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Abstract: Stride length and walking distance estimation are becoming a key aspect of many
applications. One of the methods of enhancing the accuracy of pedestrian dead reckoning is to
accurately estimate the stride length of pedestrians. Existing stride length estimation (SLE) algorithms
present good performance in the cases of walking at normal speed and the fixed smartphone
mode (handheld). The mode represents a specific state of the carried smartphone. The error of
existing SLE algorithms increases in complex scenes with many mode changes. Considering that
stride length estimation is very sensitive to smartphone modes, this paper focused on combining
smartphone mode recognition and stride length estimation to provide an accurate walking distance
estimation. We combined multiple classification models to recognize five smartphone modes (calling,
handheld, pocket, armband, swing). In addition to using a combination of time-domain and
frequency-domain features of smartphone built-in accelerometers and gyroscopes during the stride
interval, we constructed higher-order features based on the acknowledged studies (Kim, Scarlett,
and Weinberg) to model stride length using the regression model of machine learning. In the
offline phase, we trained the corresponding stride length estimation model for each mode. In the
online prediction stage, we called the corresponding stride length estimation model according to the
smartphone mode of a pedestrian. To train and evaluate the performance of our SLE, a dataset with
smartphone mode, actual stride length, and total walking distance were collected. We conducted
extensive and elaborate experiments to verify the performance of the proposed algorithm and
compare it with the state-of-the-art SLE algorithms. Experimental results demonstrated that the
proposed walking distance estimation method achieved significant accuracy improvement over
existing individual approaches when a pedestrian was walking in both indoor and outdoor complex
environments with multiple mode changes.

Keywords: indoor positioning; machine learning; pedestrian dead reckoning; stride length estimation;
smartphone mode recognition

1. Introduction

Applications that attempt to track pedestrian motion level (walking distance) for health purposes
require an accurate step detection and stride length estimation (SLE) technique [1]. Walking distance is
used to assess the physical activity level of the user, which helps provide feedback and motivate a more
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active lifestyle [2,3] Another type of application based on walking distance is navigation applications.
Among various indoor localization methods, pedestrian dead reckoning (PDR) [4] has become a
mainstream and practical method, because PDR does not require any infrastructure. In addition
to the general applications, involving asset and personnel tracking, health monitoring, precision
advertising, and location-specific push notifications, PDR is available for emergency scenarios, such as
anti-terrorism action, emergency rescue, and exploration missions. Furthermore, smartphone-based
PDR mainly benefits from the extensive use of smartphones—pedestrians always carry smartphones
that have integrated inertial sensors. Stride length estimation is a key component of PDR, the accuracy
of which will directly affect the performance of PDR systems. Therefore, in addition to providing
more accurate motion level estimation, precise stride length estimation based on built-in smartphone
inertial sensors enhances positioning accuracy of PDR. Most visible light positioning [5,6], Wi-Fi
positioning [7–9], and magnetic positioning [10–12] critically depend on PDR. Hence, motion level
estimation based on smartphones contributes to assisting and supporting patients undergoing health
rehabilitation and treatment, activity monitoring of daily living, navigation, and numerous other
applications [13].

The methods for estimating pedestrian step length are summarized as two categories: the first is
direct methods, based on the integration of acceleration; the second is indirect methods that leverage a
model or assumption to compute step length. The double integration of the acceleration component
in the forward direction is the best method to compute the stride length of pedestrians because
it does not rely on any model or assumption, and does not require training phases or individual
information (leg length, height, weight) [14]. Kourogi et al. [15] leveraged the correlation between
vertical acceleration and walking velocity to estimate walking speed, and calculated stride length
by multiplying walking speed with step interval. However, the non-negligible bias and noise of
the accelerometers and gyroscopes resulted in the distance error growing boundlessly and cubically
in time [14]. Moreover, it is difficult to obtain the acceleration component in the forward direction
from the sensor’s measurements, as well as constantly maintaining the sensor heading parallel to the
pedestrian’s walking direction [16]. Additionally, low-cost smartphone sensors are not reliable and
accurate enough to estimate the stride length of a pedestrian by double integrating the acceleration [17].
Developing a step length estimation algorithm using MEMS (micro-electro-mechanical systems) sensors
is recognized as a difficult problem.

Considerable research based on models or assumptions has been conducted to improve the
accuracy of SLE, and summarized as empirical relationships [18,19], biomechanical models [18,20,21],
linear models [22], nonlinear models [23–25], regression-based [22,26], and neural networks [27–30].
One of the most renowned SLE algorithms was presented by Weinberg [23]. To estimate the walk
distance, he leveraged the range of the vertical acceleration values during each step, according to
Equation (1).

L = k · 4√amax − amin (1)

where amax and amin denote the maximum and minimum acceleration values on the Z-axis in each
stride, respectively. k represents the calibration coefficient, which is obtained from the ratio of the
actual distance and the estimated distance.

As shown in Equation (2), Kim et al. [24] developed an empirical method, based on the average of
the acceleration magnitude in each stride during walking, to calculate movement distance.

