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Abstract: The second batch of Zhuhai-1 microsatellites was successfully launched on 26 April 2018.
The batch included four Orbita hyperspectral satellites (referred to as OHS-A, OHS-B, OHS-C, and
OHS-D) and one video satellite (OVS-2A), which have excellent hyperspectral data acquisition abilities.
For the first time in China, a number of hyperspectral satellite networks have been realized. To ensure
the application of hyperspectral remote sensing data, a series of on-orbit geometry processing and
accuracy verification studies has been carried out on the “Zhuhai-1” hyperspectral camera since
the satellite was launched. This paper presents the geometric processing methods involved in the
production of Zhuhai-1 hyperspectral satellite basic products, including geometric calibration and
basic product production algorithms. The OHS images were used to perform on-orbit geometric
calibration, and the calibration accuracy was better than 0.5 pixels. The registration accuracy of
the image spectrum of the basic product after calibration, the single orientation accuracy, and the
accuracy of the regional network adjustment were evaluated. The spectral registration accuracy of
the OHS basic products is 0.3–0.5 pixels, which is equivalent to the spectral band calibration accuracy.
The single orientation accuracy is better than 1.5 pixels and the regional network adjustment accuracy
is better than 1.2 pixels. The generated area orthoimages meet the seamless edge requirements, which
verifies that the OHS basic product image has good regional mapping capabilities and can meet the
application requirements.

Keywords: “Zhuhai-1” satellite constellation; hyperspectral; geometric calibration; band-to-band
registration; interior orientation determination accuracy; block adjustment

1. Introduction

Orbita is deploying the “Zhuhai-1” remote sensing micro-nanosatellite constellation, which will
consist of 34 video, hyperspectral, radar, and infrared satellites distributed in different orbits [1]. The
first batch of video satellites (OVS-1A, 1B) of the “Zhuhai-1” micro-nano constellation was launched
successfully on 15 June 2017 and they have been in orbit for 1.5 years [2]. The second batch of satellites
of the “Zhuhai-1” micro-nano constellation was successfully launched on 26 April 2018. The batch of
satellites includes four Orbita hyperspectral satellites (OHS-A, OHS-B, OHS-C, and OHS-D) and one
video satellite (OVS-2A), which have strong hyperspectral data acquisition abilities. A network of
hyperspectral satellites has been realized in China for the first time [1]. Among them, four hyperspectral
satellites have the same hardware configuration and operating status, and the cameras on each satellite
are stitched together by three Complementary Metal Oxide Semiconductors (CMOS) sensors, with
specific stitching on the focal surface, as shown in Figure 1.

Remote Sens. 2019, 11, 996; doi:10.3390/rs11090996 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-5777-4144
https://orcid.org/0000-0002-3987-5336
http://www.mdpi.com/2072-4292/11/9/996?type=check_update&version=1
http://dx.doi.org/10.3390/rs11090996
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2019, 11, 996 2 of 17

Remote Sens. 2019, 1, 3 FOR PEER REVIEW  2 of 17 

 

CMOS3

CMOS2

CMOS1

12.61mm

13.8mm

21.16mm

29.8mm
50 pixels

 
Figure 1. Schematic of the focal plane arrangement of the hyperspectral camera. 
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Figure 2. Schematic of the CMOS sensor spectrum distribution. 

Figure 2 shows the spectrum structure for each CMOS sensor. Each piece of the CMOS contains 
5056 × 2968 pixels, and the imaging spectrum ranges from 400 to 1000 nm. In each CMOS sensor, the 
spectral average of 400–1000 nm is divided into 32 spectral segments through a filter, and each 
spectral segment occupies ≤ 2968/32 = 92 rows on the sensor. Only eight rows are used for 8-level 
integral imaging. The hyperspectral satellite camera can acquire images with a 10-m resolution, 150-
km width, and 32 spectrum segments. The single-start continuous sweeping work time is no less than 
2 min and the one-track working time is no more than 8 min, with a global coverage ability within 5 
days.  

The hyperspectral satellite platform is equipped with Global Navigation Satellite System (GNSS) 
receivers (supporting global positioning system (GPS) and Beidou) for measuring and downlinking 
the satellite position and speed. The satellite platform is equipped with three sensors and two sets of 
three-axis fiber optic gyroscopes. During the imaging stage, two sensors were used to observe the 
satellite attitude and the inertial attitude quaternion, processed by the sensor and gyro-Kalman filter, 
was transmitted to the ground station. The downlink frequency of the on-board GNSS and attitude 
data is 1 Hz. The main parameters of the four hyperspectral satellites are shown in Table 1. 
  

