and high levels of the thresholds are considered. The proposed method is compared with the 
standard color image thresholding methods as well as the advanced satellite image thresholding 
techniques based on different criteria. Comprehensive statistical analyses, including Friedman test 
and Wilcoxon’s rank sum test, are performed to assess the significant difference between the 
algorithms. The superiority of the proposed hybrid algorithm is illustrated from different aspects, 
such as average fitness function value, peak signal to noise ratio (PSNR), structural similarity index 
(SSIM), feature similarity index (FSIM), standard deviation (STD), convergence performance, and 
computation time. Besides, natural images from the Berkeley segmentation dataset are also used to 
validate the strong robustness of the proposed method.  

The main contributions of this study have three aspects: 
1. Propose an efficient satellite image segmentation method. 
2. Apply the hybrid algorithm of GOA and DE to the multilevel thresholding domain. 
3. Introduce an alternative hybrid model for a meta-heuristic algorithm. 

The structure of this paper is presented as follows: Section 2 briefly reviews the GOA. The 
definition of MCE thresholding technique is presented in Section 3. The proposed GOA–jDE-based 
multilevel satellite image thresholding method is illustrated in Section 4. In Section 5, a series of 
experiments are conducted, along with a detailed relevant discussion. Finally, Section 6 summarizes 
the conclusions of this paper and future work directions. 

2. Grasshopper Optimization Algorithm 
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The grasshopper optimization algorithm is inspired by the swarming behavior of grasshoppers 
in nature. It was first proposed by Saremi et al. to determine the optimal shape of architectural 
structures [33]. There are three main factors that influence the movement of the grasshopper 
individual: social interaction, gravity force, and wind advection [34,45]. The mathematical model of 
their swarm behavior is given as follows:  

𝑋௜ = 𝑆௜ + 𝐺௜ + 𝐴௜ , (1) 

where 𝑋௜ is the position of the ith grasshopper. 𝑆௜ , 𝐺௜, and 𝐴௜ indicate the social interaction, gravity 
force, and wind advection on the ith grasshopper, respectively.  

However, Equation (1) cannot be directly utilized to solve optimization problems. The authors 
presented an improved version that was defined as  

𝑋௜
ௗ = 𝑐 ቆ෍ 𝑐

𝑢𝑏ௗ − 𝑙𝑏ௗ

2

ே

௝ୀଵ,௝ஷ௜
𝑠൫ห𝑥௝

ௗ − 𝑥௜
ௗห൯

𝑥௝ − 𝑥௜

𝑑௜௝

ቇ + 𝑇ௗ
෢, (2) 

where 𝑢𝑏ௗ and 𝑙𝑏ௗ represent the upper bound and lower bound in the dth dimension, respectively. 
𝑇ௗ
෢ indicates the value of the dth dimension in the best solution obtained so far. 𝑑௜௝ = ห𝑥௝ − 𝑥௜ห shows 
the distance between the ith grasshopper and jth grasshopper. 𝑠 is a designed function that can be 
calculated by 𝑠(𝑟) = 𝑓𝑒ି௥/௟ − 𝑒ି௥. 𝑓 and 𝑙 are two constants. In order to investigate the influence of 
𝑓 and 𝑙 on 𝑠 function, two different cases were considered. The relevant results are shown in Figure 
1.  

  
(a) (b) 

Figure 1. Variation of function s at different values of f and l. (a) 𝑙 = 1.5 and 𝑓 in [0,1], (b) 𝑓 = 0.5 
and 𝑙 in [1,2] 

𝑐  is a significant parameter of GOA that can balance the exploration and exploitation of 
optimization. It decreases with the number of iterations and can be computed by 

𝑐 = 𝑐௠௔௫ − 𝑡
𝑐௠௔௫ − 𝑐௠௜௡

𝑡௠௔௫

, (3) 

where 𝑐௠௔௫  and 𝑐௠௜௡  are the maximum and minimum values, respectively. 𝑡  is the current 
iteration and 𝑡௠௔௫ indicates the maximum number of iterations. 

Pseudocode of traditional GOA for global optimization is given in Algorithm. 1. 
Algorithm 1 Pseudocode of grasshopper optimization algorithm for optimization problem 

1. Begin 

2.  Initialize a randomly distributed population in the search space; 

3.  Initialize the best search agent 𝑇ௗ
෢; 

4.  while 𝑡 < 𝑡୫ୟ୶ 

5.    Evaluate 𝑐 using Equation (3); 

6.    for 𝑖 = 1: 𝑛 

7.      Calculate the objective value of each grasshopper 𝑓௜;  

S(
d)

S(
d)
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8.      Update the best search agent 𝑇ௗ
෢; 

9.      Normalize the distance between grasshoppers in [1,4]; 

10.     Update the position of grasshopper 𝑥௜ using Equation (2); 

11.     Correct the position of the current grasshopper if it is beyond the border;  

12.   end for 

13.  end while 

14.  return 𝑇ௗ
෢, which represents the optimal position of optimization; 

15. End 

3. Multilevel Thresholding 

Minimum cross entropy (MCE) technique determines the optimal thresholds based on 
minimizing the cross entropy between the original image and the segmented image, which shows 
remarkable performance in previous works by researchers [11–14]. It is worth mentioning that the 
segmentation operation of color images is more complex than that of grayscale images, as each color 
component (red, green, and blue) should be segmented. The objective function of the above 
thresholding technique is presented as follows:  

𝑓ெ஼ா = ෍ −𝑚௜
ଵln (

𝑚௜
ଵ

𝑚௜
଴)

௡

௜ୀ଴

, (4) 

where 𝑚௜
଴ = ∑ 𝑝௝

்೔శభିଵ

௝ୀ்೔
, 𝑚௜

ଵ = ∑ 𝑗𝑝௝
்೔శభିଵ

௝ୀ்೔
, 𝑝௝ = ℎ(𝑗)/𝑁 . 𝑝௝  is the proportion of pixels in each gray 

level to the total. {𝑇ଵ, 𝑇ଶ, … , 𝑇௡}  represents the combination of thresholds. ℎ(𝑗)  represents the 
frequency, and 𝑁 is the number of all pixels. Besides, for multilevel image thresholding, 𝑇଴ = 0 and 
𝑇௡ାଵ = 𝐿. 𝐿 is the number of gray levels in the given image. 

Additionally, the computational complexity of thresholding technique above will result in 
exponential growth as the number of thresholds increase. In this case, the basic MCE multilevel 
thresholding method is not very effective. Thus, the GOA–jDE-based method using MCE is proposed 
with the purpose of reducing computational complexity and improving segmentation precision. In 
other words, the GOA–jDE algorithm is used to optimize the objective function given in Equation (4). 

4. Proposed Methodology 

In this section, a hybrid GOA algorithm with DE is introduced in detail. Firstly, the DE algorithm 
and its variant, jDE, are reviewed. Secondly, the hybrid model is discussed. Then, the proposed 
algorithm, namely GOA–jDE, is applied to multilevel satellite image segmentation domain, and the 
relevant flowchart is also presented. Finally, the computational complexity comparison between 
GOA and GOA–jDE is made.  

4.1. Differential Evolution 

Differential evolution (DE) is a simple and powerful evolutionary algorithm proposed by Storn 
and Price in 1997, which has attracted extensive attention over the past few decades [46,47]. There are  
three main operators in the DE algorithm, namely “mutation”, “crossover”, and ”selection” [48]. 
Scaling factor 𝑆𝐹  and crossover probability 𝐶𝑅  are two significant parameters which affect the 
exploration and exploitation phases of optimization.  