L = k ·

3

√√√√√ N∑
i=1
|ai|

N
(2)

where ai represents the measured acceleration value of the ith sample in each step, and N represents
the number of samples corresponding to each step. k is the calibration coefficient.
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To estimate the travel distance of a pedestrian accurately, Ladetto et al. [22] leveraged the linear
relationship between step length and frequency and the local variance of acceleration to calculate the
motion distance with the following equation:

L = α · f + β · v+γ (3)

where f is the step frequency, which represents the reciprocal of one stride interval, v is the acceleration
variance during the interval of one step, α and β denote the weighting factors of step frequency and
acceleration variance, respectively, and γ represents a constant that is used to fit the relationship
between the actual distance and the estimated distance.

Kang et al. [31] simultaneously measured the inertial sensor and global positioning system (GPS)
position while walking outdoors with a reliable GPS fix, and regarded the velocity from the GPS as
labels to train a hybrid multiscale convolutional and recurrent neural network model. After that, Kang
leveraged the prediction velocity and moving time to estimate the traveled distance. However, it is
challenging to obtain accurate labels, since GPS contains a positional error. Zhu et al. [32] measured
the duration of the swing phase in each gait cycle by accelerometer and gyroscope, and then combined
the acceleration information during the swing phase to obtain the step length. Xing et al. [29] proposed
a stride length estimation algorithm based on a back propagation artificial neural network, using a
consumer-grade inertial measurement unit. To eliminate the effect of the accelerometer bias and the
acceleration of gravity, Cho et al. [28] utilized a neural network method for step length estimation.
Martinelli et al. [33] proposed a weighted, context-based step length estimation (WC-SLE) algorithm,
in which the step lengths computed for different pedestrian contexts were weighted by the context
probabilities. Diaz et al. [34] and Diaz [35] leveraged an inertial sensor mounted on the thigh and
the variation amplitude of the leg’s pitch as a predictor to build a linear regression model. To reduce
overfitting, Zihajehzadeh and Park [36,37] used lasso regression to fit the linear model by minimizing
a penalized version of the least squares loss function. However, these methods required the user
to wear a special device in a specific position on the body. In our previous work [38], a stride
length estimation method based on long short-term memory (LSTM) and denoising autoencoders
(DAE), termed Tapeline, was proposed. Tapeline [38] first leveraged a LSTM network to excavate the
temporal dependencies and extract significant features vectors from noisy inertial sensor measurements.
Afterwards, denoising autoencoders were adopted to sanitize the inherent noise and obtain denoised
feature vectors automatically. Finally, a regression module was employed to map the denoised feature
vectors to the resulting stride length. Tapeline achieved superior performance, with a stride length error
rate of 4.63% and a walking distance error rate of 1.43%. However, the LSTM network and denoising
processes result in a large number of computational overheads. The most significant drawback of
the Tapeline was that pedestrians should hold their phone horizontally with their hand in front of
their chest.

Stride length and walking distance estimation from smartphones’ inertial sensors are challenging
because of the various walking patterns and smartphone carrying methods. These SLE algorithms
perform well in the case of walking at normal speed under fixed mode. Unfortunately, the pedestrian
may walk arbitrarily in different directions and may stop from time to time. Moreover, real paths
always including turns, sidesteps, stairs, variations in speed, or various actions performed by the
subject, which will result in unacceptable SLE accuracy. Eventually, these algorithms’ performances
are shown to be highly sensitive to the carrying position of a smartphone (smartphone modes) on the
user’s body. As shown in Table 1, there are significant differences in the mean and standard deviation
of acceleration and gyroscope collected under different carrying position.
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Table 1. The mean and standard deviation of acceleration and gyroscope collected under different
smartphone modes.

Modes Handheld Calling Swing-Hand Arm-Hand Trouser Pocket

Sensors acc
(m/s2)

gyro
(rad/s)

acc
(m/s2)

gyro
(rad/s)

acc
(m/s2)

gyro
(rad/s)

acc
(m/s2)

gyro
(rad/s)

acc
(m/s2)

gyro
(rad/s)

Mean 9.59 0.15 9.79 0.53 10.33 0.99 9.84 0.76 11.02 1.75
STD 0.65 0.14 1.03 0.95 2.38 1.25 1.61 0.55 4.19 1.01

To overcome the shortcomings above of previous works, we proposed a pedestrian walking
distance estimation method independent of smartphone mode. We first recognized the smartphone
modes automatically by a position classifier, and then selected the most suitable stride length model
for each smartphone mode. To our knowledge, we are the first to estimate the stride length and
walking distance based on smartphone mode recognition, which aims to mitigate the impact of different
smartphone carrying modes, thus significantly improving its stride length estimation accuracy. The key
contributions of our study are as follows:

• In addition to the combination of time-domain and frequency-domain features of accelerometers
and gyroscopes during the stride interval, we also built higher-order features based on the
acknowledged studies to model the stride length.

• We developed a computational lightweight smartphone mode recognition method that performed
accurately using inertial signals. The proposed smartphone mode recognition method achieved a
recognition accuracy of 98.82% by using a two layer stacking model.

• We fused multiple regression predictions from different regression models in machine learning
using a stacking regression model, so that we obtained an optimal stride length estimation accuracy
with an error rate of 3.30%, dependent only on the embedded smartphone inertial sensor data.

