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Abstract: The nonhomogeneous clutter is a major challenge for ship detection in high-frequency
mixed-mode surface wave radar. In this paper, a geometric barycenter-based reduced-dimension
space-time adaptive processing method is proposed to suppress the clutter. Given the measured
dataset, the range correlation of sea clutter is first investigated. Then, joint domain localized
processing is applied to solve the training samples starve scenario in a practical system. The geometric
barycenter-based training data selector is presented to select valid training samples and improve the
accuracy of the clutter covariance matrix estimation. Finally, the validity of the proposed method
is verified using the experimental data and the results show that it outperforms the conventional
method in the nonhomogeneous environment of a practical system.

Keywords: HF OTHR; geometric barycenter; clutter suppression; ship detection; HF surface wave
radar; space-time adaptive processing

1. Introduction

High-frequency (HF) over-the-horizon radar (OTHR) has been successfully developed for target
monitoring and ocean remote sensing by transmitting HF vertical polarization electromagnetic wave
working at 3–30 MHz [1–4]. HF mixed-mode surface wave radar (MMSWR) is a new kind of monostatic
high-frequency surface wave radar (HFSWR). The new propagation mode utilizes the echoes received
from both surface-wave path and sky-wave path to obtain more information than a conventional
monostatic HFSWR system. The diffuse scattering characteristic of targets makes it possible that a
portion of echoes radiation will be reflected to the ionosphere. Under certain propagation conditions,
including the range of the target, the ionosphere height and the reflection angle, this portion of
radiation can be received by the antennas after a second reflection by ionosphere. This constitutes
a multipath propagation model. Zhao et al. [5] presented a multipath propagation model for echo
signals of islands to calculate the height of ionosphere. The echo signals of islands have two possible
paths, the traditional ocean path where both the transmitted and received signal is via the surface
wave, and the ocean-ionosphere path where the transmitted signal is via the surface wave and the
reflected signal is received via the skywave path. Utilizing the same propagation model, a target
track matching method is presented based on the multipath echoes by Zhang et al. [6]. A modified
multimode target tracker is proposed to deal with the target tracking problem in mixed propagation
mode [7]. The advantages of the mixed propagation mode compared with the conventional HFSWR,
are that more target information can be obtained due to additional propagation paths and the detection
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range can be extended for HFSWR owing to the ionosphere propagation path. Therefore, these features
have drawn increasing attention to the new HF MMSWR.

However, this new propagation mode introduces additional complexities. The combination
of the surface path and the ionosphere path makes the clutter more difficult to handle than that of
conventional HF radar [8]. The ionospheric clutter and the broaden sea clutter contaminated by
ionosphere constitute the heterogeneous environment background for clutter suppression processing
which presents the biggest problem. The nonhomogeneous first-order sea clutter masks low velocity
ship targets with Doppler velocities near the Bragg frequency. Ionospheric clutter covers a wide range
and Doppler area, and the high clutter energy requires that this clutter must be suppressed to enable
target detection. To make things worse, the first-order sea clutter is contaminated by ionosphere which
leads to broadening of the sea clutter. Therefore, the low velocity targets are more likely submerged by
first-order sea clutter in this situation.

Space-time adaptive processing (STAP), proposed by Brennan and Reed [9,10], has become one
of the major research directions to suppress nonhomogeneous clutter. The application of STAP to
HFSWR requires an accurate estimation of the training data covariance matrix [11]. The independent,
identically-distributed (IID) training samples with the clutter in the cell under test (CUT) are
used to estimate the covariance matrix. Under this circumstance, it is assumed that the selected
training samples are representative of the clutter in the CUT [12,13]. However, in HF MMSWR,
the ionosphere transmission channel has high time-variation so that the clutter statistics change
significantly. The first-order sea clutter is contaminated by ionosphere clutter, so the IID training
samples with CUT are limited and some highly contaminated samples need to be eliminated from
the training data. How to select these samples is a valuable research issue for the clutter suppression
processing in HF MMSWR.

Many training sample selection algorithms have been proposed to improve the STAP performance
in heterogeneous environment. The generalized inner product (GIP) algorithm [14] utilizes
GIP to eliminate the samples through different clutter statistical characteristics from the CUT.
The power-selected training (PST) algorithm [15] chooses the samples with the strong clutter power
to deepen the clutter notch. The similarity detector (SD) algorithm [16–19] selects the samples with
waveforms that are similar to the CUT. Recently, the information geometry-based SD algorithm has
drawn more attentions on covariance estimation and target detection processing [20–24]. A class
of covariance matrix estimators, which are associated with suitable distances in the considered
space and defined as the geometric barycenter, are proposed to exclude the outliers and clutter for
target detection in [25,26]. It has been shown that the information geometry-based methods yield
significant performance gains as compared with conventional covariance estimators and detectors.
In this paper, we combine the geometric barycenter-based covariance estimation algorithm with the
reduced-dimension STAP method to overcome the heterogeneous clutter in HF MMSWR.