Figure 1. Schematic of the focal plane arrangement of the hyperspectral camera.

Figure 2 shows the spectrum structure for each CMOS sensor. Each piece of the CMOS contains
5056 × 2968 pixels, and the imaging spectrum ranges from 400 to 1000 nm. In each CMOS sensor, the
spectral average of 400–1000 nm is divided into 32 spectral segments through a filter, and each spectral
segment occupies ≤ 2968/32 = 92 rows on the sensor. Only eight rows are used for 8-level integral
imaging. The hyperspectral satellite camera can acquire images with a 10-m resolution, 150-km width,
and 32 spectrum segments. The single-start continuous sweeping work time is no less than 2 min and
the one-track working time is no more than 8 min, with a global coverage ability within 5 days.
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Figure 2. Schematic of the CMOS sensor spectrum distribution.

The hyperspectral satellite platform is equipped with Global Navigation Satellite System (GNSS)
receivers (supporting global positioning system (GPS) and Beidou) for measuring and downlinking
the satellite position and speed. The satellite platform is equipped with three sensors and two sets of
three-axis fiber optic gyroscopes. During the imaging stage, two sensors were used to observe the
satellite attitude and the inertial attitude quaternion, processed by the sensor and gyro-Kalman filter,
was transmitted to the ground station. The downlink frequency of the on-board GNSS and attitude
data is 1 Hz. The main parameters of the four hyperspectral satellites are shown in Table 1.
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Table 1. Orbita hyperspectral satellite (OHS) parameters.

Satellite Platform

Total satellite mass 67 kg
Orbit height 500 km

Orbit inclination angle 98◦

Regression cycle 5 days
Global positioning system (GPS) positioning precision 15 m

Attitude accuracy 15” (3σ)
Attitude maneuver ±45◦/80 s
Attitude stability 0.002◦/s (1σ)

Satellite Payload

Detector size 4.4 µm
Field of view (FOV) 20.5◦

Spectral range 400–1000 nm
Quantitative level ≥12 bits

Band number 32
Signal Noise Ratio (SNR) ≥300 dB
Ground sample distance 10 m

Ground swath 150 km

This paper presents the geometric processing methods involved in the production of Zhuhai-1
hyperspectral satellite basic products, including geometric calibration and basic product production
algorithms. In the experiments, the OHS was geometrically calibrated and the spectral segment
registration, single-view orientation, and regional adjustment accuracy of the basic products were
evaluated. The results show that the geometric calibration accuracy of the Zhuhai-1 hyperspectral
satellite is better than 0.5 pixels. The registration accuracy of the spectrum of the basic product is
0.3–0.5 pixels, the accuracy of the basic product image is better than 1.5 pixels, and the accuracy of the
regional network adjustment is better than 1.2 pixels. The basic product has the ability to form large
areas and can meet the application requirements.

2. Methods

2.1. Geometric Calibration

Although the OHS payload is a planar CMOS payload, the imaging principle of each spectral
segment of the OHS conforms to that of linear array push-broom imaging. The imaging geometric
positioning model can be expressed as follows [3–11]:

X
Y
Z


WGS84

=


Xs

Ys

Zs


WGS84

+ mRWGS84
J2000 RJ2000

body RuRbody
cam


x− x0 − ∆x
y− y0 − ∆y
− f

 (1)

In the above collinearity equation, ( X Y Z )
T
WGS84 represents the ground coordinates of the point

in the World Geodetic System 1984 (WGS84) geocentric coordinate system and ( Xs Ys Zs )
T
WGS84

indicates the position of the OHS with respect to the WGS84 geocentric coordinate system. Furthermore,
m denotes the scaling factor, RB

A denotes the rotation matrix for converting the coordinate system A to
coordinate system B, (x0, y0) is the principal point position, f is the focal length, (∆x, ∆y) denotes the
interior distortion effects, and RU is the offset matrix.