• We established a benchmark dataset with ground truth from a FM-INS (foot-mounted inertial
navigation system, x-IMU [39] from x-io technologies) module for step counting, smartphone mode
recognition, and stride length or walking distance estimation. We trained different stride length
models for common smartphone modes and estimated the walking distance of the pedestrian by
automatically recognizing the smartphone modes and selecting the most suitable stride length
model. The proposed method achieved a superior performance to traditional methods, with a
walking distance error rate of 2.62%.

The rest of the paper is organized as follows: In Section 2, we describe the benchmark dataset
and the feature extraction, then detail the solution of smartphone mode recognition and stride length
estimation. In Section 3, numerical results and performance comparison are presented in detail.
In Section 4, we provide a discussion and conclusion that summarizes the importance and limitations
of our proposed work, and give suggestions for future research.

2. Walking Distance Estimation Based on Smartphone Mode Recognition

Figure 1 depicts the architecture of the proposed pedestrian walking distance estimation method,
which includes three main stages: classifier training for smartphone modes recognition, stride
length model training, and online stride length estimation. After a low pass filter, the time- and
frequency-domain features of built-in smartphone inertial sensors during the stride interval was
extracted in three stages. To train the stride length models and evaluate the stride length estimation
results, we leveraged the FM-INS module to obtain the real and precise motion distance of each stride.
We utilized the extracted features and the corresponding motion distance from the FM-INS module
to train the stride length regression models in the offline phase. Meanwhile, a classifier model was
trained to identify the carrying mode of the smartphone. During the online predicting, we integrated
the extracted features, and trained classifier and stride length models to predict the stride length of
each stride, as well as walking distance.
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2.1. Benchmark Dataset

The lack of benchmarking datasets for pedestrian SLE makes it hard to pinpoint the differences of
published methods. Existing datasets either lack the ground-truth of stride length and smartphone
modes or are limited to small spaces with a single scene. To fully evaluate the performance of the
proposed SLE algorithm, we constructed a benchmark dataset for natural pedestrian dead reckoning
using smartphone sensors and a FM-INS module (includes a three-axis accelerometer and a three-axis
gyroscope). The FM-INS module communicates with the smartphone via a BLE AIR (Bluetooth Low
Energy air) interface. The gyroscope detects the angular motion, while the accelerometer detects
the linear motion. The x-IMU’s performance parameters are listed in Table 2. We leveraged the
x-IMU module to provide the ground-truth of each stride with a motion distance error of 0.3%
across the entire travel distance. As shown in Figure 2, the FM-INS module was attached to the
right foot. The coordinates of the x-IMU module were defined as follows: the Y-axis along the toe
direction; the Z-axis perpendicular to the foot surface, and the X-axis conforming to the right-hand
rule. The motion data were captured using a Huawei Mate 9 smartphone, which comprised an
accelerometer and a gyroscope, to acquire tri-axial acceleration and angular velocity signals at a
sampling rate of 100 Hz. The dataset was obtained from a group of healthy adults with natural motion
patterns (fast walking, normal walking, slow walking). Table 3 details the information of the subjects.
During data acquisition, collectors randomly changed their smartphone mode while updating the
corresponding data label (Handheld, Arm-hand, Pocket, Calling, and Swing). The distributions for
the five modes are shown in Figure 3. The datasets contain more than 13.5 km and 10,145 strides of
gait measurements. Figure 4 shows the distribution of real stride length in all datasets. The mean
and deviation of the stride length were 1.33 m and 0.18, respectively. A total 99.5% of strides were
within 1.55 m. All strides were within 1.75 m. Therefore, this paper concludes that the stride length
of a pedestrian is [0,2]. We set the regression prediction range of pedestrian stride length between 0
and 2 m. Special cases such as jumping are not within the scope of this article. To reduce redundancy
and maximize compatibility, all the data were published in JSON (JavaScript Object Notation) format.
As shown in Figure 5, each stride holds nine degrees-of-freedom sensor data and the corresponding
stride number, smartphone mode, stride length, and total walking distance. More detailed info about
the dataset can be found in GitHub (https://github.com/wq1989/WalkingDistanceEstimation).
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Table 2. Performance parameters for x-IMU and smartphone.

Devices x-IMU Smartphone

Items Accelerometer Gyroscope Accelerometer Gyroscope

Range ±16 g ±2000◦/s ±8 g ±2000◦/s
Stability 0.00049 g 0.06◦/s 0.001 g 0.00◦/s

Sample frequency 400 Hz 400 Hz 200 Hz 200 Hz

Table 3. Description of subjects.

Subjects Gender Age Height (cm) Weight (KG)

S1 M 30 169 68
S2 F 25 156 46
S3 F 25 161 53
S4 M 27 181 82
S5 M 26 173 61
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2.2. Pre-Processing and Walk Detection

The accelerometer data provided by the Android service were fairly noisy. High-frequency
oscillations from the device and ambient environment seriously skew the clean oscillations of human
motion. Normally, the step frequency was lower than 3 Hz (3 steps per second) [40]. To minimize
the impact of the smartphone shaking and sensor noise, and improve the robustness of smartphone
mode recognition and stride length estimation, we utilized a 1st order Butterworth filter [41] with a
cutoff frequency = 3 Hz to remove the high frequency oscillations of the time-series sensors feature
signal, and extract useful information from the low-cost sensor signals. Figure 6 shows the signal
before and after the Butterworth filter. After using a Butterworth filter, the signal was smoother, and
the insignificant parts of the signal were eliminated (see the red curve).