This paper is organized as follows. In Section 2, the signal model and the range correlation of the
first-order sea clutter in a practical HF MMSWR system is formulated. A geometric barycenter-based
reduced-dimension STAP algorithm is proposed in Section 3. The performance of training data
selectors is analyzed based on the simulation of a practical system in Section 4 and the effectiveness
of the proposed method is verified by suppress of the sea clutter and ionospheric clutter using the
experimental data in Section 5. Finally, conclusions are presented in Section 6.

2. Data Model and Clutter Statistic Analysis

2.1. Signal Model

Figure 1 shows the geometric model of the HF MMSWR system. As discussed above, the surface
wave radiation, which is a solid blue line, may have two echo paths, the surface wave echo (dotted red
line) and the sky wave echo (dotted green line). However, in the practical system, the transmitting
radiation cannot be strictly controlled along the horizontal direction. A portion of the radiation will be
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transmitted at a higher angle towards the ionosphere, which is shown as the solid orange line. Thus,
there will be four possible propagation paths consisting the mixed propagation mode.
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Figure 1. Geometric model of the high-frequency (HF) mixed-mode surface wave radar
(MMSWR) system.

Figure 2 shows the receiving array configuration. Consider a N-channel uniform linear array
(ULA) and the sensor spacing is d, the carrier wavelength is λ. The number of signal pulses collected
in one coherent processing interval (CPI) for each channel is M. The echo of the i-th range bin can be
expressed as

xi = α(i)s( f ,θ) + c(i) + n(i) (1)

where α(i), c(i) and n(i) denote complex amplitude, clutter and noise, respectively. s( f ,θ) = stem( f )⊗
sspa(θ) denotes the target vector, ⊗ is the Kronecker product,

stem( f ) =
[

1 exp( j2π f ) · · · exp( j2π(M− 1) f )
]T

(2)

sspa(θ) =
[

1 exp( j2πdsinθ/λ) · · · exp( j2π(N − 1)d sinθ/λ)
]T

(3)

which represent the temporal steering vector, which is M× 1 and the spatial steering vector, which is
N × 1. (·)T is the transpose process.
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2.2. Range Correlation Analysis

The clutter statistics are the foundation of the clutter suppression algorithm design. In the HF
MMSWR system, the non-stationary nature of the echo data in range cell is the major problem of clutter
suppression processing. The sea clutter statistics change significantly across even neighboring range
units. Therefore, we do the correlation analysis on measured data to show the necessity of the training
data selection.

In the range domain, the correlation coefficient of the data in different range bins can be
calculated by,

ηi, j =

(
1/N fd

)∑
N fd

Zb(i, fd)ZH
b ( j, fd)√(

1/N fd

)2∑
N fd

∣∣∣Zb(i, fd)
∣∣∣2∑N fd

∣∣∣ZH
b ( j, fd)

∣∣∣2 (4)

where N fd is the number of the sample Doppler bin, i is the reference range bin and j = 1, 2, . . . , R is the
whole range bins which is under analysis, Zb is the sample data in the beam bin b with Doppler shift
fd, and (·)H represents the complex conjugate operation. Figure 3 shows the typical range correlation
result of the sea clutter echo in the HF MMSWR system. It shows the negative Bragg peak with Doppler
frequency of f = −0.2602 Hz and beam point at b = 0◦. The reference range bin is i = 76. The strong
correlation threshold is set to be 0.8, as the red dotted line shows. This indicates that sea clutter statistics
changes rapidly in different range bins. Therefore, the training sample selection strategy is of vital
importance to select the effective training data and discard the interference such as ionosphere clutter.
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3. Geometric Barycenter-Based Reduced-Dimension STAP Algorithm

3.1. Joint Domain Localized Processing

Full dimension STAP algorithm can provide good clutter suppression performance with all the
channels and pulses used to calculate the optimal weight. In order to approach the optimal performance
of 3 dB loss, the total of 2NM IID training samples are required. So the computational cost of directly
inverting a (NM×NM) dimensional matrix is of order O(NM)3, which is pretty high [27]. In a practical
HF MMSWR system, suppose N = 8 and M = 5120, so that the total number of the IID training
data will be 81,920 in the range domain which is unrealistic in an operational system. Therefore, the
reduced-dimension STAP algorithm is needed for the HF MMSWR system.
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Joint domain localized processing is a powerful reduced-dimension STAP processing [28].
It transforms the whole training data to a localized processing region (LPR) by a transformation matrix.