The OHS geometric calibration model mainly considers the compensation of the load installation
error, attitude and orbit system error, and camera distortion. The orbit system error and attitude system
error are equivalent and can be compensated for via unified modeling [6–9]. The load installation error
has the same influence on geometric positioning as the attitude system error; hence, it can also be
equivalent to the attitude system error. Therefore, the offset matrix shown in Equation (1) can be used
to compensate for the attitude system error, and the influence of the load installation error and attitude
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and orbit system error on geometric positioning can be eliminated simultaneously. Ru is defined as
follows:

RU =


cosϕ 0 sinϕ

0 1 0
− sinϕ 0 cosϕ




1 0 0
0 cosω − sinω
0 sinω cosω




cosκ − sinκ 0
sinκ cosκ 0

0 0 1

 (2)

For camera distortion, the OHS single-band uses several lines in the CMOS array to simulate time
delay integration (TDI) Charge-coupled Device (CCD) push-broom; hence, the distortion model of the
single-band can incorporate the directional angle model shown in Equation (3) [12–15]:{

tan(ψx) = a0 + a1s + a2s2 + · · ·+ aisi

tan(ψy) = b0 + b1s + b2s2 + · · ·+ b js j i, j ≤ 5 (3)

where s is the image column. Therefore, the geometric calibration model of the OHS single spectral
band is shown in Equation (4):

X
Y
Z
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=
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Xs

Ys
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
WGS84

+ mRWGS84
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body RuRbody
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
a0 + a1s + a2s2 + · · ·+ aisi

b0 + b1s + b2s2 + · · ·+ b js j

1

, i, j ≤ 5 (4)

Considering the strong correlation between Ru and ai,b j, the geometric calibration can be completed
by using the iterative solution of Ru and ai,b j parameters so that the geometric calibration can be
completed when the number of geometric control points of a single spectral segment is no less than
(3i + 3 j + 6)/2.

As shown in Figure 2, the OHS camera has 32 spectral segments, which need to be geometrically
calibrated. Since the spectral responses of the 32 spectral segments are quite different, if the control
points are obtained by matching each spectral segment with the Digital Orthophoto Map (DOM) of the
calibration field before geometric calibration, the calibration accuracy of each spectral segment will be
inconsistent due to the difference in control accuracy. Considering that the imaging time interval of the
adjacent spectral segments is short and the difference in the spectral response is relatively small, the
registration accuracy between adjacent spectral segments will be higher than the accuracy between
spectral segments and the DOM. Therefore, this paper proposes a recursive geometric calibration
method for adjacent spectral segments to complete the geometric calibration of all spectral segments.
The process involves the following steps:

(1). Using the DOM of the calibration field as a reference, select the spectral segment that is closest to
the radiating characteristics of the DOM image as the starting spectral segment (assuming this
is spectral segment N), use a high-precision matching algorithm to match N and DOM, obtain
control points, and determine Ru and ai,b j of N using Equation (4);

(2). According to the calibration parameters solved in step (1), construct the geometric positioning
model of N using Equation (4);

(3). Register spectral segment N-1 and spectral segment N to obtain the corresponding points
(xN−1

i , yN−1
i , xN

i , yN
i ), and calculate the ground coordinates corresponding to the image points

according to the geometric positioning model of N constructed in step (2). Taking
(xN−1

i , yN−1
i , XN

i , YN
i , ZN

i ) as the geometric control point of N-1, the offset matrix of N-1 is the
same as that of N in step 1). Solve for ai,b j of N-1 using Equation (4) and update the geometric
positioning model of N-1;

(4). Repeat step (3) until the geometric calibration of spectral segment 1 is completed;
(5). For spectral segment N+1 to 32, follow steps (3) to (4) to recursively complete the

geometric calibration.
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2.2. Production

Orbita has considered both the amount of image data and the practical application requirements.
The basic products released to the outside world are the 32-band registration image products of the
single CMOS, and the regional mosaic image is used as a value-added product. Therefore, although
the single imaging width of the hyperspectral satellite can reach 150 km, the width of the basic product
released by the company is 50 km. OHS basic product processing is mainly performed for 32-band
registration and Rational Function Coefficients (RPC) generation.