As shown in Figure 7, unexpectedly rotating or shaking a smartphone may arouse marked
fluctuation in accelerometer and gyroscope readings, but no step event. Merely considering
accelerometer and gyroscope readings for walk detection, the abnormal movements (unexpectedly
rotating or shaking the smartphone) may lead to unreliable step detection results. We combined the
accelerometer and gyroscope with a magnetometer to reduce the influence of random motion (shaking
or rotating smartphones). This is based on the assumption that the magnitude of a magnetic reading
changes significantly when the user is walking indoors, due to the magnetic field diversity at different
locations. We denoted the magnitude of the gyroscope, acceleration and magnetic field at time t as gt,
at and mt, respectively. We introduced a sliding window of N observed values to eliminate exception
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data and consider the average magnitude of acceleration ha, the standard deviation of the gyroscope hg,
and the standard deviation of magnetic field magnitude hm for walk detection, as in Equations (4)–(6).

ha =
1
N

∑N

t=1
at (4)

hg =
1
N

∑N

t=1

(
gt −

1
N

∑N

t=1
gt

)2
(5)

hm =
1
N

∑N

t=1

(
mt −

1
N

∑N

t=1
mt

)2
(6)

If some or all of ha, hg and hm were below certain thresholds, then the user was classified as static
(not walking). Otherwise, the user was identified as moving. To effectively reduce the power
consumption, walking detection was used to trigger the following walking distance estimation method.
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2.3. Feature Extraction

Feature extraction from accelerator and gyroscope data streams is a crucial operation for
smartphone mode recognition and stride length estimation. An excellent set of features provides
accurate and comprehensive descriptions of motion distance. To capture either temporal variations or
periodic characteristics of walking, both time-domain and frequency-domain features were considered
in each stride.

• Statistical Features: Table 4 shows the main statistical features’ description, with a brief definition
of each feature, extracted from each stride observation. Mean, median, standard deviation,
skewness, kurtosis, energy, maximum value, interquartile range, minimum value, and amplitude
were considered.

• Time-Domain Features: Represents how inertial sensors’ signals vary with time. Table 5
shows the time-domain features. The number of peaks, g-crossing rate, zero-crossing ratio,
gyroscope-accelerometer correlation, and inter-axis correlation were extracted from each
stride observation.

• Frequency-Domain Features: Represents the inertial sensors’ signal in the frequency domain.
As shown in Table 6, frequency-domain features represent signals according to their frequency
components. A fast Fourier transform (FFT) was applied, and first dominant frequency, second
dominant frequency, and the amplitude of the first and second dominant frequencies were the
features used.

• High-Order Features: In addition to the time-domain and frequency-domain features, we also built
higher-order features based on the acknowledged studies, including Kim [24], Ladetto [22] and
Weinberg [23]. All of the extracted high-order features are summarized in Table 7. The features
mentioned above were extracted from the observations of accelerometer and gyroscope in one stride.

Table 4. Main statistical features’ description.

Feature Description

Mean The mean of a signal. s =
∑N

i=1 si
N where si are the samples, i = 1, · · · , N.

Standard deviation std =
√

1
N
∑N

i=1 (‖si‖ − ‖s‖) where si are the samples, i = 1, · · · , N.

Skewness sskew = 1
Nσ3

√
1
N
∑N

i=1 (‖si‖ − ‖s‖)
3
. Skewness is a measure of the asymmetry

of the probability distribution.

Kurtosis skurt =
1

Nσ4

√
1
N
∑N

i=1 (‖si‖ − ‖s‖)
4
. Kurtosis is a descriptor of the shape of a

probability distribution.

Interquartile range Quartiles divide an ordered data set into four equal parts. The interquartile
range (IQR) is the first quartile subtracted from the third quartile.

Table 5. Main features description of the time domain.

Feature Description

Magnitude area The sum of absolute values of a signal.

Number of peaks The count of maximum points within one stride window of the signal where
the maximum points should be above a pre-set value.

Zero-crossing ratio
ZCR = 1

N−1
∑N−1

i=1
∏
{sisi−1 < 0} The zero-crossing rate is a measure of how

many times within a stride a signal changes from a positive value to a
negative value, and vice versa [42].

Inter-axis correlation
R→x ,

→

y =
N(

∑N
i=1 xi yi)−(

∑N
i=1 xi)(

∑N
i=1 yi)√

[N
∑N

i=1 x2
i −(

∑N
i=1 xi)

2
][N

∑N
i=1 y2

i −(
∑N

i=1 yi)
2
]

where xi and yi are the

samples from two axes, i = 1, · · · , N.

Accelerometer–gyroscope correlation The cross-correlation coefficient between the acceleration and gyroscope.
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Table 6. Main features description of the frequency domain.

Feature Description

Spectrum energy energy =
∑N

i=1‖si‖
2
. Depicts the energy distribution of each frequency point.

Spectral entropy Depicts the degree of uncertainty in the magnitude distribution of the
source.

Frequency points FFT (fast Fourier Transform): direct component,1,2,3,4,5 Hz.

Table 7. Higher-order features.