For a certain range bin k, the NM× 1 dimensional vector of the space-time snapshots is given by,

Xk =
[

x1 x2 · · · xM
]T

(5)

xi =
[

x1,i x2,i · · · xN,i
]T

, i = 1, 2, . . . , M (6)

The space-time steering vector s( f ,θ) is defined as,

s( fc,θc) = st( fc) ⊗ ss(θc) (7)

where st and ss are the time steering vector and space steering vector defined above, respectively.
The transformation matrix T is used to transform the range samples to an angle-Doppler region

in order to reduce the degree of freedom (DOF). It can be written as,

T =
[

st
(

fc−(p−1)/2

)
· · · st( fc) · · · st

(
fc+(p−1)/2

) ]
⊗

[
ss
(
θc−(q−1)/2

)
· · · ss(θc) · · · ss

(
θc+(q−1)/2

) ] (8)

Here T is a NM× pq dimension transform matrix. The localized processing range samples and the
space-time steering vector after the transformation process are given by,

X̂k = TH
·Xk, ŝ = TH

· s (9)

The covariance matrix is calculated utilizing Ω training samples in range domain which is chosen
to represent the clutter information in the CUT.

R̂k =
1
Ω

Ω∑
1

X̂ωX̂H
ω (10)

where X̂ω is the chosen training sample from the whole range domain, ω ∈ {1, 2, . . . , k− 2, k + 2, . . . , K},
where K is the total range cell of interest. The range bin k, k− 1, k + 1, which is the cell under test and
two guard cells, are not taken as the training sample to prevent the target self-elimination.

Then, the adaptive weights can be expressed as,

Wopt = R̂−1
· ŝ (11)

The joint domain localized (JDL) algorithm solves the first problem of the training samples starve
scenario for that Ω = 2pq which is much less than 2NM. But how to select the efficient training samples
in the training dataset needs the training data selection method.

3.2. Geometric Barycenter-Based Training Data Selector

The geometric barycenter-based covariance matrix estimation algorithms have drawn lots of
attention [25,26]. The covariance estimators are associated with suitable distances, defined as the
geometric barycenter of covariance matrix estimates, in the considered space. Computed from a
secondary dataset, the barycenter distances are used to determine each training sample, sufficient or
not, and exclude the outliers as well as clutter for target detection. The design of these estimators did
not require knowledge of the statistical characterization of the whole training data. This feature makes
the information geometry-based training data selector very suited to select the most homogeneous
clutter samples in the background of the highly non-stationary environment. Here, we consider a set of
geometric barycenter covariance matrix estimators associated with suitable distances. The distances we
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choose to define the similarity of the training samples’ covariance matrix are focused on the Euclidean,
root-Euclidean, power-Euclidean, and log-Euclidean distances. These distances define the specific
functions (identity, root, power, and log) that the matrices are transformed. The benefits from this
transformation processing are that these transformations can be seen as compressors of eigenvalues
which can mitigate the effect of outliers and clutter.

Firstly, we give the expression of the geometric barycenter-based covariance matrix estimators.

Let R = 1
Ω

Ω∑
1

xωxH
ω denote the positive-definite covariance matrix. xω,ω = 1, 2, . . . , Ω are the

N-dimensional random vectors with an arbitrary joint statistical distribution and let them share the
same covariance matrix R. Then we assume that Sω,ω = 1, 2, . . . , Ω are the covariance matrix estimates
and d(A, B) ∈ [0,+∞) denotes the geometric distance between the two matrices. The covariance matrix
estimator based on geometric barycenter can be defined as

R̂ = argmin
R�0

 Ω∑
ω=1

wωd2(Sω, R)

 (12)

Here, without a priori knowledge, we set the coefficients to be equal, wω = 1/Ω,ω = 1, 2, . . . , Ω.
The four barycenter distances and the corresponding estimators can be defined as follows:

• Euclidean distance and estimator

dE(A, B) =
√

tr
{
(A−B)(A−B)H

}
(13)

R̂E = argmin
R�0

 Ω∑
ω=1

wωdE
2(Sω, R)

 (14)

• Root-Euclidean distance and estimator

drE(A, B) =

√
tr
{(√

A−
√

B
)(√

A−
√

B
)H

}
(15)

R̂rE = argmin
R�0

 Ω∑
ω=1

wωdrE
2(Sω, R)

 (16)

• Power-Euclidean distance and estimator

dpE(A, B) =
√

tr
{
(Aα −Bα)(Aα −Bα)H

}
(17)

R̂pE = argmin
R�0

 Ω∑
ω=1

wωdpE
2(Sω, R)

 (18)

• Log-Euclidean distance and estimator

dpE(A, B) =
√

tr
{
(Aα −Bα)(Aα −Bα)H

}
(19)

where log A = UAdiag
(
λlE

A

)
UH

A , with λlE
A =

[
log

(
λA

1

)
, log

(
λA

2

)
, . . . , log

(
λA

N

)]
.

R̂lE = argmin
R�0

 Ω∑
ω=1

wωdlE
2(Sω, R)

 (20)
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Then we need to find a way to compute these estimators. The following theorem, given in [25],
allows us to obtain the closed form expression of these estimators.