4.1.1. Mutation 

The mutation operation of DE algorithm can be calculated as 

𝑚௜
௧ାଵ = 𝑥௥ଵ

௧ + 𝑆𝐹 × (𝑥௥ଶ
௧ − 𝑥௥ଷ

௧ ), (5) 
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where 𝑚௜
௧ାଵ  is the mutant individual in the (𝑡 + 1)th  iteration. 𝑥௥ଵ

௧ , 𝑥௥ଶ
௧ , and 𝑥௥ଷ

௧  indicate three 
different individuals in the population. More specifically, 𝑟ଵ, 𝑟ଶ, and 𝑟ଷ are not equal. The scaling 
factor denoted by 𝑆𝐹 is a constant here.  

4.1.2. Crossover 

After the process of mutation, the trial individual 𝑐௜
௧ାଵ is chosen from the current individual 𝑥௜

௧ 
or the mutant individual 𝑚௜

௧ାଵ  with the purpose of improving the population diversity. The 
crossover operation of DE algorithm is mathematically defined as follows:  

𝑐௜
௧ାଵ = ቊ

𝑚௜
௧ାଵ     𝑖𝑓 𝑟𝑎𝑛𝑑 ≤ 𝐶𝑅

𝑥௜
௧            𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝐶𝑅

, (6) 

where 𝑟𝑎𝑛𝑑 is a uniformly distributed random number in the interval [0,1]. 𝐶𝑅 is a constant that 
indicates the crossover probability.  

4.1.3. Selection 

During the process of selection, a comparison between the trial individual 𝑐௜
௧ାଵ and the current 

individual 𝑥௜
௧ is made to obtain an individual of (𝑡 + 1)th generation. For a minimization problem, 

the selection operation is defined as  

𝑥௜
௧ାଵ = ቊ

𝑐௜
௧ାଵ        𝑖𝑓 𝑓(𝑐௜

௧ାଵ) < 𝑓(𝑥௜
௧)

𝑥௜
௧                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         

, (7) 

where 𝑓 indicates the objective function of the given optimization problem.  

4.2. Self-Adapting Differential Evolution (jDE) 

As discussed above, scaling factor 𝑆𝐹  and crossover probability 𝐶𝑅  are two significant 
parameters in the DE algorithm, the value of which can affect the optimization capability. In the 
standard DE, these two control parameters are constant throughout the entire evolutionary process. 
However, the fixed value cannot adapt well to various problems, especially complex high-
dimensional problems. Therefore, Brest et al. [49] introduced a modified version of DE that can set 
the control parameters adaptively. In the modified DE, known as jDE, the control parameters 𝑆𝐹 and 
𝐶𝑅 can be expressed as follows:  

𝑆𝐹௜
௧ାଵ = ൜

𝑆𝐹௟ + 𝑟𝑎𝑛𝑑ଵ × 𝑆𝐹௨     𝑖𝑓 𝑟𝑎𝑛𝑑ଶ < 𝜏ଵ

𝑆𝐹௜
௧                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

, (8) 

𝐶𝑅௜
௧ାଵ = ൜

𝑟𝑎𝑛𝑑ଷ       𝑖𝑓 𝑟𝑎𝑛𝑑ସ < 𝜏ଶ

𝐶𝑅௜
௧                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒   

, (9) 

where 𝜏ଵ and 𝜏ଶ show the transition probability, and are set to 0.1 here. 𝑆𝐹௟ and 𝑆𝐹௨ indicate the 
bound of scaling factor. The initial value of 𝑆𝐹 and 𝐶𝑅 are set to 0.5 and 0.9, respectively, which can 
help the algorithm to obtain a remarkable performance. 

It can be found from Equations (8) and (9) that each search agent has its own 𝑆𝐹 and 𝐶𝑅. During 
the process of iteration, the value of these two parameters may change, but the transition probability 
denoted by 𝜏 is small. In other words, the parameter value of each search agent is appropriate in 
many cases, while that value will also become random to increase population diversity (see Figure 
2). The pseudocode of the jDE algorithm for an optimization problem has been given in Algorithm 2. 
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(a) (b) 

Figure 2. (a) The average value of crossover rate (CR) and (b) scaling factor (F) for 30 runs using jDE 
algorithm. 

Algorithm 2 Pseudocode of jDE algorithm for an optimization problem 

1. Begin 

2.  Initialize a randomly distributed population in the search space; 

3.  Initialize the best search agent 𝑥௕௘௦௧; 

4.  while 𝑡 < 𝑡୫ୟ୶ 

5.    for 𝑖 = 1: 𝑛 

6.      Calculate the objective value of each search agent 𝑓௜; 

7.      Update the best search agent 𝑥௕௘௦௧; 

8.      Evaluate the control parameters SF andCR  of each search agent using Equations (8)–(9); 

9.      Mutation: Generate a mutant individual using Equation (5), and then check the position; 

10.     Crossover: Choose the trial individual from current individual and mutant individual 

using Equation (6); 

11.     Selection: Select the better individual that will be preserved for the next generation using 

Equation (7); 

12.   end for 

13.  end while 

14.  return 𝑥௕௘௦௧, which represents the optimal position of optimization; 
15. End 

4.3. Hybrid Algorithm of GOA and jDE (GOA–jDE) 

GOA is a novel meta-heuristic algorithm that has been applied to many engineering problems, 
however, it still has some drawbacks, such as unbalanced exploration–exploitation, sometimes slow 
convergence speed, and low population diversity [34,39]. DE is a simple but powerful algorithm 
which has been embedded into other algorithms, as an operator, to enhance local search capability. 
For example, Elaziz et al. introduced a moth search differential evolution (MSDE) algorithm for task 
scheduling in cloud computing [50]. The DE algorithm served as a local search method in MSDE, and 
a roulette wheel approach was used to determine which strategy would be adopted. The 
experimental results indicate that the proposed algorithm can efficiently solve the cloud task 
scheduling problem and is superior to other methods in terms of various performance measures [50]. 
In 2018, a hybrid algorithm based on self-adaptive gravitational search algorithm (GSA) and 
differential evolution was proposed, which is known as SGSADE [51]. In this paper, a DE algorithm 
was used with the purpose of improving the exploitation ability and maintaining population 
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diversity [51]. The relevant simulation results demonstrate the superiority of SGSADE over other 
variant algorithms of GSA. In 2017, Zhao et al. presented a hybrid optimization algorithm of chaotic 
differential evolution and estimation of distribution [52]. The proposed algorithm, called cDE/EDA, 
can obtain high precision solutions due to the combination of strong exploration ability in EDA and 
good exploitation ability in DE. 

These successful applications, using hybrid algorithm with DE, motivate us to take advantage 
of them to obtain a modified version of GOA. In this paper, the GOA algorithm is combined with jDE 
to improve search efficiency while maintaining population diversity, especially in the later iterations. 
It is worth noting that although the DE algorithm serves as a local search strategy in the proposed 
algorithm, this does not mean, however, that its exploration capability can be ignored or even 
discarded. After all, a good balance between exploration and exploitation is crucial for any meta-
heuristic algorithm, even as part of a hybrid algorithm. Therefore, an improved version of DE, namely 
jDE, is used instead of the standard DE.  

In the proposed GOA–jDE algorithm, a simple and efficient hybrid model is introduced to 
improve the optimization ability without increasing the computational complexity [53]. In the 
authors’ opinion, the average objective value of the population represents the overall quality of the 
search agents in the current generation. For a problem to be minimized, the fitness function value of 
individual should be less than the average, which indicates that the adjacent search region of the 
particle is potential and promising. Therefore, a strategy to enhance the local search should be 
adopted. On the contrary, if the fitness function value is greater than the average, the local search 
strategy will not be used. Furthermore, the introduction of jDE will not make the algorithm 
prematurely converge because scaling the difference between individuals makes the population more 
randomly distributed. This characteristic can better maintain the diversity of populations, especially 
in the late evolution process. Moreover, the flowchart of GOA–jDE algorithm-based multilevel 
thresholding is given in Figure 3, and the pseudocode is presented in Algorithm 3. 