Feature Description

Weinberg

Weinberg = 4
√

amax − amin. Weinberg utilizes the difference of the vertical
acceleration values during the stride to estimate stride length. amax and amin
represent the maximum and minimum acceleration values on the Z-axis in

each stride, respectively.

Kim Kim =

3

√
N∑

i=1
|ai |

N Kim estimate stride length based only on average acceleration
during the stride. ai represents the measured acceleration value of the ith sample

in each step, N represents the number of samples corresponding to each step.

Scarlett Scarlett =

∑N
i=1 |ai |

N −amin

amax−amin
Scarlett eliminates the spring effect of the human gait and

estimates stride length based on minimum, maximum, and average acceleration.

2.4. Smartphone Mode Recognition

Once the data pre-processing and features extraction were completed, features were used to train
the multi-class classifier and predict smartphone modes in a timely way.

2.4.1. Smartphone Mode Definition and Analysis

As shown in Figure 8, in addition to the normal mode of handheld, the calling, pocket, arm-hand
and swinging-hand modes were also considered.

• Handheld: Pedestrian holds their phone horizontally with the hand in front of their chest while
walking (see Figure 8a).

• Calling: Pedestrian makes or receives a phone call while walking (see Figure 8b).
• Trouser pocket: Pedestrian carries the smartphone in a trouser pocket while walking (see Figure 8c).
• Swinging-hand: Arm swinging is the natural motion of the arms when walking with the hands-free,

and it is synchronized with the opposite side’s foot (see Figure 8d).
• Arm-hand: In scenes such emergency rescue, users usually tie their smartphone to their arms

(see Figure 8e).
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In consideration of the different sensor characteristics, corresponding to different smartphone
modes, we analyzed the differences of inertial sensors in the five usage modes. As shown in Figures 9
and 10, the mode in the black dotted rectangle is the handheld mode; the mode in the red dotted
rectangle is the calling mode; the mode in the blue dotted rectangle is the swinging-hand mode;
the mode in the blue dotted rectangle is the arm-hand mode; the mode in the blue dotted rectangle
is the trouser pocket mode. From the figures, we found that the observations of inertial sensors
under different modes showed slight differences. Therefore, we made full use of the extracted
statistical features, time-domain and frequency-domain features of inertial sensors, to identify different
smartphone modes.
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2.4.2. Classification Model

The key step in smartphone modes recognition is classification, which takes advantage of the
extracted features. In this study, based on these features, six state-of-the-art single classifiers (Extreme
Gradient Boost (XGBoost) [43], LightGBM [44], K-Nearest Neighbor (KNN) [45], Decision Tree (DT) [46],
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AdaBoost [47], and support vector machines (SVM) [48]) were compared to recognize smartphone
modes. Each classifier presents its advantages and disadvantages.

To improve the accuracy and robustness of smartphone mode recognition, we needed to fuse
the results of multiple classifiers. Stacking is an ensemble model, where a new model is trained
from the combined predictions of two (or more) previous models. In general, the stacked model
outperforms each of the individual models, due to its smooth nature and ability to highlight each base
model, where it performs best, and discredit each base model, where it performs poorly. As shown
in Figure 11, we used a two layer stacking model for smartphone mode recognition. During the
ensemble process, we utilized the predictions of non- linear models including AdaBoost [47], DT [46],
KNN [45], LightGBM [44], SVM [48], and XGBoost [43] to train the first-level model to generate the
second-layer train set and test set. Logistic regression in the second-level model was employed to
output the final prediction.
Remote Sens. 2019, 11, 1140 12 of 23 

 

 

Figure 11. Stacking-based ensemble. 

We took the F1 score as a performance metric to quantify the classification performance of 
different models. Precision is the ratio of correctly predicted conditions to the total predicted positive 
conditions for each class. Recall presents the ratio of correctly predicted positive conditions to all the 
true conditions for each class. F1 score is a combination of precision and recall that represents the 
detection result with less bias than the accuracy in multi-class classification problems, especially with 
disproportionate samples in each class [49]. 

 (7) 

 (8) 

 (9) 

 (10) 

The definitions of the above metrics use the true positive (TP), true negative (TN), false positive 
(FP), and false negative (FN). A high F1 score indicates a high level of classification performance and 
agreement between the classification and ground truth. 

Figure 12 compares the accuracy of smartphone mode prediction for the six single classifiers and 
a stacking ensemble classifier in the three trajectories. Figure 12 indicates that the classification model 
based on stacking ensemble outperformed all single classifiers in the three tested trajectories. The 
average recognition accuracy of the classification model based on stacking ensemble reached about 
98.47%. The average recognition accuracy of stacking ensemble classifier was improved by 26.3%, 
1.9%, 33.5%, 22.7%, 22.8%, and 2.0% compared to AdaBoost [47], DT [46], KNN [45], LightGBM [44], 

  
 

TP TN all positive predictionsaccuracy
TP TN FP FN all predictions

+= =
+ + +

  
  

= =
+
TP positive predicted correctlyprecision

TP FP all positive predictions

  
  

= =
+
TP positive predicted correctlyrecall

TP FN all positive observations

1 2 ×= ×
+

precision recallF
precision recall

Figure 11. Stacking-based ensemble.