Theorem: Given the set of matrices Ai ∈ CN×N, i = 1, 2, . . . , K, and the set of weights wi,
i = 1, 2, . . . , K, with wi > 0 and

∑K
i=1 wi = 1, the solution to the optimization problem

Â = argmin
A

 K∑
i=1

wi‖Ai −A‖2
 (21)

is unique, and can be written as

Â =
K∑

i=1

wiAi (22)

• The proof of the theorem can be seen in [25]. With the theorem, we can compute the closed
form expression of the covariance matrix estimators utilizing the geometric distance mentioned above.
Euclidean estimator

Let Ai = Sω, i = ω, Sω is the ωth estimate, A = R, the Euclidean estimators can be computed as,

R̂E =
Ω∑
ω=1

wωSω (23)

• Root-Euclidean estimator
Let Ai = S1/2

ω , A = ∆rE = R1/2, the root-Euclidean estimator is

R̂rE = ∆̂rE∆̂
H
rE, where ∆̂rE =

Ω∑
ω=1

wωS1/2
ω (24)

• Power-Euclidean estimator
Let Ai = Sαω, A = ∆pE = Rα, the power-Euclidean estimator is

R̂pE =
(
∆̂pE

)1/α
, where ∆̂pE =

Ω∑
ω=1

wωSαω (25)

• Log-Euclidean estimator
Let Ai = log Sω, A = log R, the log-Euclidean estimator is

R̂lE = exp

 Ω∑
ω=1

wω log Sω

 (26)

where exp A = UAdiag
(
λlE

A

)
UH

A , with λlE
A =

[
exp

(
λA

1

)
, exp

(
λA

2

)
, . . . , exp

(
λA

N

)]
.

Using the geometric distance and corresponding estimators above, we can design the training data
selector. As discussed above, the characteristic of the first-order sea clutter in range domain changes
rapidly in the HF MMSWR system. The independent identically distributed request for the training
data cannot be satisfied for space-time adaptive processing in practical scenarios. The multipath
propagation, the ionospheric disturbance, and the interference make it impossible for all the training
data to share the homogeneity properties. Therefore, the training data selector is designed to select the
most “similar” training data with the cell under test. The chosen training data can represent the clutter
information of the cell under test more accurately and provide better performance for STAP.

Unlike some target detectors in [22,23,26], which detect the target with the highest geometric
distances, we choose the training data with the lowest geometric distances because the lower geometric
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distance shows more homogeneity with the cell under test. The training data selection strategy is
processed as follows,

1. Calculate the covariance matrices Λi = X̂iX̂H
i , i = 1, 2, . . . , K for a single range bin i, defined in

Section 3.1;
2. Suppose the range bin for the cell under test is k, calculate the geometric distances d(Λk, Λi) and

covariance estimator R̂ for all the training data in range domain;

3. Calculate the generalized inner product βi = X̂H
i R̂−1X̂i, i = 1, 2, . . . , K for all the training data;

4. Set βk = βk−1 = βk+1 = max
{
βi
}

as guard cells to prevent the target self-elimination and sort βis
in ascending order;

5. Select the Ω = 2pq indices as the training samples which correspond to Ω lowest values of βi.

Using the Ω training samples chosen, clutter suppression can be undertaken utilizing the joint
domain localized processing discussed above. Processing all the range bins and Doppler bins in turn,
we obtain the clutter suppression output that is then forwarded to the detector and on to the tracker.

4. Simulation Results

In this section, we present the performance analysis of the proposed training data selectors.
We assume the covariance matrix is constructed by the sum of the clutter covariance matrix and noise
matrix which is an identity matrix [26],

R = σ2
cρ
|m−n|e j2π fdc (m−n) + p0Inoise, m, n = 1, 2, . . . , N (27)

where σ2
c is the clutter-to-noise ratio, ρ is the one-lag correlation coefficient, fdc is the clutter normalized

Doppler frequency, p0 is the diagonal loading coefficient. To simulate the real situation of the first-order
clutter in the HF MMSWR system, the total secondary data in range domain is set to be K = 100.
The LPR we use is 5 × 3, so that the required number of training samples is Ω = 2 × p × q = 30.
The number of the guard cell is two. To simulate the impact of the ionospheric disturbance on sea
clutter, we inject two sets of disturbances whose normalized Doppler frequency is slightly different
from that of the sea clutter. The temporal steering signature is,

t = α
[
1, e j2π fdo , . . . , e j2π(N−1) fdo

]T
(28)

where α is the amplitude of the disturbance, fdo is the normalized Doppler frequency of the disturbance.
The performance of the different training data selectors is analyzed by 5000 Monte Carlo simulations,
evaluating the rate that a correct selection occurs, which means selecting 30 training samples with no
disturbance.

In a practical HFSWR system, the sea clutter statistical property is usually affected by two factors.
The first factor is the total number of the training samples corrupted by ionospheric disturbance.
The second factor is the similarity of the ionospheric disturbance and the sea clutter statistics in the
CUT. In the following subsections we undertake the simulation performance analysis based on these
two factors.