Algorithm 3 Pseudocode of GOA–jDE-based multilevel satellite image thresholding 
Input:   The given satellite image. 
Output:  Segmentation thresholds.  

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
∗∗ Get information about the image ∗∗ 
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 

1. Read the given color satellite image; 
2. Extract the histogram of each color component (R, G, and B); 

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 
∗∗∗∗                  GOA − jDE                 ∗∗∗∗ 
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 

3. Initialize a randomly distributed population in the search space; 
4. Initialize the best search agent 𝑇ௗ

෢; 
5. Initialize the fitness values of the grasshoppers 𝑓௜; 
6. Set population size 𝑁 and maximum number of iterations 𝑡୫ୟ୶; 
7. Set the dimensions of the optimization problem 𝑑𝑖𝑚, namely the number of thresholds;  
8. while (termination condition is not met (𝑡 < 𝑡୫ୟ୶)) 
9.  Check the boundary and evaluate the fitness value of each grasshopper 𝑓௜ using Equation 

(4); 
10.  Update the location 𝑇ௗ

෢ and fitness value 𝑓ୠୣୱ୲ of best search agent if there is a better one;  
11.  Evaluate the parameter 𝑐 using Equation (3); 
12.  Calculate the average fitness value 𝑓 ̅ of the population; 
13.   for (each grasshopper (𝑖 = 1: 𝑛))  
14.     if (𝑓௜ > 𝑓)̅                                       % GOA Algorithm 
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15.     Update the position of grasshopper using Equation (2); 
16.     else                                            % jDE Operator 
17.     Evaluate 𝑆𝐹 and 𝐶𝑅 of each search agent using Equations (8)–(9); 
18.     Mutation, Crossover, and Selection using Equations (5)–(7).  
19.     end if 
20.   end for 
21. end while 
                                                                                               

Fitness function (Minimum Cross entropy) 
Input:   Histogram of a color component, and segmentation thresholds 𝑥௜. 
Output:  Fitness function value 𝑓௜.  

1. The histogram is divided into 𝑛 + 1 parts by 𝑛 thresholds; 
2. Calculate the proportion of pixels in each gray level (𝑝௝ , 𝑗 ∈ [0,255]) to the total based on the 

histogram; 
3. Compute the zero-moment 𝑚௜

଴ and first-moment 𝑚௜
ଵ on partial range of the image 

histogram; 
4. Calculate the minimum cross entropy of each part −𝑚௞

ଵ ln (𝑚௞
ଵ /𝑚௞

଴) (𝑘 ∈ [0, 𝑛]); 
5. The sum of the entropies of all parts represents the fitness function value; 
6. 𝑓௜ = −𝑚଴

ଵln (𝑚଴
ଵ/𝑚଴

଴)−𝑚ଵ
ଵln (𝑚ଵ

ଵ/𝑚ଵ
଴)− ⋯ − 𝑚௡

ଵ ln (𝑚௡
ଵ /𝑚௡

଴); 

c

ffi 

SF CR

f

 
Figure 3. Framework of the GOA–jDE-based method. 

In addition, experiments were performed on eight satellite images (see Figure 4) to determine 
the optimal parameter settings of the proposed algorithm. The average rank with different 
combinations of 𝑆𝐹 and 𝐶𝑅 are given in Table 1. Note that the values of the parameters 𝑆𝐹 and 𝐶𝑅 
are the initial values here. Other parameters, such as 𝜏ଵ , 𝜏ଶ , etc., are the same as in the original 
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literature [49], in which the authors have discussed, in detail, the impact of the selected parameters 
on the performance. In this experiment, a lower ranking value indicates better performance. As can 
be observed, 𝑆𝐹 = 0.5 and 𝐶𝑅 = 0.9 present the best results in most cases; thus, this combination of 
parameter values was adopted in the following experiments.  

Table 1. Average rank obtained by the proposed method (K = 12) under different parameter values. 

 𝑺𝑭 = 𝟎. 𝟏 𝑺𝑭 = 𝟎. 𝟑 𝑺𝑭 = 𝟎. 𝟓 𝑺𝑭 = 𝟎. 𝟕 𝑺𝑭 = 𝟎. 𝟗 
𝐶𝑅 = 0.5 14.0625 13.75 16.6875 9.75 11.75 
𝐶𝑅 = 0.6 7.0625 13.4375 9.8125 13 12.6875 
𝐶𝑅 = 0.7 15.6875 16.6875 14.3125 15.1875 17.0625 
𝐶𝑅 = 0.8 13.8125 13.8125 14.5 12.6875 9.5 
𝐶𝑅 = 0.9 15.875 9 3 14.875 17 

4.4. Computational Complexity 

In this subsection, the computational complexity of the GOA–jDE algorithm is presented, and 
the details of the relevant analysis are also given.  

It is worth mentioning that this paper only discusses the computational complexity in a single 
iteration because the number of search agents using the GOA or jDE method varies uncertainly 
during the evolution process. The computational complexity of the GOA–jDE and standard GOA 
algorithm can be calculated as follows:  

𝑂(GOA − jDE) = 𝑂(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑒) + 𝑂(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛) 

   = 𝑂(𝑛ଵ ∗ (𝑑 + 𝐶𝑜𝑐 + 𝐶𝑜𝑠) + 𝑛ଶ ∗ 𝑛 ∗ 𝑑 + 𝑛 ∗ 𝐶𝑜𝑓) 

              = 𝑂(𝑛ଵ ∗ 𝑑 + 𝑛ଶ ∗ 𝑛 ∗ 𝑑 + 𝑛ଵ ∗ (𝐶𝑜𝑐 + 𝐶𝑜𝑠) + 𝑛 ∗ 𝐶𝑜𝑓), 

(10) 

    𝑂(GOA) = 𝑂(𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑢𝑝𝑑𝑎𝑡𝑒) + 𝑂(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛) 

     = 𝑂(𝑛ଶ ∗ 𝑑 + 𝑛 ∗ 𝐶𝑜𝑓) = 𝑂((𝑛ଵ + 𝑛ଶ)ଶ ∗ 𝑑 + 𝑛 ∗ 𝐶𝑜𝑓) 

    = 𝑂(𝑛ଵ
ଶ ∗ 𝑑 + 𝑛ଶ

ଶ ∗ 𝑑 + 2𝑛ଵ𝑛ଶ𝑑 + 𝑛 ∗ 𝐶𝑜𝑓), 

(11) 

where 𝑛ଵ and 𝑛ଶ indicate the number of search agents that update their position using jDE and 
GOA in one iteration, respectively. 𝑛 is the population size, which is equal to the sum of 𝑛ଵ and 𝑛ଶ, 
namely 𝑛 = 𝑛ଵ + 𝑛ଶ. 𝑑 is the dimension of given problem, 𝐶𝑜𝑓 is the cost of function evaluation. 
𝐶𝑜𝑐 and 𝐶𝑜𝑠 are the cost of crossover and selection operations in DE, respectively. 