The essence of spectral registration is to determine the correspondence of homonymous points
between different spectral segments. Figure 3 shows a schematic of a synonymous point with four
spectral segments as examples. As shown, any imaging point on B1 can be used to determine the
location of homonymous image points on B2, B3, and B4 based on the principle that homonymous
points should be located at the same position on the ground (positioning consistency constraint).
The accuracy of the corresponding relationship is mainly limited by the accuracy of the geometric
positioning parameters, including the accuracy of the attitude and orbit used in positioning, the
accuracy of orientation elements in the camera, and the accuracy of the elevation data.
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Geometric calibration accurately restored the camera’s interior orientation elements and
determined the exact position relationship of the 32 spectral segments on the focal plane. Therefore,
the influence of the interior orientation element error on the determination of homonymous points can
be ignored. For elevation fluctuation caused by stereoscopic parallax, the maximum difference in the
view angle between the OHS spectrum (band 1 and band 32) is less than 3◦, considering geometric
positioning in the global 90 m grid SRTM as elevation data, an elevation accuracy of 16 m, and the
effect of stereoscopic parallax for identical point determination being less than 0.1 pixels, which can be
neglected. For attitude and orbit measurement errors, the imaging time interval between adjacent
spectral segments for identical objects is less than 0.1 s, while the attitude and orbit measurement
errors over a short period are mainly systematic errors, which do not affect the accuracy of the identical
point relationship determination. Therefore, the registration of OHS spectral segments can be realized
based on the consistency constraint of homonymous point location. The algorithm is as follows:

(6). Using the geometric calibration results, establish a geometric positioning model for each spectral
segment of the OHS according to Equation (4);
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(7). Select the intermediate spectral segment as the reference spectral segment (such as the 15th
spectral segment), which has an image size of wr × hr. Based on the spectral segment geometric
positioning model established in (1), the terrain-independent method is used to generate the RPC
parameters of the spectral segment;

(8). For any of the spectral segments N (N,15), generate a new image of size wr × hr as follows:

(a) For any image point (x, y) on the image, calculate the ground coordinate (X, Y, Z)
corresponding to (x, y) using the geometric positioning model of the reference
spectral segment;

(b) Calculate (X, Y, Z) corresponding to the image point coordinate (x′, y′) in spectral segment
N by using the positioning model of N;

(c) Calculate the gray value at (x′, y′) using the linear interpolation method and assign (x, y)
to the new image;

(d) Repeat steps (a)–(c) until all pixels of the new image have been calculated.

(9). Repeat step (3) until all segments have been resampled.

3. Results and Discussion

3.1. Study Areas and Data Sources

Geometric calibration is the premise of high data quality and the basis for satellite on-orbit
processing. The OHS image of the Hubei area (No. 2018-09-28-OHS-Hubei) obtained on 28 September
2018, was used for OHS geometric calibration. The image size was 15,168 (5056 × 3) × 8147 pixels. As
shown in Table 2, the calibration control data include DOM and Digital Elevation Model (DEM) data
in the Hubei area. The DOM resolution of the Hubei area is 2 m, the plane precision is better than 4 m,
the DEM resolution is 15 m, and the elevation accuracy is better than 5 m (1σ). The average elevation
of the area is 264 m and the maximum height difference is 556 m. Thumbnails of the image and control
data are shown in Figure 4.

Table 2. Imaging information of experimental data.

ID
Imaging Angle (◦) Imaging Time Band

Roll Pitch Yaw

3.2. Geometric Calibration
2018-09-28-OHS-Hubei −1.09◦ 0.00◦ 3.18◦ 2018-09-28 1-32

3.3. Band-to-Band Registration Accuracy
2018-9-12-OHS-Beijing −5.26◦ 0.00◦ 2.81◦ 2018-09-12 1-32
2018-8-5-OHS-Tianjing −11.85◦ 0.00◦ 2.72◦ 2018-08-05 1-32

2018-10-10-OHS-Shandong −1.26◦ 0.00◦ 2.95◦ 2018-10-10 1-32

3.4. Interior Orientation Determination Accuracy Evaluation
2019-01-13-OHS-Neimeng 11.84◦ 0.00◦ 2.72◦ 2019-01-13 15
2019-01-17-OHS-Henan 2.94◦ 0.00◦ 3.00◦ 2019-01-17 15
2019-01-24-OHS-Hebei −0.50◦ 0.01◦ 2.90◦ 2019-01-24 15