4.1. Selection Performance with Number of Disturbances

Firstly, we do the performance analysis against average disturbance power with different
numbers of disturbances. The simulation conditions are that N = 8, K = 100, Ω = 30, σ2

c = 15 dB,
ρ = 0.95, fdc = 0.20, p0 = 1, the number of Monte Carlo simulation is 5000, the normalized Doppler
frequency of the first set of disturbances belongs to

{
fdo,1

}
∈ {0.15± 0.01} and the second set is set to be{

fdo,2

}
∈ {0.25± 0.01}. The power of each disturbance is assumed equal. Figure 4 shows the selection

performance when the total number of disturbances Ndisturbance are 6, 8, 10, and 12, respectively. Figure 4
shows that the Log-Euclidean distance-based training data selector has the best performance and
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selects the most homogeneous training data among the different disturbances. This result agrees with
the conclusions by Aubry et al. [25] and Cui et al. [26]. This shows that the Log-Euclidean estimator
outperforms other geometric barycenter estimators in different conditions, for both target detection
processing and clutter suppression processing. As the number of the disturbance increases, which is
from 6 to 12 in (a) to (d), respectively, the correct selection rate decreases as it was expected. This implies
that the first-order sea clutter in the practical situation suffers more ionospheric disturbances which
makes the clutter statistical property more heterogeneous. Therefore, the correct selection becomes
more difficult. But even in this scenario, the Log-Euclidean selector shows greater robustness than the
others, especially the Euclidean selector.
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4.2. Selection Performance with Disturbance Doppler Frequency

In this section, we analyze the selection performance against different kinds of disturbances which
means the normalized Doppler frequency of disturbances are different. The same simulation setup
is used as described in Section 4.1, with the exception that the normalized Doppler frequency of the
two disturbances changes. The total number of the disturbance Ndisturbance was set to eight. Figure 5
shows the performance analysis of four situations with different normalized Doppler frequency of
disturbance. The difference value between the disturbance and the clutter is decreasing from (a) to
(d) and the correct selection rate tends to degrade for each selector. This means that the disturbance
is more difficult to exclude when its characteristic is more homogeneous with the clutter under test.
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Among all the estimators, the Log-Euclidean estimator still outperforms others and suffers less severe
performance degradation.

As the simulation results show in Sections 4.1 and 4.2, the Log-Euclidean estimator has the best
performance with respect to selecting the most efficient training data. It is chosen as the training data
selector in the proposed method to do the clutter suppression. The experimental results, given in the
next section, are based on the Log-Euclidean estimator.Remote Sens. 2019, 11, 1141 10 of 16 
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c = 15 dB, ρ = 0.95, fdc = 0.20, p0 = 1, Ndisturbance = 8,
number of MC are 5000; (a)

{
fdo,1

}
∈ {0.13± 0.01},

{
fdo,2

}
∈ {0.30± 0.01}; (b)

{
fdo,1

}
∈ {0.15± 0.01},

{
fdo,2

}
∈

{0.30± 0.01}; (c)
{

fdo,1

}
∈ {0.15± 0.01},

{
fdo,2

}
∈ {0.27± 0.01}; (d)

{
fdo,1

}
∈ {0.15± 0.01},

{
fdo,2

}
∈ {0.25± 0.01}.

5. Experimental Results

In this section, we apply the proposed training data selection method to the sea clutter suppression
processing in the practical system. The Log-Euclidean selector is chosen to select the training samples
as it outperforms others. As discussed in Section 3, we propose a novel geometric barycenter-based
reduced-dimension space-time adaptive processing combining the Log-Euclidean selector with the
JDL processing. The measured data are collected by the experimental HF OTHR system developed
by the Harbin Institute of Technology in 2015. The receiving array is a 16 channel ULA with a 10-m
sensor interval. The radar signal is phase-coded signal and the carrier frequency is 10.91 MHz, with a
bandwidth of 40 kHz and pulse repetition frequency (PRF) of 66.67 Hz.
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5.1. Measured Data with Simulated Target

We injected a simulated target in the No. batch 24 measured dataset. The Doppler frequency is
0.2995 Hz, the target direction is 9◦ and the range cell is at 72. It is close to the positive Bragg peak,
which cannot be detected due to the strong first-order sea clutter. The localized processing region
(LPR) we choose is 3× 3 in Doppler domain and azimuth domain. Therefore, the number of training
samples we select is 18.