It can be found, from the two above formulations, that the cost of “objective function evaluation” 
is equal. However, the cost of “position update” is significantly different. Therefore, only the latter 
needed to be analyzed to assess the differences between them. In GOA–jDE, the population is divided 
into two parts according to the average fitness value, while the computational complexity of these 
two parts is different. Mutation, crossover, and selection operations are the main costs of jDE, and 
the computational complexity is approximately equal to 𝑂൫𝑛ଵ ∗ (𝑑 + 𝐶𝑜𝑐 + 𝐶𝑜𝑠)൯. For the position 
update using GOA, the computational complexity is approximately equal to 𝑂(𝑛ଶ ∗ 𝑛 ∗ 𝑑), since each 
grasshopper needs to compute its social interaction, while the calculation of the distance between 
two individuals is essential, as shown in Equation (2). Similarly, in the GOA algorithm, the cost of 
the position update is equal to 𝑂(𝑛ଶ ∗ 𝑑), which can be rewritten as 𝑂(𝑛ଵ

ଶ ∗ 𝑑 + 𝑛ଶ
ଶ ∗ 𝑑 + 2𝑛ଵ𝑛ଶ𝑑). It 

can be seen from the final versions of Equation (10) and Equation (11) that they all contain three terms 
representing the cost of position update. Obviously, the first two terms of GOA–jDE cost less than 
the standard GOA. Considering the third term, it is difficult to determine which algorithm has higher 
computational complexity due to the unknown cost of crossover and selection operations represented 
by 𝐶𝑜𝑐 and 𝐶𝑜𝑠, respectively. In fact, the computational complexity of GOA–jDE is much lower than 
the standard GOA, which will be verified in subsequent experiments. 
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5. Experimental Results and Discussion 

5.1. Experimental Setup 

In this paper, a series of experiments are conducted to validate the performance of GOA–jDE 
algorithm, which can be mainly divided into three parts. For the first experiment, eight satellite color 
images are selected from “Landsat imagery courtesy of NASA Goddard Space Flight Center and U.S. 
Geological Survey” [54]. It is worth noting that all images are resized, and the height is fixed to 481 
pixels. Both state-of-the-art and conventional multilevel color image segmentation techniques are 
employed, such as the standard GOA and DE, modified GOA (MGOA) [55], hybrid jDE (hjDE) [21], 
βDE (BDE) [56], bat algorithm (BA) [17], and particle swarm optimization (PSO) [15]. For the second 
experiment, the GOA–jDE-based method using MCE (GOA–jDE–MCE) with other threshold-based 
satellite image segmentation methods, such as modified artificial bee colony using Tsallis entropy 
(MABC–Tsallis) [57], improved the differential search algorithm using Otsu between-class variance 
(IDSA–Otsu) [58], and cuckoo search using MCE (CS–MCE) [13]. Considering that these methods use 
different thresholding techniques, the GOA–jDE algorithm was combined with Tsallis entropy and 
Otsu methods for fair comparison, and the resulting two techniques were named GOA–jDE–Tsallis 
and GOA–jDE–Otsu. For the third experiment, the SIPI Image Database (37 color satellite images and 
1 grayscale satellite image) was used for further testing [59].  

Hence, the performance of each approach can be comprehensively evaluated through the above 
experiments. In addition, Figure 4 presents the original satellite image and corresponding histogram. 
The images are named in order (i.e. “Image1” to “Image8”), and the relevant explanation is given in 
Table 2.  

  
(a) (b) 

  
(c) (d) 

       
(e) (f) 

  
(g) (h) 

Figure 4. Original test images named ‘Image1’, ‘Image2’, ‘Image3’, ‘Image4’, ‘Image5’, ‘Image6’, 
‘Image7’, and ‘Image8’, and the corresponding histograms for each of the color channels (red, green, 
and blue). (a) 1800 × 1200, (b) 2796 × 1864, (c) 5339 × 3559, (d) 2712 × 1808, (e) 4310 × 4019, (f) 2856 × 
1904, (g) 3467 × 2311, (h) 1512 × 1008; (left figure) Original test images, (right figure) Histogram of 
each frame. 
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Table 2. Explanation of the satellite images. 

Image Number Explanation 
1. The Aïr Mountains dispersed across the Sahara Desert in northern Niger. 
2. Glacier cover in the mountainous region of northwestern Venezuela. 
3. Dukan Lake in the Zagros Mountains, the largest lake in Iraqi Kurdistan. 
4. Candeleros rock containing quite a menagerie of fossilized fauna. 

5. 
The waters of Foxe Basin, which have been choked with sea ice for most of the 

year. 

6. 
The Port of Busan at the southeastern tip of the Korean Peninsula, which has been 

a trading hub since at least the 15th century. 
7. A fire in Northern California during the summer of 2018. 

8. 
The Ebro Delta, located more than 200 kilometers (120 miles) southwest of 

Barcelona. 

The parameter values were set according to the original literature, as shown in Table 3, except 
for the population size 𝑁, set to 30, and the number of iterations 𝑡୫ୟ୶, set to 500 for fair comparison. 
All experiments were performed 30 times to eliminate errors, and the best result in each case is 
highlighted in boldface. The experimental environment is given as follows: MATLAB 2017 and 
Microsoft Windows 10 operating system. 

Table 3. Parameters of the algorithms. 

No. Algorithm Parameter Setting Year Reference 
1. GOA–jDE 𝐶𝑅 = 0.9, 𝑆𝐹 = 0.5, 𝑆𝐹௟௢௪ = 0.1, 𝑆𝐹௨௣ = 0.9, 𝜏ଵ = 𝜏ଶ = 0.1 — — 
2. GOA 𝑐 ∈ [0.00001,1] 2017 [33] 
3. DE 𝐶𝑅 = 0.9, 𝑆𝐹 = 0.5 1997 [16] 
4. MGOA 𝛽 = 0.8 (Lévy flight parameter) 2019 [55] 
5. hjDE 𝑝௔ = 0.25 (switching probability) 2016 [21] 
6. BDE 𝑎 ∈ [0,1] (beta distribution parameter) 2018 [56] 

7. BA 𝑟௜ ∈ [0,1] (rate of pulse emission), 𝐴௜

∈ [1,2] (loudness value) 2010 [17] 

8. PSO 𝑐ଵ = 𝑐ଶ = 2, 𝑤 ∈ [0.4,0.9], 𝑣௠௔௫ = 25.5 1995 [15] 
9. MABC 𝐾 = 300 (chaotic iteration) 2015 [57] 
10. IDSA — 2018 [58] 
11. CS 𝑝௔ = 0.25 (mutation probability), 𝛽 = 1.5 (scalingfactor) 2017 [13] 

5.2. Performance Measures 

In this section, several quantitative indicators are introduced to evaluate the performance of 
algorithms, such as average fitness values, standard deviation (STD), peak signal to noise ratio 
(PSNR), structural similarity index (SSIM), and feature similarity index (FSIM), as well as Wilcoxon’s 
rank sum test and Friedman test. The description of these metrics can be found in Table 4. 

Furthermore, another performance metric called segmentation success rate (SSR) is introduced 
in this paper, which takes PSNR, SSIM, and FSIM indexes into consideration for comprehensively 
measuring the similarity between the segmented image and the original image. SSR determines how 
many times the technique successfully reached a specified value that is called value-to-reach (VTR): 

𝑆𝑅 =
𝑁𝑉𝑇𝑅

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
, (12) 

where 𝑁𝑉𝑇𝑅 is the number of times that the technique reached the 𝑉𝑇𝑅.  
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5.3. Experimental Series 1: Comparison of Satellite Image Thresholding Methods Based on MCE 

5.3.1. Results and Discussions  

The experimental results can be found in Tables 5–9 and Figures 5–11. Figures 5–6 give the 
segmented results of “Image4” and “Image7” at different threshold levels, respectively. It can be 
found, from the figures, that the segmented images using high threshold levels contain more detail 
and information than those using low threshold levels. To be more specific, the local zoom map of 
“Image4” illustrates that the segmentation operation of higher dimensions makes the texture of the 
rock clearer. On the contrary, in the case of lower threshold, the given image is only divided into a 
few classes, which cannot reflect much of the image information, resulting in a poor segmentation 
effect. Considering the segmentation of “Image7”, it can be found that the lower threshold mistakenly 
classifies the fire source and the smoke, as their gray levels are relatively close (but not the same); 
when K = 12, the effect is improved because a segmentation threshold between the two gray levels is 
obtained. The reason for all the above phenomena is that as the number of threshold values increase, 
more classes with different characteristics are acquired, which can maintain the local features of the 
original image. In fact, it is difficult for the human eye to determine the performance of each 
algorithm at the same threshold level, especially the complex image with multiple objects. Therefore, 
the quality of the segmented images needs to be further evaluated using some specific indicators. 
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Table 4. Performance measures of the multilevel image segmentation methods. 