We took the F1 score as a performance metric to quantify the classification performance of
different models. Precision is the ratio of correctly predicted conditions to the total predicted positive
conditions for each class. Recall presents the ratio of correctly predicted positive conditions to all the
true conditions for each class. F1 score is a combination of precision and recall that represents the
detection result with less bias than the accuracy in multi-class classification problems, especially with
disproportionate samples in each class [49].

accuracy =
TP + TN

TP + TN + FP + FN
=

all positive predictions
all predictions

(7)
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TP + FP
=

positive predicted correctly
all positive predictions
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TP + FN
=

positive predicted correctly
all positive observations
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F1 = 2×
precision× recall
precision + recall

(10)

The definitions of the above metrics use the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). A high F1 score indicates a high level of classification performance and
agreement between the classification and ground truth.

Figure 12 compares the accuracy of smartphone mode prediction for the six single classifiers
and a stacking ensemble classifier in the three trajectories. Figure 12 indicates that the classification
model based on stacking ensemble outperformed all single classifiers in the three tested trajectories.
The average recognition accuracy of the classification model based on stacking ensemble reached about
98.47%. The average recognition accuracy of stacking ensemble classifier was improved by 26.3%, 1.9%,
33.5%, 22.7%, 22.8%, and 2.0% compared to AdaBoost [47], DT [46], KNN [45], LightGBM [44], SVM [48],
and XGBoost [43], respectively. The precision, recall, and F-measure score of each smartphone using
the stacking classifier are summarized in Table 8.
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Table 8. Performance evaluation of each mode with stacking classifier.

Modes Precision (%) Recall (%) F-measure (%) Support

Handheld 99.56 97.84 98.70 232
Calling 96.05 100.00 97.98 243
Pocket 97.32 99.09 98.20 110

Arm-hand 98.35 96.76 97.55 247
Swing 100.00 98.38 99.18 247

Avg/total 98.37 98.33 98.33 1079

2.5. Stride Length Estimation Based on Regression Model

2.5.1. Single Regression Models

Compared to traditional SLE methods, a regression model of machine learning has excellent
generalization ability and distinct advantages in terms of approximating nonlinear continuous function.
To make full use of the advantages of different machine learning models and obtain the best SLE accuracy,
we trained six regression models, including Extreme Gradient Boost (XGBoost) [43], LightGBM [44],
K-Nearest Neighbor (KNN) [45], Decision Tree (DT) [46], AdaBoost [47], and Support Vector Regression
(SVR) [50].
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2.5.2. Stacking Regression Model

To improve the accuracy and robustness of stride length estimation, the stacking regression
technique of ensemble learning [51] was employed to combine multiple regression models via
a meta-regressor (see Figure 13). In the offline training phase, we selected XGBRegressor [43],
DecisionTreeRegressor [46], AdaBoostRegressor [47], and LightGBM [44] as single regression models.
The single regression models were trained based on the complete training set. We selected SVR [50] with
kernel = ’rbf’ as the meta-regressor. The meta-regressor is fitted based on the outputs (meta-features)
of the single regression models in the ensemble. In the online phase, the trained stacking regression
model predicted the stride length of pedestrian in real time. More detail of stacking regression can be
found in References [51,52].Remote Sens. 2019, 11, 1140 14 of 23 
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2.6. Walking Distance Estimation Based on Smartphone Mode Recognition

The characteristics of the inertial signals differed between the carrying modes, thus resulting in
inaccurate stride length estimation. Therefore, we trained five stride length models corresponding
to five smartphone modes (handheld, swing, pocket, arm-hand, and calling) in the offline phase.
In the online phase, the proposed stacking classifier was used to detect smartphone mode in a timely
way. Once the smartphone mode was identified, we estimated the walking distance of the pedestrian
accurately by selecting the stride length model corresponding to the smartphone mode. Denoting N as
the total number of strides, the walking distance D was calculated as follows:

D =
∑N

i=1
Li (11)

2.7. Performance Evaluation Metrics

We utilized the error rate of the stride length and walking distance as metrics to evaluate the
proposed method. The error rate of the stride length was calculated with the following formula:

Es =
1
N

N∑
i=1

 |Li
e − Li

t|

Li
t

× 100%

 (12)

where Li
e and Li

t represent the predicted stride length and the actual stride length of the i-th
stride, respectively.

The error rate of walking distance was calculated with the following formula:

Ecd =

∣∣∣∣∣∣ M∑
i=1

Li
e −

M∑
i=1

Li
t

∣∣∣∣∣∣
M∑

i=1
Li

t

× 100% (13)

where Li
e and Li

t denote the estimated stride length and the actual stride length of the i-th
stride, respectively.

3. Experimentation and Evaluation

3.1. Experimental Setup

To understand the effectiveness and limitations of our proposed walking distance estimation
method, we conducted a full-fledged implementation on Android to collect motion data. During the
experiment, we collected data using an Android smartphone (Huawei mate 9 with 8 core 2.4 GHz
processor), which was equipped with a three-axis accelerometer and a three axis gyroscope. We trained
a stacking classifier and then trained five stride length models corresponding to the five smartphone
modes (handheld, swing, pocket, arm-hand, and calling), respectively. We then evaluated the proposed
method in both indoor and outdoor complex environments (office, stair, street, subway station,
and pedestrian skyway) with natural motion patterns (fast walking, normal walking, slow walking).
The smartphone mode recognition, stride length models, and walking distance estimation performance
are evaluated in Sections 3.2, 3.4 and 3.5, respectively. We compared the proposed algorithm with
state-of-the-art algorithms.