Figure 6a,b show the range-Doppler map of the digital beam forming (DBF) method and the
Log-Euclidean JDL (LE-JDL) method with the injected target respectively. It shows that the first-order
sea clutter has been suppressed to a large extend as compared with the DBF method. But the spread
ionospheric clutter in about 100 range bins remain pretty strong which will still make it difficult
to detect the targets around this region. The ionospheric clutter suppression is discussed in the
following subsection.
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Figure 7 shows the Doppler profile results of the No. 72 range bin which displays the clutter
suppression performance clearly. The experimental data are processed by the DBF method, the
conventional JDL method, and the proposed LE-JDL method, respectively. The first two methods are
performed as comparisons with the LE-JDL method. From the figure, it is clearly that the performance
of LE-JDL outperforms the conventional JDL. The first-order sea clutter has been suppressed by 20.5 dB
for negative Bragg peak and 30.3 dB for positive Bragg peak, which is almost entirely suppressed.
The signal-clutter-ratio (SCR) improves from −5.8 dB to 17.1 dB, and the target can be easily detected
after the clutter suppression. In addition, the conventional JDL method is not very valid due to the
nonhomogeneous environment of HF MMSWR. The invalid training samples degrade the suppression
performance and the SCR only increases to 5.1 dB, which is difficult to be detected.
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Figure 7. Doppler profile result of DBF method, conventional joint domain localized (JDL) method and
proposed LE-JDL method with simulated target.

5.2. Measured Data with Non-Cooperative Target

We select a non-cooperative target from the experimental dataset in order to investigate the
effectiveness of the proposed method in the practical situation. The Doppler frequency of the target is
−0.5078 Hz, the target direction is 0◦ and the range cell is at 69. The LPR we choose is the same as
Section 5.1.

Figure 8 shows the clutter suppression result with the target in the range-Doppler map. Figure 8a
is the range-Doppler map of the DBF process as the comparison and Figure 8b is the result of the
proposed LE-JDL method. From the figures, we can see clearly that the proposed method is very
powerful to suppress the first-order sea clutter in the non-stationary background environment.
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To show the validity of the proposed method visually, we also give the Doppler profile result of
three methods at the target range bin in Figure 9. The LE-JDL method suppresses the negative Bragg
peak of the first-order sea clutter by 23.1 dB and 22.2 dB for the positive Bragg peak. The average
clutter power reduction is 22.65 dB, and the target energy remains strong at the same time. The SCR
between target and the negative Bragg peak improves from −0.3 dB to 18.3 dB. It provides convenience
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for the following target detection and tracking process for the slow velocity vessels whose Doppler
frequency are close to the Bragg peaks. The conventional JDL method still suffers from invalid training
samples in non-stationary environment.
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5.3. Measured Data with Ionospheric Clutter

The proposed RD-STAP method is valid for ionospheric clutter as well. The strip-type ionospheric
clutter occurred during the experiment time, usually formed by Es layer. Unlike the sea clutter, the
strip-type ionospheric clutter only occupies a few cells in range domain, but it covers a large number
of Doppler cells. Therefore, in range domain, it suffers less from other kinds of disturbance and the
characteristics differs from the sea clutter and background noise significantly. To show the validity
of the proposed method, we also give the range-Doppler map of the DBF method and our method,
as well as the Doppler profile result. The range cell chosen is at range cell 23 where the strip-type
ionospheric clutter occurs.

Figures 10 and 11 give the ionospheric clutter suppression results. It is worthwhile to notice that
due to the lack of range samples for the strip-type ionospheric clutter, the number of training data we
select is 12 in order to obtain a good clutter suppression performance. However, it does not satisfy
the requirement of 3 dB signal loss which is Ω = 2pq = 18. Therefore, this means that we have to
sacrifice the target energy and the sea clutter suppression performance to gain a high ionospheric
clutter suppression performance. Further research of this strip-type ionospheric clutter, which covers
only a small amount of range bins, could be the goal of future research.
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6. Conclusions

In this paper, an effective geometric barycenter-based reduced-dimension STAP method, which
we call LE-JDL, is proposed for the first-order sea clutter suppression in the background of the HF
mixed-mode surface wave radar system. The range correlation is first analyzed for the measured
data to guide the clutter suppression algorithm design. In order to apply the conventional JDL
algorithm to the heterogeneous environment in the practical HF MMSWR system, a training data
selector, which is based on geometric barycenter, is applied. The performance of four kinds of selectors
are analyzed, and the Log-Euclidean selector is chosen. The validity of the proposed method is verified
by using the experimental data. The results show that the LE-JDL method has the ability to suppress
the non-stationary sea clutter in the HF MMSWR system while the conventional JDL algorithm is
invalid. It can improve the SCR of the target and increase the target detection probability for slow
velocity vessels. As well, the proposed method is also capable of ionospheric clutter suppression in
certain conditions.

Author Contributions: Conceptualization, J.Z., L.Y., and Q.Y.; methodology, J.Z.; software, J.Z. and X.Z.; validation,
J.Z. and Q.Y.; formal analysis, J.Z. and X.Z.; investigation, J.Z. and L.Y.; resources, W.D. and Q.Y.; data curation,



Remote Sens. 2019, 11, 1141 15 of 16

X.Z.; writing—original draft preparation, J.Z.; writing—review and editing, J.Z., X.Z., and Q.Y.; visualization, J.Z.;
supervision, Q.Y.; project administration, W.D. and Q.Y.; funding acquisition, W.D. and Q.Y.