No. Measures Formulation Remark Reference 

1. Average Fitness Function Value Average =
∑ 𝑓௜

ே
௜ୀଵ

𝑁
 Indicates the center value of sample data. [46] 

2. Standard Deviation (STD) Std = ඨ
1

𝑁 − 1
෍ (𝑓௜ − Average)ଶ

ே

௜ୀଵ
 

Reflects the degree of dispersion in a dataset. 
A lower value shows better performance. 

[46] 

3. Peak Signal to Noise Ratio (PSNR) PSNR = 10 logଵ଴ ቆ
255ଶ

MSE
ቇ The ratio of the maximum possible power of 

the signal to the destructive noise power. 
[60] 

4. Mean Squared Error (MSE) MSE =
1

𝑀𝑁
෍ ෍ [𝐼(𝑖, 𝑗) − 𝐾(𝑖, 𝑗)]ଶ

ே

௝ୀଵ

ெ

௜ୀଵ
 Computes the difference between the 

predicted value. 
[60] 

5. Structural Similarity Index (SSIM) SSIM =
(2𝜇௫𝜇௬ + 𝑐ଵ)(2𝜎௫௬ + 𝑐ଶ)

(𝜇௫
ଶ + 𝜇௬

ଶ + 𝑐ଵ)(𝜎௫
ଶ + 𝜎௬

ଶ + 𝑐ଶ)
 Defines the similarity between the original 

image and the segmented image.  
[61] 

6. Feature Similarity Index (FSIM) FSIM =
∑ 𝑆௅(𝑥) ∙ 𝑃𝐶௠(𝑥)௫∈ఆ

∑ 𝑃𝐶௠(𝑥)௫∈ఆ

 Reflects the similarity of feature structure, the 
maximum value is 1. 

[62] 

7. Average Computation Time 𝑇𝑖𝑚𝑒 =
∑ 𝑡𝑖𝑚𝑒௜

ே
௜ୀଵ

𝑁
 

Indicates the operating efficiency of each 
method.  

[14] 

8. Wilcoxon’s Rank Sum Test 

𝑅ା = ෍ 𝑟𝑎𝑛𝑘(𝑑௜)

ௗ೔வ଴

+
1

2
෍ 𝑟𝑎𝑛𝑘(𝑑௜)

ௗ೔ୀ଴

 

𝑅ି = ෍ 𝑟𝑎𝑛𝑘(𝑑௜)

ௗ೔ழ଴

+
1

2
෍ 𝑟𝑎𝑛𝑘(𝑑௜)

ௗ೔ୀ଴

 

Whether there is a significant difference 
between two algorithms.  

[63] 

9. Friedman Test 𝐹௙ =
12𝑛

𝑘(𝑘 + 1)
ቈ෍ 𝑅௝

ଶ

௝
−

𝑘(𝑘 + 1)ଶ

4
቉ Detects significant differences between the 

behaviors of two or more algorithms. 
[64] 
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(a) (b) (c) 

Figure 5. The segmented results and local zoom maps of “Image4” at 4, 8, and 12 threshold levels. (a) 
K = 4, (b) K = 8, (c) K = 12. 

   
(a) (b) (c) 

Figure 6. The segmented results and local zoom maps of “Image7” at 4, 8, and 12 threshold levels. (a) 
K = 4, (b) K = 8, (c) K = 12. 

Table 5 presents the average objective function (minimum cross entropy) value obtained by each 
algorithm over all satellite images (bolded results are best). Note that a lower function value indicates 
better performance. It can be seen from the table that the proposed method presents the lowest value 
in most cases. For example, under the conditions of “Image3” (for K = 12), the fitness values are 
−646.3107, −646.2853, −646.3092, −646.3039, −646.3077, −646.3098, −646.2148, and −646.2988 for GOA–
jDE, GOA, DE, MGOA, hjDE, BDE, BA, and PSO, respectively. It is obvious that GOA–jDE 
outperforms the compared algorithms, indicating its remarkable optimization ability and balanced 
exploration–exploitation. At the same time, this convincingly demonstrates that the segmented image 
obtained by the proposed approach is detailed, informative, and of high quality because the entropy 
of a given image indicates its average information content [65]. More specifically, the reason for the 
high precision is the use of a powerful hybrid model. In GOA–jDE, the whole population is divided 
into two parts according to the average fitness value. Compared to the standard GOA and DE, the 
exploration and exploitation stages of optimization are well balanced, which increases the probability 
of obtaining the global optimum. Compared to other algorithms, the GOA–jDE algorithm can 
maintain the population diversity in the late iteration, thus enhancing the ability to avoid local 
optimization. For example, the main drawback of PSO is the parameter 𝜔. If the starting and ending 
value of parameter 𝜔 for the current problem are not determined in the best form, the PSO may 
converge prematurely and fall into a local optimum. For the BA algorithm, more parameters need to 
be adjusted for different problems, such as 𝑟௜ (rate of pulse emission), 𝐴௜ (loudness value), and 𝑣୫ୟ୶ 
(maximum velocity). The determination of these parameters greatly reduces the universality of BA 
algorithm, which affects the performance to some extent. 
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Table 5. The average fitness values using the MCE method compared with other algorithms. 

Images K GOA–
jDE GOA DE MGOA hjDE BDE BA PSO 

Image1 

4 −701.0136 −700.9701 −701.0136 −701.0136 −701.0136 −701.0136 −701.0132 −701.0136 
6 −701.2706 −701.2705 −701.2705 −701.2705 −701.2706 −701.2704 −701.2267 −701.2702 

8 −701.3808 −-
701.3829 −701.3803 −701.3806 −701.3807 −701.3807 −701.3152 −701.3782 

10 −701.4401 −701.4371 −701.4395 −701.4389 −701.4392 −701.439 −701.3746 −701.4042 
12 −701.4753 −701.473 −701.4737 −701.4736 −701.4751 −701.4749 −701.3678 −701.4573 

Image2 

4 −370.8833 −370.8833 −370.8833 −370.8833 −370.8833 −370.8833 −370.7795 −370.8833 
6 −371.1958 −371.1958 −371.1959 −371.1958 −371.1959 −371.1959 −371.045 −371.1898 
8 −371.3386 −371.3108 −371.3372 −371.3209 −371.3385 −371.3381 −371.2998 −371.2486 

10 −371.4126 −371.3998 −371.4082 −371.3839 −371.4124 −371.4115 −371.2348 −371.3697 
12 −371.457 −371.4345 −371.4507 −371.4395 −371.4569 −371.4558 −371.3314 −371.3988 

Image3 

4 −645.6498 −645.6498 −645.6498 −645.6498 −645.6498 −645.6498 −645.646 −645.6498 
6 −646.008 −645.9872 −646.008 −646.008 −646.008 −646.0079 −645.98 −646.0059 
8 −646.1744 −646.1662 −646.1735 −646.1743 −646.1742 −646.1741 −646.066 −646.1298 