3.2. Experimental Results of Smartphone Mode Recognition

The five-fold cross-validation method was used to verify the performance of the proposed
smartphone mode recognition method. The data set was randomly divided into five groups of the
same size, where one group was retained as the validation data for testing the trained model, and the
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remaining four were used as the training data. The cross-validation process was repeated five times,
with each of these five groups used exactly once as the testing data.

Figure 15 demonstrates the performance of the smartphone modes recognition in the confusion
matrix. The rows of the confusion matrix indicate the performed smartphone modes, while the
columns indicate the predicted smartphone modes. Along the principal diagonal of the confusion
matrix, the correctly classified samples are reported for each smartphone mode. Along the off-diagonal
elements, the misclassified smartphone modes are reported. Figure 15 also provides the accuracy of the
proposed smartphone mode recognition method. Globally, the proposed smartphone mode recognition
algorithm, based on signals collected with smartphone inertial sensors, classified the modes in the
correct category more than 98.10% of the time, no matter what mode was performed by the pedestrian.
The average accuracy of the proposed method was 98.82%.
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3.3. Comparison of Stride Length Estimation using Regression Only and Regression Based on Smartphone
Mode Recognition

To explore how much performance improvement was gained from smartphone mode
recognition, we trained two SLE models (regression-only-based, and regression-and-smartphone-
mode-recognition-based) using the same training dataset and test data. Table 9 summarizes the stride
length estimation comparison of the regression only and regression–smartphone mode recognition.
A total 75% of the stride length error and error rate were 0.046 m and 3.30%, respectively. Compared
to regression only, the mean error rate reduced from 5.18% to 3.30%. In other words, the mean error
rate of regression—smartphone mode recognition was reduced by 36.29% ((5.18%–3.306%)/5.18%).
The experimental results demonstrate that smartphone mode recognition helped improved stride
length estimation accuracy.

Table 9. Comparison of stride length estimation using regression only and regression based on
smartphone mode recognition.

Attributes
Regression Only Regression Based on Smartphone Mode

Error Error Rate 1 Error Error Rate

Mean 0.058 5.12% 0.036 3.04%
Std 0.074 - 0.048 -
25% 0.019 1.36% 0.012 0.85%
50% 0.041 3.01% 0.025 1.85%
75% 0.073 5.18% 0.046 3.30%
95% 0.144 11.31% 0.095 7.03%

1 According to Equation (12).
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3.4. Experimental Results of Stride Length Estimation

To clearly illustrate the error distribution of stride length estimation, we employed CDF (cumulative
distribution function) and box plots to compare the statistics of single stride length estimation errors,
as described in Figures 16 and 17. From Figure 16, we can see that the relative error of the proposed
algorithm was smaller than those achieved by the Tapeline [38], Kim [24], Weinberg [23], and Ladetto [22].
In the box plots, the vertical axis and horizontal axis correspond to the SLE errors and different methods.
The whiskers represent 99.3% coverage. On each box, the central (yellow) mark is the median, and the
edges of the box are the 25th and 75th percentiles. From Figure 17, we can see that the median,
the lower, and upper quartiles of the proposed algorithm are lower than those of the Tapeline, Kim,
Weinberg, and Ladetto algorithms. Ladetto, Weinberg, and Kim have fixed model parameters that
are easy to implement, but they ignore user and device heterogeneity, which leads to lower precision.
By considering the pedestrian’s stride frequency, the Ladetto is more accurate and robust against
different walking speeds than Weinberg and Kim. Tapeline mitigates user and device heterogeneity
as well as walking pattern difference by convolutional neural networks, and obtained good stride
length estimation.
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3.5. Experimental Results of Walking Distance

The walking distance experiments were aimed to analyze the accuracy of the proposed accumulated
displacement estimation method in various conditions with multiple smartphone mode changes.
We started walking from an indoor office (the seventh floor of the Institute of Computing Technology,
Chinese Academy of Sciences). After walking about 100 meters, we entered the stairs. We walked
downstairs from the seventh floor to the ground floor, and left the office and walked along the streets
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to the youth apartment of the Chinese Academy of Sciences. Figure 18 illustrates the entire trajectory.
The trajectory length was 1658.73 meters and 1200 strides in total, covering office, stair, street, subway
station, and pedestrian skyway. To facilitate the evaluation, we divided the entire reference trajectory
into fourteen segments (see Figure 18), and annotated the scenarios and the smartphone modes
(see Table 10). During each experiment, each volunteer walked along the reference trajectory precisely.
To verify the adaptability of gait and smartphone placement changes, the volunteers were required to
perform specific smartphone modes during walking at the specified location.

Table 10 summarizes the average accuracy of smartphone mode recognition for each segment.
For instance, in segment “11,” the accuracy of smartphone mode recognition was 97.5% when the
user walked through a pedestrian skyway and made a call. The comparison of cumulative distance
estimation is shown in Table 11. Based on the experimental results, the error rate of the proposed
walking distance estimation method was 2.62%, which is superior to Tapeline (3.28%), Ladetto (4.21%),
Weinberg (6.39%), and Kim (5.25%), because our proposed method adapted to smartphone mode
changes and selected the optimal stride length regression model automatically.Remote Sens. 2019, 11, 1140 18 of 23 
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Table 10. Accuracy of smartphone mode recognition and stride length estimation in different scenes.