3.5. Block Adjustment
2018-08-12-OHS-Shanxi 8.64◦ 0.00◦ 2.93◦ 2018-08-12 15
2018-11-21-OHS-Shanxi −8.69◦ 0.00◦ 2.78◦ 2018-11-21 15
2018-09-07-OHS-Shanxi 3.52◦ 0.00◦ 2.79◦ 2018-09-07 15
2018-11-19-OHS-Shanxi 9.82◦ 0.00◦ 2.65◦ 2018-11-19 15
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To fully verify the accuracy of the basic products after OHS geometric calibration, the spectral
segment registration, single-view orientation, and regional adjustment accuracy of the product were
evaluated. Three scene images obtained on 12 September 2018, 5 August 2018, and 10 October 2018, in
Beijing, Tianjin, and Shandong, respectively, were used for accuracy evaluation of the spectral band
registration. For the single-view orientation accuracy assessment, images obtained on 13 January 2019
and 17 January 2019 were collected. Also, three scene images obtained on 24 January 2019 are shown
from Inner Mongolia, Henan and Hebei, respectively. DOM and DEM data were used for verification
control of the corresponding area. The DOM resolution is 2 m, the plane precision is 5 m, the DEM
resolution is 15 m, and the elevation accuracy is 3 m. Thumbnails of the experimental data and control
data are shown in Figure 5, Figure 6, and Figure 7 for the different areas. Four-track 221-view basic
product images covering Shanxi (12 August 2018, 21 January 2011, 7 September 2018, and 19 November
2018) were collected for regional adjustment accuracy assessment. The details of the calibration and
verification data are shown in Table 2.
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3.2. Geometric Calibration

The 15th band is selected as the reference, and the 2018-09-28-OHS-Hubei image and Hubei DOM
image are matched using the automatic matching algorithm [16]. To reduce the influence of the random
error of the attitude and orbit measurements on the geometric calibration, only 2102 matching control
points are used for geometric calibration from 4000 to 6000 lines in the 2018-09-28-OHS-Hubei image.
The distribution is shown in Figure 8.
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Since the offset matrix mainly eliminates satellite attitude and orbit measurement system error, the
camera creates system error, which cannot eliminate the internal orientation element error. Therefore,
the positioning error after solving the offset matrix mainly reflects the internal orientation element
error (camera distortion, etc.). As shown in Table 1 and Figure 9a, due to satellite orbit focusing,
band reconstruction, etc., the on-board real camera parameters vary significantly from the pre-launch
laboratory measurement parameters. As shown in Table 3, the positioning error is still 36 pixels (about
360 m) after solving the offset matrix, but after further solving the camera distortion parameters, the
positioning accuracy is increased to 0.5 pixels (5 m), which is equivalent to the control precision.
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Table 3. Accuracy evaluation of 15-band calibration (pixels).

Sample (Pixels) Line (Pixels) Plane RMS
(Pixels)MAX MIN RMS MAX MIN RMS

a 37.34 6.12 19.44 59.10 12.67 30.79 36.42

b 1.34 0.00 0.38 1.22 0.00 0.32 0.50

a indicates that only the positioning residual of the offset matrix is solved and b represents the positioning residual
after the camera distortion is solved on the basis of a. RMS is root mean square.

The remaining 31 spectral bands are geometrically scaled using the 15th spectral band after
calibration as the reference spectral band. The calibration results are shown in Figure 10. It can be seen
that the calibration accuracy of each spectrum band is 0.3–0.4 pixels.
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3.3. Band-to-Band Registration Accuracy

The registration accuracy of adjacent spectral segments was verified by using 2018-9-12-
OHS-Beijing, 2018-8-5-OHS-Tianjing, and 2018-10-10-OHS-Shandong images. A high-precision
matching algorithm [16] is used to extract the same-named points from the adjacent spectral segments
of the above basic products, and the spectral segment registration accuracy is evaluated by calculating
and counting the coordinate deviations of the same-named image points of the adjacent spectral
segments [4]. The results are shown in Figure 11.
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As can be seen from Figure 11, the spectral registration accuracy of the evaluation of the three-field
experimental data is 0.3 to 0.5 pixels. As mentioned above, this study uses the method of positioning
consistency constraints for spectral segment registration. The registration accuracy mainly depends on
the elevation error, attitude and orbit error, and internal orientation element error. Among them, the
influence of the global 90 m SRTM elevation data on spectral segment registration is less than 0.1 pixels.
In addition, the imaging interval of adjacent spectral bands is only within 0.1 s, the attitude error is
mainly systematic error, and the influence on spectral segment registration can be neglected. The
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accuracy of spectral segment registration depends mainly on the accuracy of spectral band calibration.
A comparison of the results shown in Figures 10 and 11 shows that the accuracy of the spectral
alignment in the evaluation is comparable to the calibration accuracy between the spectral bands.
Finally, the overlay display effect of the spectrum segment of OHS basic products is shown in Figure 12.Remote Sens. 2019, 1, 3 FOR PEER REVIEW  11 of 17 
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3.4. Interior Orientation Determination Accuracy Evaluation