10 −646.261 −646.2592 −646.2597 −646.2605 −646.2603 −646.2582 −646.1845 −646.235 
12 −646.3107 −646.2853 −646.3092 −646.3039 −646.3077 −646.3098 −646.2148 −646.2988 

Image4 

4 −474.0258 −474.0258 −474.0257 −474.0258 −474.0258 −474.0254 −474.0241 −474.0257 
6 −474.3694 −474.3683 −474.3691 −474.3694 −474.3694 −474.3693 −474.3543 −474.3685 
8 −474.526 −474.5238 −474.5229 −474.5259 −474.5251 −474.5257 −474.3738 −474.5036 

10 −474.6101 −474.6052 −474.6082 −474.6068 −474.6088 −474.6082 −474.4214 −474.5932 
12 −474.6598 −474.6508 −474.6569 −474.6563 −474.6596 −474.6585 −474.5078 −474.6356 

Image5 

4 −498.1325 −498.1325 −498.1325 −498.1325 −498.1325 −498.1325 −498.1271 −498.1325 
6 −498.5083 −498.4884 −498.5083 −498.5083 −498.5082 −498.4757 −498.4172 −498.5078 
8 −498.6791 −498.6698 −498.6783 −498.6784 −498.6791 −498.679 −498.5085 −498.6742 

10 −498.774 −498.7722 −498.7672 −498.7733 −498.7731 −498.7736 −498.6267 −498.734 
12 −498.8269 −498.8226 −498.8201 −498.826 −498.8248 −498.826 −498.7248 −498.8073 

Image6 

4 −306.5464 −306.5464 −306.5463 −306.5464 −306.5464 −306.5461 −306.5389 −306.5463 
6 −306.9244 −306.9237 −306.9244 −306.9244 −306.9244 −306.9231 −306.8676 −306.8951 
8 −307.0986 −307.0977 −307.0981 −307.0985 −307.0985 −307.0985 −306.8234 −307.0793 

10 −307.1962 −307.187 −307.1699 −307.1871 −307.1961 −307.1912 −307.0848 −307.1482 
12 −307.2547 −307.2322 −307.2507 −307.2423 −307.252 −307.2517 −307.0775 −307.2106 

Image7 

4 −480.5483 −480.5483 −480.5483 −480.5483 −480.5483 −480.5483 −480.5475 −480.548 
6 −480.8448 −480.8428 −480.8441 −480.8448 −480.8448 −480.8448 −480.7985 −480.8158 
8 −480.974 −480.9729 −480.9725 −480.9735 −480.9733 −480.9725 −480.83 −480.9581 

10 −481.041 −481.0396 −481.0402 −481.04 −481.0408 −481.0407 −480.9169 −481.0313 
12 −481.0802 −481.0699 −481.0776 −481.0723 −481.0796 −481.0771 −480.9164 −481.0549 

Image8 

4 −411.1164 −411.1164 −411.1164 −411.1164 −411.1164 −411.1164 −411.1118 −411.1164 
6 −411.4617 −411.4605 −411.4616 −411.4616 −411.4616 −411.4611 −411.308 −411.4607 
8 −411.6287 −411.6273 −411.6285 −411.6284 −411.6286 −411.6231 −411.5499 −411.5935 

10 −411.7136 −411.7007 −411.7105 −411.7043 −411.7119 −411.7131 −411.6203 −411.6984 
12 −411.7664 −411.7632 −411.7641 −411.758 −411.7662 −411.7653 −411.6613 −411.7395 

Moreover, the convergence property is also an indicator for evaluating the performance of each 
algorithm. Some typical drawbacks of the meta-heuristic algorithm can be analyzed from the 
convergence curve, including premature convergence and slow convergence speed. The convergence 
curve of each algorithm on “Image2”, “Image4”, “Image6”, and “Image8” at 12 threshold levels is 
shown in Figure 7 because the difference between algorithms is obvious at a higher threshold. It can 
be observed from the results that, in most cases, the GOA–jDE algorithm performs better than other 
methods. In other words, the curve given by the proposed algorithm is relatively low, overall. As 
discussed above, the main disadvantages of GOA are slow convergence speed and unbalanced 
exploration–exploitation, which are reflected clearly in the curves. For instance, under the conditions 
of “Image8”, it can be observed that the optimal value obtained by the GOA is continuously updated 
throughout the iterative process, showing no tendency to converge. This phenomenon illustrates the 
slow convergence drawback of GOA. However, the GOA–jDE algorithm can better balance the 
exploration and exploitation stages, showing neither premature convergence nor slow convergence. 
In fact, the superiority of the proposed algorithm is not only reflected in the segmentation task of 
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“Image8”, but also in other images. The promising result indicates the remarkable performance of 
GOA–jDE, which is suitable for the problem of satellite image segmentation.  

  
(a) (b) 

  
(c) (d) 

Figure 7. The convergence curves for fitness function using MCE method at 12 threshold levels. (a) 
Image2, (b) Image4, (c) Image6, (d) Image8. 

Figures 8–10 present the PSNR, SSIM, and FSIM values obtained by all algorithms, respectively. 
As discussed above, the combination of thresholds determines the quality of segmented images, 
which is reflected in the indicator value of the experiment. A higher value means more similarity to 
the original image. It can be found, from the figure, that the value of the PSNR indicator increases as 
the number of thresholds increases, and the position of the line graph given by the proposed method 
is significantly higher than the compared algorithms, except for “Image5”. The reason for this 
phenomenon is that each image corresponds to a different optimization problem, and it is difficult to 
find a single algorithm that is universally applicable. Therefore, GOA–jDE can still be considered 
efficient and powerful from a holistic perspective, although it does not give the best results in all 
cases. Considering the SSIM and FSIM values obtained over all available images at 12 threshold 
levels, the algorithms can be ranked, in our study, as GOA–jDE > hjDE > BDE ~ MGOA > GOA > DE 
> PSO > BA. When the threshold level is low (K = 4 and 6), the difference between the algorithms is 
not obvious, while the difference becomes significant at high threshold levels (K = 12). Table 6 gives 
the SSR values obtained by each method at 12 threshold levels. Note that the specified values of 
PSNR, SSIM, and FSIM, here, are 29.5, 0.93, and 0.95 respectively, which is a good reflection of the 
performance differences between the algorithms in this study. It can be found that GOA–jDE-based 
technique shows excellent performance in “Image 3” and “Image 7” (i.e., its advantages are obvious). 
Considering “Image 5”, although each algorithm does not achieve the expected results, it can be 
found from Figures 8–10 that the proposed method is relatively advantageous. The performance of 
GOA–jDE benefits from its accurately determined threshold and the resulting high-quality 
segmented image. On the contrary, several compared algorithms, such as DE, BA, and PSO, could 
not obtain the ideal segmented images due to improper determination of the threshold, and the 
similarity with the original image is not high.  
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Figure 8. Comparison of PSNR values for different algorithms using MCE method at 4, 6, 8, 10, and 
12 levels. 

 
Figure 9. Comparison of SSIM values over all images using MCE method at 4, 6, 8, 10, and 12 levels. 

 
Figure 10. Comparison of FSIM values over all images using MCE method at 4, 6, 8, 10, and 12 
levels. 

Table 6. The SSR values using MCE method compared with other algorithms. 