Funding: This research was funded by the National Natural Science Foundations of China grant number 61171182
and 61032011 and the Fundamental Research Funds for the Central Universities under grants HIT.MKSTISP.2016
13 and 26.

Acknowledgments: Thanks to the Key Laboratory of Marine Environmental Monitoring and Information
Processing, Harbin Institute of Technology, China for data support. Due to laboratory regulations, data cannot be
disclosed for the time being.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sevgi, L.; Ponsford, A.; Chan, H.C. An integrated maritime surveillance system based on high-frequency
surface-wave radars. 1. Theoretical background and numerical simulations. IEEE Antennas Propag. Mag.
2001, 43, 28–43. [CrossRef]

2. Ponsford, A.M.; Wang, J. A review of high frequency surface wave radar for detection and tracking of ships.
Turk. J. Electr. Eng. Comput. Sci. 2010, 18, 409–428. [CrossRef]

3. Ponsford, A.; McKerracher, R.; Ding, Z.; Moo, P.; Yee, D. Towards a Cognitive Radar: Canada’s
Third-Generation High Frequency Surface Wave Radar (HFSWR) for Surveillance of the 200 Nautical
Mile Exclusive Economic Zone. Sensors 2017, 17, 1588. [CrossRef] [PubMed]

4. Zhang, X.; Yao, D.; Yang, Q.; Dong, Y.N.; Deng, W.B. Knowledge-Based Generalized Side-Lobe Canceller for
Ionospheric Clutter Suppression in HFSWR. Remote Sens. 2018, 10, 104. [CrossRef]

5. Zhao, M.; Yang, Q. A new way of estimating ionospheric virtual height based on island multipath echoes in
HFSWR. In Proceedings of the 2017 IEEE Radar Conference (RadarConf), Seattle, WA, USA, 8–12 May 2017;
pp. 0576–0580.

6. Zhang, J.; Deng, W.; Zhang, X.; Zhao, M.; Yang, Q. A Method of Track Matching Based on Multipath Echoes
in High-Frequency Surface Wave Radar. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1852–1855. [CrossRef]

7. Zhao, M.; Zhang, X.; Yang, Q. Modified Multi-Mode Target Tracker for High-Frequency Surface Wave Radar.
Remote Sens. 2018, 10, 1061. [CrossRef]

8. Zhang, J.; Deng, W.; Zhang, X.; Yang, Q. Improved main-lobe cancellation method for space spread clutter
suppression in HFSSWR. In Proceedings of the 2018 IEEE Radar Conference (RadarConf18), Oklahoma City,
OK, USA, 23–27 April 2018; pp. 0197–0201.

9. Brennan, L.E.; Reed, L.S. Theory of Adaptive Radar. IEEE Trans. Aerosp. Electron. Syst. 1973, AES-9, 237–252.
[CrossRef]

10. Reed, I.S.; Mallett, J.D.; Brennan, L.E. Rapid Convergence Rate in Adaptive Arrays. IEEE Trans. Aerosp.
Electron. Syst. 1974, AES-10, 853–863. [CrossRef]

11. Balaji, B.; Barbaresco, F. Application of Riemannian mean of covariance matrices to space-time adaptive
processing. In Proceedings of the 2012 9th European Radar Conference, Amsterdam, The Netherlands, 31
October–2 November 2012; pp. 50–53.

12. Wang, W.; Wyatt, L.R. Radio frequency interference cancellation for sea-state remote sensing by high-frequency
radar. IET Radar Sonar Navig. 2011, 5, 405–415. [CrossRef]

13. Kang, S.; Ryu, J.; Lee, J.; Jeong, J. Analysis of space-time adaptive processing performance using K-means
clustering algorithm for normalisation method in non-homogeneity detector process. IET Signal Process.
2011, 5, 113–120. [CrossRef]

14. Tang, B.; Tang, J.; Peng, Y. Detection of heterogeneous samples based on loaded generalized inner product
method. Digital Signal Process. 2012, 22, 605–613. [CrossRef]

15. Rabideau, D.J.; Steinhardt, A.O. Improved adaptive clutter cancellation through data-adaptive training.
IEEE Trans. Aerosp. Electron. Syst. 1999, 35, 879–891. [CrossRef]

16. Zhang, X.; Yang, Q.; Deng, W. Weak Target Detection within the Nonhomogeneous Ionospheric Clutter
Background of HFSWR Based on STAP. Int. J. Antennas Propag. 2013, 2013, 1–11. [CrossRef]