To verify the intra-image accuracy of the OHS basic product, the artificial puncture
method was used to obtain control points from three scene images of 2019-01-13-OHS-Neimeng,
2019-01-17-OHS-Henan, and 2019-01-17-OHS-Hebei. The control points are 33, 33, and 31, as shown in
Figure 13.
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The positioning accuracies of all the images were evaluated based on the geometric control points
(GCPs), where an image affine model based on the RPC defined by Equation (5) is used as the exterior
orientation model [17–19].

x + a0 + a1x + a2y = RPCx(lat, lon, h)
y + b0 + b1x + b2y = RPCy(lat, lon, h)

(5)

The image-based affine model based on RPC can eliminate the error of the attitude and orbit
system. The accuracy after adjusting the control point mainly depends on the random error of the
attitude and orbit. Because the accuracy of orbit determination is high, the accuracy shown in Table 4
mainly depends on the attitude random error, including errors caused by attitude measurement random
error and platform stability. According to Table 1, the random error of the attitude measurement is 15”
(3σ) and the geometric positioning error is 1.2 pixels (1σ). In fact, because the imaging time of the OHS
basic product standard scene is only 7 s, which is very short, and the attitude measurement error in the
time is mainly systematic, the random error may be less than 15” (3σ) and the resulting positioning
error should be less than 1.2 pixels. Considering the fact that the attitude downlink frequency is only
1 Hz, under the condition that the attitude angular velocity is constant within 1 s, the attitude of the
arbitrary imaging time is interpolated based on the measurement attitude of the adjacent 1 s during
ground processing. However, since the stability of the OHS platform is only 0.002◦/s (1σ), the angular
velocity of the attitude within 1 s is not constant; hence, the random error caused by the stability of
the platform does not exceed 0.002◦, and the geometric positioning error does not exceed 1.7 pixels
(1σ). In summary, the effect of the attitude random error on the internal accuracy should theoretically
not exceed 2 pixels. Table 4 shows that the orientation accuracy of the three basic products is better
than 1.5 pixels, and Figure 14 shows the positioning residuals are random, which is consistent with the
theoretical concept of “not exceeding 2 pixels”.

Table 4. Interior orientation determination accuracy.

ID
Sample (Pixels) Line (Pixels) Plane

Accuracy
RMS (Pixels)MAX MIN MEANS STD MAX MIN MEANS STD

2019-01-12-OHS-Neimeng 1.86 0.01 0.00 0.96 1.77 0.03 0.00 0.87 1.30
2019-01-17-OHS-Henan 1.14 0.01 0.00 0.57 1.46 0.07 0.00 0.66 0.87
2019-01-23-OHS-Hebei 1.87 0.05 0.00 0.96 1.99 0.03 0.00 1.10 1.46
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3.5. Results of Block Adjustment

Data for Shanxi were collected in this experiment. The detailed information is shown in Table 2.
The 221 scenes of the basic product image, image distribution position, and matching connection point
distribution are shown in Figure 15.

Using the high-precision matching algorithm [16], 13,086 connection points were obtained on the
221-scene image. Based on the image affine model of RPC expressed in Equation (5), DEM-assisted
uncontrolled plane adjustment [20–22] was performed on the region 221-scene image. The auxiliary
DEM is the DEM with a 25 m resolution and 5 m elevation accuracy of the Shanxi region. The results
are shown in the table below.

The adjustment accuracy in Table 5 depends on the elevation influence and the accuracy within
the image. As can be seen from Table 2, the maximum intersection condition of the 221 scene data is
9.82◦ and −8.69◦, and the elevation effect in plane adjustment is 0.2 pixels, which is basically negligible.
Therefore, the adjustment accuracy of 1.15 pixels in this area mainly reflects the accuracy of the
image, which is consistent with the above theoretical concept of “not exceeding 2 pixels.” Further,
an orthophoto image of the region was generated, and the result is shown in Figure 16. The result
satisfies the accuracy requirement of 1 pixel of the image mosaic edge and verifies that the OHS basic
product image has a large area mapping capability. A detailed image of the local edge joint is shown in
Figures 17 and 18.