Image
s 

GOA–
jDE 

GOA DE MGOA hjDE BDE BA PSO 

1 6.67 0 0 0 0 0 3.33 0 
2 100 0 10 86.67 0 0 36.67 13.33 
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3 83.33 26.67 20 40 0 23.33 0 10 
4 100 100 100 96.67 100 93.33 100 90 
5 0 0 0 0 0 0 0 0 
6 100 60 36.67 53.33 30 70 86.67 40 
7 73.33 0 3.33 40 0 6.67 13.33 0 
8 100 100 100 100 100 100 100 100 

Due to the random property of the meta-heuristic algorithm, it was necessary to perform 
detailed stability analysis. Boxplots were used to evaluate the stability of each algorithm. The relevant 
results of four randomly selected images can be seen in Figure 11. It can be observed that the 
proposed method again outperforms the others. More specifically, the boxplot obtained was lower 
in position, more compact, and had no bad points, indicating better stability, continuity, and 
consistency. However, the performance of the other algorithms was not ideal. For example, 
considering the segmentation of “Image8”, the data presented by BA fluctuate greatly, and the center 
of the boxplot was obviously higher than other algorithms, showing poor stability. Moreover, in the 
conditions of “Image7”, BDE gives a low median and relatively compact graph, but its accuracy is 
seriously affected by the existence of bad points. After all, algorithms with unstable performance are 
difficult to apply to practical engineering problems. In GOA–jDE, a powerful hybrid model was used 
to balance the exploration and exploitation stages. Thus, its performance was not greatly affected by 
the random characteristic of the meta-heuristic algorithm, showing remarkable stability in most cases.  

  
(a) (b) 

  
(c) (d) 

Figure 11. The boxplot for fitness function using MCE method at 12 threshold levels . (a) Image5, (b) 
Image6, (c) Image7, (d) Image8. 

Time complexity is also an important indicator for evaluating the performance of meta-heuristic 
algorithms. In engineering practices, high-precision but high-complexity algorithms are often not the 
best choice, but algorithms that are fast and can obtain approximate optimal solutions are generally 
used. Hence, the standard for measuring an algorithm cannot be just computation time or precision 
and, instead, the evaluation should be comprehensive and objective. The average CPU time of each 
algorithm can be found in Table 7. It can be observed that PSO is the fastest among available 
algorithms, but it cannot achieve the best values of the above indicators. The DE algorithm gives 
competitive results in some cases and is slightly slower than PSO in the overall consideration. In 
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addition, the computation time of GOA–jDE is between GOA and DE, which is determined by the 
used hybrid model. It is worth noting that this result does not mean that the proposed algorithm is 
inefficient. As discussed above, the evaluation of algorithm performance should be more 
comprehensive and objective. The proposed algorithm has shown remarkable performance in many 
aspects, despite not being the fastest. In summary, GOA–jDE is a high-performance algorithm which 
can improve the precision significantly while maintaining runtime. Furthermore, the proposed 
algorithm has a few adjustable parameters, which enables it to adapt to the segmentation of most 
images. After all, tuning the algorithm parameters may be more complicated than optimizing the 
problem itself [25].  

Table 7. The average CPU time of the MCE method at different threshold levels. 

K GOA–jDE GOA DE MGOA hjDE BDE BA PSO 
4 1.744575 3.339125 1.132188 3.338625 1.632425 1.50965 1.3265 1.081413 
6 1.814575 3.407225 1.225213 3.467038 1.734113 1.701825 1.5425 1.1903 
8 2.027638 3.493013 1.31005 3.492675 1.987663 1.876263 1.885988 1.321688 
10 2.258513 3.567325 1.446075 3.58 2.248538 2.023563 2.240663 1.454863 
12 2.558875 3.860313 1.5924 3.750038 2.380238 2.263163 2.813125 1.56585 

5.3.2. Statistical Tests 

Since the experiments of all available methods were the same, it was necessary to perform 
statistical tests. Friedman test [64] and Wilcoxon’s rank sum test [63] were used as non-parametric 
statistical tests for evaluating the performance of all algorithms, with 5% considered as the significant 
level. The null hypothesis (H଴) in Wilcoxon’s rank sum test assumes that there is no significant 
difference between the two algorithms being compared, and the alternative hypothesis (Hଵ) 
indicates the difference. In addition, H଴ in the Friedman test states the equality of medians between 
the algorithms, while Hଵ also indicates the difference. A more detailed description of Friedman test 
and Wilcoxon’s rank sum test can be found in the literature [66].  

The experimental results can be seen in three tables. From Table 8, the proposed method gives 
better results (p < 0.05 and h = 1) in all cases, which indicates that the indicator values given by GOA–
jDE are not appearing randomly. For the Friedman test, it is worth mentioning that calculating the 
rankings is the first step, the relevant results of which are presented in Table 9. It can be found from 
the table that the proposed method ranks first in all cases. The chi-square (ଶ) value and p-value are 
presented in Table 10. According to the chi-square distribution table, the critical value for 7 (8 
algorithms − 1) degrees of freedom with 5% significant level is 14.067 [67,68]. As shown in Table 10, 
the chi-square values obtained at all threshold levels were much larger than the critical value, and 
the p-values acquired for all number of thresholds were far less than 0.05. This promising result 
indicates that H଴  can be rejected in all cases, and there is a significant difference among the 
algorithms. The experiments in this section demonstrate the statistical significance of the performance 
of GOA–jDE algorithm.  

Table 8. The p-value (Wilcoxon rank sum test) for the experimental results of the MCE method. 

Comparison p-Value 
GOA–jDE vs. GOA 0.0197 
GOA–jDE vs. DE 2.7461 × 10−4 

GOA–jDE vs. MGOA 2.3012 × 10−5 
GOA–jDE vs. hjDE 8.7216 × 10−4 
GOA–jDE vs. BDE 1.6063 × 10−9 
GOA–jDE vs. BA 3.9766 × 10−7 

GOA–jDE vs. PSO 5.0219 × 10−8 
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Table 9. The average rank (Friedman test) for the experimental results of the MCE method. 

K 
Average rank 

GOA-jDE GOA DE MGOA hjDE BDE BA PSO 
4 2 5.4625 3.6 4.55 4.075 4.9 6.4125 5 
6 1.475 5.425 4.1 4.3375 3.75 4.9625 6.7625 5.1875 
8 1.0625 4.6125 4.4125 4.475 4.325 4.725 6.9625 5.425 

10 1.05 4.8625 4.8125 4.6375 3.7625 4.2125 6.9625 5.7 
12 1 5.0375 4.2375 4.5875 3.725 4.3875 7.5125 5.5125 

Table 10. The chi-square value and p-value (Friedman test) for the experimental results of the MCE 
method. 

K Chi-square Value p-Value 

4 101.901 4.36751 × 10−19 
6 114.919 8.73960 × 10−22 
8 126.529 3.33534 × 10−24 

10 135.448 4.56229 × 10−26 
12 155.666 2.61739 × 10−30 

5.4. Experimental Series 2: Performance on Other Objective Functions 

In this section, the GOA–jDE–MCE method is compared with other advanced satellite image 
thresholding methods, such as MABC–Tsallis [57], IDSA–Otsu [58], and CS–MCE [13]. Considering 
the different criteria used in each method, the GOA–jDE algorithm was combined with MCE, Tsallis 
entropy, and Otsu’s method for fair comparison. In other words, three sets of comparisons were 
performed, namely GOA–jDE–Tsallis versus MABC–Tsallis, GOA–jDE–Otsu versus IDSA–Otsu, and 
GOA–jDE–MCE versus CS–MCE. The selected performance measure was the average objective 
function value. Furthermore, two natural images from the Berkeley segmentation dataset were also 
used to test the robustness of the algorithm, which are given in Figure 12 [69]. It is worth noting that 
higher threshold levels (20, 25, and 30) were adopted in this experiment because the satellite images 
contained more information and detail than normal images. More critically, the objects (targets) that 
needed to be determined and segmented were, in general, multiple and varied [70]. Therefore, in this 
section, the threshold level was increased to assess the algorithm performance more practically. 