17. Zhang, X.; Su, Y.; Yang, Q.; Dong, Y.; Deng, W. Space-time adaptive processing-based algorithm for meteor
trail suppression in high-frequency surface wave radar. IET Radar Sonar Navig. 2015, 9, 429–436. [CrossRef]

http://dx.doi.org/10.1109/74.951557
http://dx.doi.org/10.3906/elk-0912-331
http://dx.doi.org/10.3390/s17071588
http://www.ncbi.nlm.nih.gov/pubmed/28686198
http://dx.doi.org/10.3390/rs10010104
http://dx.doi.org/10.1109/LAWP.2018.2868095
http://dx.doi.org/10.3390/rs10071061
http://dx.doi.org/10.1109/TAES.1973.309792
http://dx.doi.org/10.1109/TAES.1974.307893
http://dx.doi.org/10.1049/iet-rsn.2010.0041
http://dx.doi.org/10.1049/iet-spr.2010.0080
http://dx.doi.org/10.1016/j.dsp.2012.03.001
http://dx.doi.org/10.1109/7.784058
http://dx.doi.org/10.1155/2013/382516
http://dx.doi.org/10.1049/iet-rsn.2014.0300


Remote Sens. 2019, 11, 1141 16 of 16

18. Wu, Y.F.; Wang, T.; Wu, J.X.; Duan, J. Robust training samples selection algorithm based on spectral similarity
for space-time adaptive processing in heterogeneous interference environments. IET Radar Sonar Navig. 2015,
9, 778–782. [CrossRef]

19. Li, H.; Bao, W.; Hu, J.; Xie, J.; Liu, R. A training samples selection method based on system identification for
STAP. Signal Process. 2018, 142, 119–124. [CrossRef]

20. Arnaudon, M.; Barbaresco, F.; Yang, L. Riemannian Medians and Means With Applications to Radar Signal
Processing. IEEE J. Sel. Top. Signal Process. 2013, 7, 595–604. [CrossRef]

21. Aubry, A.; Maio, A.D.; Pallotta, L.; Farina, A. Median matrices and their application to radar training data
selection. IET Radar Sonar Navig. 2014, 8, 265–274. [CrossRef]

22. Cheng, Y.; Hua, X.; Wang, H.; Qin, Y.; Li, X. The Geometry of Signal Detection with Applications to Radar
Signal Processing. Entropy 2016, 18, 381. [CrossRef]

23. Hua, X.; Cheng, Y.; Wang, H.; Qin, Y.; Li, Y. Geometric means and medians with applications to target
detection. IET Signal Process. 2017, 11, 711–720. [CrossRef]

24. Aubry, A.; Maio, A.D.; Pallotta, L. A Geometric Approach to Covariance Matrix Estimation and its
Applications to Radar Problems. IEEE Trans. Signal Process. 2018, 66, 907–922. [CrossRef]

25. Aubry, A.; Maio, A.D.; Pallotta, L.; Farina, A. Covariance matrix estimation via geometric barycenters and its
application to radar training data selection. IET Radar Sonar Navig. 2013, 7, 600–614. [CrossRef]

26. Cui, G.; Li, N.; Pallotta, L.; Foglia, G.; Kong, L. Geometric barycenters for covariance estimation in
compound-Gaussian clutter. IET Radar Sonar Navig. 2017, 11, 404–409. [CrossRef]

27. Lim, C.H.; Aboutanios, E.; Mulgrew, B. Training strategies for joint domain localised-space-time adaptive
processing in a bistatic environment. IEE Proceed. Radar Sonar Navig. 2006, 153, 516–524. [CrossRef]

28. Hong, W.; Lujing, C. On adaptive spatial-temporal processing for airborne surveillance radar systems.
IEEE Trans. Aerosp. Electron. Syst. 1994, 30, 660–670. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1049/iet-rsn.2014.0285
http://dx.doi.org/10.1016/j.sigpro.2017.07.008
http://dx.doi.org/10.1109/JSTSP.2013.2261798
http://dx.doi.org/10.1049/iet-rsn.2013.0043
http://dx.doi.org/10.3390/e18110381
http://dx.doi.org/10.1049/iet-spr.2016.0547
http://dx.doi.org/10.1109/TSP.2017.2757913
http://dx.doi.org/10.1049/iet-rsn.2012.0190
http://dx.doi.org/10.1049/iet-rsn.2016.0092
http://dx.doi.org/10.1049/ip-rsn:20050121
http://dx.doi.org/10.1109/7.303737
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Data Model and Clutter Statistic Analysis 
	Signal Model 
	Range Correlation Analysis 

	Geometric Barycenter-Based Reduced-Dimension STAP Algorithm 
	Joint Domain Localized Processing 
	Geometric Barycenter-Based Training Data Selector 

	Simulation Results 
	Selection Performance with Number of Disturbances 
	Selection Performance with Disturbance Doppler Frequency 

	Experimental Results 
	Measured Data with Simulated Target 
	Measured Data with Non-Cooperative Target 
	Measured Data with Ionospheric Clutter 

	Conclusions 
	References