Remote Sens. 2019, 11, 996 14 of 17

Remote Sens. 2019, 1, 3 FOR PEER REVIEW  14 of 17 

 

(a) Regional image distribution (b) Connection-node distribution 

Figure 15. Image and connection point distribution. 

Using the high-precision matching algorithm [16], 13,086 connection points were obtained on 
the 221-scene image. Based on the image affine model of RPC expressed in Equation (5), DEM-
assisted uncontrolled plane adjustment [20–22] was performed on the region 221-scene image. The 
auxiliary DEM is the DEM with a 25 m resolution and 5 m elevation accuracy of the Shanxi region. 
The results are shown in the table below. 

Table 5. Results of block adjustment. 

ID Connection points 
RMS (pixels) 

x y Plane 
Test area 13,086 0.642 0.954 1.150 

The adjustment accuracy in Table 5 depends on the elevation influence and the accuracy within 
the image. As can be seen from Table 2, the maximum intersection condition of the 221 scene data is 
9.82° and −8.69°, and the elevation effect in plane adjustment is 0.2 pixels, which is basically negligible. 
Therefore, the adjustment accuracy of 1.15 pixels in this area mainly reflects the accuracy of the image, 
which is consistent with the above theoretical concept of “not exceeding 2 pixels.” Further, an 
orthophoto image of the region was generated, and the result is shown in Figure 16. The result 
satisfies the accuracy requirement of 1 pixel of the image mosaic edge and verifies that the OHS basic 
product image has a large area mapping capability. A detailed image of the local edge joint is shown 
in Figure 17 and Figure 18. 

Figure 15. Image and connection point distribution.Remote Sens. 2019, 1, 3 FOR PEER REVIEW  15 of 17 

 

  
(a) Single-band display (b) RGB display 

Figure 16. Diagram of orthographic image overlay. 

  
(a) Left and right edge display (b) Left and right edge display 

Figure 17. Sketch of the left and right edge of the image. 

Figure 16. Diagram of orthographic image overlay.



Remote Sens. 2019, 11, 996 15 of 17

Table 5. Results of block adjustment.

ID Connection Points
RMS (pixels)

x y Plane

Test area 13,086 0.642 0.954 1.150
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4. Conclusions 

Based on the characteristics of the Zhuhai-1 hyperspectral satellite, this paper proposes a 
hyperspectral image geometric calibration model method and a basic product production method. 
The OHS image was used to perform on-orbit geometric calibration, and the spectral registration 
accuracy, single-view orientation accuracy, and regional network adjustment accuracy of the basic 
product spectrum after calibration were evaluated. The experimental results show that the spectral 
alignment accuracy of the OHS basic products is 0.3–0.5 pixels, which is equivalent to the spectral 
segment calibration accuracy. The single-view orientation accuracy should theoretically be “no more 
than 2 pixels.” The accuracy of the actual evaluation result is better than 1.5 pixels (0.8–1.5 pixels (1
σ ) and the regional network adjustment accuracy is better than 1.2 pixels (1σ ). The generated area 
orthophoto image satisfies the seamless edge requirement. It is verified that the image of OHS basic 
products can perform regional mapping and meet the application requirements.  
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Figure 18. Sketch of the upper and lower edge of the image.

4. Conclusions

Based on the characteristics of the Zhuhai-1 hyperspectral satellite, this paper proposes a
hyperspectral image geometric calibration model method and a basic product production method.
The OHS image was used to perform on-orbit geometric calibration, and the spectral registration
accuracy, single-view orientation accuracy, and regional network adjustment accuracy of the basic
product spectrum after calibration were evaluated. The experimental results show that the spectral
alignment accuracy of the OHS basic products is 0.3–0.5 pixels, which is equivalent to the spectral
segment calibration accuracy. The single-view orientation accuracy should theoretically be “no more
than 2 pixels.” The accuracy of the actual evaluation result is better than 1.5 pixels (0.8–1.5 pixels
(1σ) and the regional network adjustment accuracy is better than 1.2 pixels (1σ). The generated area
orthophoto image satisfies the seamless edge requirement. It is verified that the image of OHS basic
products can perform regional mapping and meet the application requirements.
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