  
(a) (b) 

Figure 12. Two natural images from the Berkeley segmentation dataset, which are named ‘Elephant’, 
and ‘Plane’, respectively, and the corresponding histograms for each of the color channels (red, green, 
and blue). (a) Elephant (481 × 321), (b) Plane (481 × 321). 

Table 11 gives the average objective function value obtained by each thresholding technique 
(bolded results are best). In the comparison with MABC–Tsallis, the GOA–jDE algorithm exhibits a 
remarkable performance based on the Tsallis entropy thresholding technique, which is reflected in 
all the obtained values. Moreover, considering the experiment on natural images, GOA–jDE–Tsallis 
presents better results in most cases, indicating the robustness and universality of the algorithm. For 
the comparison with the other two methods, it can be seen that the proposed algorithm-based 
methods are, again, superior to other methods. In general, the compared method based on MCE is 
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relatively more competitive than the compared method based on Tsallis entropy and Otsu’s method, 
because the first one gives better results in more cases.  

Table 11. Average objective function value obtained using Tsallis entropy, Otsu’s method, and 
MCE. 

Images K 
Tsallis Otsu MCE 

GOA–jDE MABC GOA–jDE IDSA GOA–jDE CS 

Image1 
20 65.6992 63.9303 2536.0239 2533.7508 −701.5320 −701.5321 
25 72.0775 69.8990 2538.4352 2537.4078 −701.5441 −701.5440 
30 78.0006 74.2769 2540.1262 2539.0127 −701.5516 −701.5513 

Image2 
20 65.1949 63.3661 1380.4683 1378.9008 −371.5264 −371.5240 
25 71.4121 69.0462 1382.6497 1382.0753 −371.5386 −371.5390 
30 77.1012 73.8485 1383.9328 1383.0637 −371.5467 −371.5457 

Image3 
20 66.3283 64.7228 2267.4996 2265.5258 −646.3892 −646.3875 
25 73.0784 70.6841 2270.3662 2269.1050 −646.4058 −646.4052 
30 78.9913 74.9226 2272.1397 2270.5508 −646.4160 −646.4150 

Image4 
20 67.2077 65.8090 1654.2822 1652.9518 −474.7376 −474.7383 
25 74.0556 71.2441 1656.8361 1655.9701 −474.7543 −474.7542 
30 80.2195 75.7998 1658.3974 1657.8302 −474.7638 −474.7638 

Image5 
20 67.1305 65.6002 5516.8189 5515.3632 −498.9233 −498.9223 
25 74.3413 71.3003 5519.9728 5519.1290 −498.9440 −498.9433 
30 79.8769 75.9055 5521.8659 5521.0078 −498.9556 −498.9552 

Image6 
20 66.7823 65.4021 3210.8833 3209.5405 −307.3492 −307.3459 
25 74.1973 71.5457 3213.7465 3212.8257 −307.3670 −307.3685 
30 79.4842 75.5905 3215.0132 3214.2657 −307.3798 −307.3795 

Image7 
20 65.5192 63.8334 1803.2208 1801.3177 −481.1434 −481.1416 
25 72.4605 68.99 1805.3468 1803.8873 −481.1571 −481.1556 
30 77.5298 74.1611 1806.9075 1806.2681 −481.1634 −481.1624 

Image8 
20 66.8490 65.1504 2355.6389 2354.3242 −411.8501 −411.8497 
25 73.6971 71.5997 2358.1153 2356.7401 −411.8686 −411.8674 
30 78.9075 75.0792 2359.6548 2358.5339 −411.8757 −411.8768 

Elephant 
20 62.1191 60.7010 2009.5697 2008.3336 −457.3469 −457.3467 
25 67.8767 66.4680 2011.4073 2010.5957 −457.3577 −457.3569 
30 72.9363 69.5792 2012.2340 2011.6498 −457.3633 −457.3631 

Plane 
20 52.1894 52.1762 706.7254 706.6974 −587.0459 −587.0450 
25 55.6713 55.8603 707.6530 707.4842 −587.0525 −587.0503 
30 58.7978 58.3922 707.8326 708.1450 −587.0541 −587.0538 

5.5. Experimental Series 3: Further Evaluation on SIPI Image Database 

In this section, the performance of the proposed algorithm is further verified on the SIPI Image 
Database (37 color satellite images and 1 grayscale satellite image). The experiment was carried out 
at high threshold levels, which are the same as in Section 5.4. Note that the compared selected 
algorithms are based on different criteria, thus, the PSNR, SSIM, and FSIM indicators are utilized 
instead of average fitness values.  

Table 12 presents the average rank of the results for each algorithm. A lower ranking value 
indicates better performance. It can be found that the GOA−jDE ranks first in all cases, and the 
advantage is more obvious at higher threshold levels (K = 30). Another interesting result is that the 
MCE method is more competitive than the Tsallis entropy thresholding technique in the field of 
satellite image segmentation. More specifically, the results of MABC–Tsallis are not superior to those 
of MCE-based approaches. However, this does not mean that the methods based on Tsallis entropy 
are inefficient or meaningless. As stated in the no free lunch (NFL) theorem [71], no algorithm can 
solve all engineering problems. GOA–jDE–Otsu and GOA–jDE–Tsallis thresholding methods may 
exhibit superior performance in other image segmentation fields, including CT and MR images. 
Therefore, applications of the proposed algorithm are potential and meaningful. 
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Table 12. Average rank of the results for each algorithm on the SIPI Image Database. 

K 
Average rank 

GOA–
jDE–MCE 

MGOA
–MCE 

hjDE–
MCE 

BDE–
MCE 

BA–
MCE 

PSO–
MCE 

CS–
MCE 

IDSA–
Otsu 

MABC–
Tsallis 

20 3.1754 4.4781 5.5833 6.3070 5.6974 4.9693 4.9167 3.9430 5.9298 
25 2.7368 4.9342 5.0746 6.5219 6.4342 4.1535 4.8640 4.2588 6.0219 
30 1.3421 4.6886 4.5526 5.9254 7.4386 5.1798 4.6316 4.5175 6.7237 

Overall 2.4181 4.7003 5.0702 6.2515 6.5234 4.7675 4.8041 4.2398 6.2251 

6. Conclusions 

In this paper, a novel hybrid GOA with DE is proposed for multilevel satellite image 
segmentation. MCE is used to select the segmentation thresholds. The proposed algorithm, known 
as GOA–jDE, can search the solution space more efficiently and present the segmented image with 
higher quality than the standard GOA and DE. A series of experiments were carried out on various 
satellite images to evaluate the performance of the proposed method. Both the standard multilevel 
color image thresholding methods and the advanced multilevel satellite image thresholding methods 
were used for comparison, such as MABC–Tsallis, IDSA–Otsu, CS–MCE, and others. Comprehensive 
statistical tests, including Friedman test and Wilcoxon’s rank sum test, were also performed to assess 
the significant differences between the methods. Furthermore, natural images from the Berkeley 
segmentation dataset were selected to validate the strong robustness of GOA–jDE–MCE. The 
experimental results indicate that the proposed satellite image segmentation method outperforms 
other compared approaches, which has broad application prospects and potential. In future, several 
recently proposed meta-heuristic algorithms, such as Harris hawks optimization, seagull 
optimization algorithm, and the sailfish optimizer will be introduced into the field of image 
segmentation. Magnetic resonance (MR) images and computed tomography (CT) images will also be 
considered for testing.  
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