Segment 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Scenarios Office Stair Street Skyway Station Street

Modes
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Attributes Proposed Tapeline [38] Ladetto [22] Weinberg [23] Kim [24]

Avg error (m) 43.55 57.42 69.94 106.04 87.08
Avg error rate 1 (%) 2.62 3.28 4.21 6.39 5.25

1 According to Equation (13).

To further validate the practicality and universality of the proposed accumulated displacement
estimation method, we conducted experiments in an outdoor stadium (see Figure 19) and on a road
with significant inclination (see Figure 20). The stadium is a large open area. In addition, we did not set
any pre-planned path. Therefore, we were free to walk without any constraints. As shown in Figure 20,
the road was first about 200 meters downhill, then about 200 meters uphill. To accurately record the
actual stride length of pedestrians, an FM-INS module was attached to the volunteers’ insteps of the
right foot. The actual accumulated displacement was calculated by summing the stride length of all
strides. The actual trajectory lengths of the stadium and road were 897.76 meters (686 strides) and
366.48 meters (293 strides), respectively. The comparison of walking distance estimation is summarized
in Table 12.

Table 12. Comparison of cumulative distance estimation in stadium and road with significant inclination.

Type Attributes Proposed Tapeline [38] Ladetto [22] Weinberg [23] Kim [24]

Outdoor
stadium

error (m) 22.56 29.87 38.44 56.36 49.13
error rate (%) 2.51 3.33 4.28 6.28 5.47

Road with
inclination
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3.6. Complexity Analysis

We implemented the proposed method in Python with the help of Sklearn, and performed it
on a personal computer equipped with an Intel Core i5-4460 CPU at 3.20 GHz and 16 GB of DDR4
RAM. The most time-consuming procedures of the proposed method were the training data collection.
Training data acquisition time was equal to walking time. However, the training data collection
was performed in the offline phase, meaning that they did not consume any time during the online
prediction phase. Here, we only compared the time complexity with Tapeline, with similar performance.
Table 13 reports the training and test time of the proposed method with Tapeline. The proposed
method required only 2000 strides to train a satisfactory stride length estimation model, and the
training time was 190.12 s, while Tapeline required 8000 strides, and the training time was 2 h 18 min
26s. The proposed method required only one quarter of the training samples to obtain a performance
comparable to the Tapeline. Meanwhile, our proposed method was very efficient, and consumed
2278 × less time in model training compared to Tapeline, because convolutional neural networks and
recurrent neural networks are very time-consuming. From our test, the test times of the proposed
method and Tapeline were 23 ms (23.12 s/1000) and 87 ms (86.9 s/1000) for each stride. The latency at
the millisecond level was negligible.

Table 13. The time complexity analysis.

Training Dataset Size Test Dataset Size Training Time Testing Time

Smartphone mode recognition
2000 1000

180.99 s 20.35
Stride length regression 9.13 s 2.77 s

Total 3 min 10.12 s 23.12 s

Tapeline 8000 1000 2 h 18 min 26 s 86.9 s

4. Discussion and Conclusions

Concerning the inaccuracy of the traditional nonlinear method, we presented a walking distance
estimation method consists of a smartphone mode recognition and stride length estimation based
on the regression model using the inertial sensors of the smartphone. We proposed a smartphone
mode recognition algorithm using a stacking ensemble classifier to effectively distinguish different
smartphone modes, achieving an average recognition accuracy of 98.82%. The proposed walking
distance estimation method obtained a superior performance, with a single stride length error rate of
3.30% and a walking distance error rate of 2.62%. The proposed method outperformed the commonly
used nonlinear step length estimation method (Kim [24], Weinberg [23], Ladetto [22]) in both single
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stride length and walking distance estimation. In comparison to Tapeline, this method possessed the
advantages of smaller computational overhead, faster training speed, and fewer training samples.
In addition to improving the performance of pedestrian dead reckoning, this technique can be used to
assess the physical activity level of the user, providing feedback and motivating a more active lifestyle.

However, there are still some limitations that may be important to address in our future work.
For example, only five smartphone modes (handheld, swing, pocket, arm-hand, and calling) were
analyzed. More smartphone modes, such as those involving the smartphone in belts and bags, need
to be further studied using similar methodologies. Additionally, we focused on the normal walk
status, while other pedestrian motion states such as walking backward, lateral walking, running,
and jumping will be studied in the future to construct a more viable walking distance estimation.
Moreover, humans are flexible structures, it is difficult to ensure that the movement of mobile phones
equals the movement of pedestrians. Extra actions (standing still, playing games, reading) result in
inaccurate stride length estimation. Finally, the trained model may be not suitable for non-healthy
adults (e.g., Parkinson’s patients), children, and elderly. In the future, we will investigate how to obtain
training data by crowdsourcing automatically, then train a personalized SLE model in the form of
online learning to mitigate user and device heterogeneity.

5. Patents

A pending patent has been submitted for the proposed method.
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