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Abstract: The built environment, defined as all human-made infrastructure, is increasing to fulfill the
demand for human settlements, productive systems, mining, and industries. Due to the profound
direct and indirect impacts that the built environment produces on natural ecosystems, it is considered
a major driver of land change and biodiversity loss, and a major component of global environmental
change. In South America, a global producer of minerals and agricultural commodities, and a region
with many biodiversity hotspots, infrastructure expanded considerably between 2001 and 2011.
This expansion occurred mainly in rural areas, towns, and sprawling suburban areas that were not
previously developed. Herein, we characterized the areas of major infrastructure expansion between
2001 and 2011 in South America. We used nighttime light data, land use maps, and socio-economic and
environmental variables to answer the following questions: (1) Where are the hotspots of infrastructure
expansion located? and (2) What combination of socio-economic and environmental variables are
associated with infrastructure expansion? Hotspots of infrastructure expansion encompass 70%
(337,310 km2) of the total infrastructure expansion occurring between 2001 and 2011 across South
America. Urban population and economic growth, mean elevation, and mean road density were
the main variables associated with the hotspots, grouping them into eight clusters. Furthermore,
within the hotspots, woody vegetation increased around various urban centers, and several areas
showed a large increase in agriculture. Investments in large scale infrastructure projects, and the
expansion and intensification of productive systems (e.g., agriculture and meat production) play
a dominant role in the increase of infrastructure across South America. We expect that under
the current trends of globalization and land changes, infrastructure will continue increasing and
expanding into no-development areas and remote places. Therefore, to fully understand the direct
and indirect impacts of land use change in natural ecosystems studies of infrastructure need to expand
to areas beyond cities. This will provide better land management alternatives for the conservation of
biodiversity as well as peri-urban areas across South America.

Keywords: built environment; environmental variables; hotspots; infrastructure; socio-economic
variables; South America; socio-ecological systems

1. Introduction

Human settlements, agriculture, and livestock production systems, as well as extractive activities
have been increasing across the world [1–4]. This situation is particularly noteworthy in developing
countries where a rapid expansion of urban areas has occurred [5], and the exploitation of natural
resources is reaching remote places [6]. The increase in these human activities is a response to
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a growing human population coupled with an increase in per capita consumption of goods and
commodities [7]. National policies and international investments in large-scale development projects
have also contributed to the increase of different human activities [4,8]. All these activities require
a diverse array of human-made infrastructure (hereafter infrastructure) such as silos, sheds, mines,
factories, houses, buildings, port facilities, and hydroelectric dams. Therefore, infrastructure, which
can be broadly defined as the built environment, has increased as a direct or indirect result of human
activities [9].

Due to the profound direct and indirect impacts that the built environment has on natural
ecosystems, it is considered a human pressure [10], a major driver of land change and biodiversity
loss [11,12], and a major component of global environmental change [13]. For instance, the built
environment can negatively impact natural resources [14], modify landforms [15], and alter natural
ecosystems [16,17] and biogeochemical cycles [13]. Furthermore, the built environment can lead to
habitat loss and environmental degradation [13,18]. Additionally, urban areas, which are part of
the built environment, can negatively impact protected areas located as far as 100 km away [19].
The environmental implications of the built environment can be so drastic that even in areas where
infrastructure occurs in low densities, such as suburban, rural areas, and remote places, and regardless
of the magnitude of the infrastructure (e.g., residential or industrial) species and ecosystems are
negatively impacted by its establishment and expansion [20–22]

Between 2001 and 2011, South America experienced a total expansion of the built environment
of approximately 480,000 km2, representing 2.7% of the continent [9]. Most of the expansion (93%)
occurred in rural areas, towns, and sprawling suburban areas that were not previously developed [9].
In addition, South America presents contrasting spatial patterns of human pressure, including areas
with no measurable human footprint (e.g., remote areas in the Amazon basin) and areas with high
pressure (e.g., southeast of Brazil) [10]. South America also contains five biodiversity hotspots [23] and
the largest area of tropical forest [24]. At the same time, it is a major world producer of oil, natural
gas, minerals, ethanol [25,26], and many agricultural products [27]. Furthermore, these agricultural
activities could expand over 172.5 million ha of potential cropland located mainly in the Chaco region,
the Brazilian Cerrado, and the Brazilian and Bolivian Amazon [28]. In addition, urbanization has been
fast and unplanned in most cities [29], leading to a spatial increase in urban infrastructure.

In this study, we spatially identified and characterized the areas of major infrastructure expansion
(i.e., hotspots) between 2001 and 2011 in South America. Specifically, we addressed the following
questions: (1) Where are the hotspots of infrastructure expansion located? and (2) What socio-economic
and environmental variables are associated with regions of rapid infrastructure expansion? The answers
to these questions will help us to understand the underlying causes shaping land conversion in the
built environment. Here, we show how contrasting socio-economic and environmental variables shape
land conversion across the continent, and therefore provide useful information for land planners,
international agencies, and the scientific community interested in socio-ecological land system science.

2. Methods

2.1. Infrastructure Expansion in South American between 2001 and 2011

Here, we define infrastructure in a general way without taking into account its location in
a rural or urban setting. We used the definition of built-up structure used in the global human
settlement layer (GHSL) as synonymous for infrastructure. The GHSL defines a built-up structure as
an “enclosed construction above ground intended or used for the shelter of humans, animals, things,
or for the production of economic goods or the delivery of services” [30,31]. In this study, roads are
not considered as a separate infrastructure type as roads with lights are in general associated with
other infrastructure types such as residential or industrial buildings mostly located near urban areas.
Therefore, we assumed that roads with lights in areas without any other human infrastructure in a
1 km2 area (the pixel resolution of NTL data) are limited.
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To identify the hotspots of infrastructure expansion in South America between 2001 and 2011,
an infrastructure change map (2001–2011) created using nighttime lights (NTL) data was used [9].
NTL data was derived from the Defense Meteorological Satellite Program Operation Linescan System
(DMSP-OLS) and intercalibrated by Zhang et al. [32]. NTL images have a spatial resolution of
approximately 1 × 1 km, and use the digital number (DN) value of each pixel in a range from
0 (no lights) to 63 (brightest lights) to represent the light intensity or brightness of anthropogenic lights
from human settlements, industrial lights, and other sites with persistent light [33].

NTL change was used as a proxy for infrastructure change in South America because: (1) lights
from electric sources, which can be measure as electrification rate, are high (70–99%) in South American
countries and varied little during the study period (6% on average); and (2) there is a significant
positive relationship between the change in the number of houses (one type of infrastructure) with
total NTL change between the study period at country level (Supplementary Figure S1). Therefore,
NTL data can capture most of the increase in infrastructure in South America [9].

NTL data were classified into three classes along an infrastructure density gradient: no-development
(ND), scattered (SC), and aggregated (AG) (Figure 1). The ND class corresponded to areas with no
or minimal infrastructure, such as forests, grassland, and plantations. The SC class corresponded
to areas of low infrastructure density, such as rural areas, towns, farms (e.g., agriculture fields with
infrastructures), and sprawling suburban areas. The AG class was defined as areas where infrastructure
dominated the landscape. This class was mainly represented by cities where infrastructure ranged
from intermediate to high density. Using the infrastructure change map (2001–2011) and the transition
matrix for the three infrastructure classes we extracted the information on the extent of the following
infrastructure expansion transitions: from no-development to scattered (ND-SC), from no-development
to aggregated (ND-AG), and from scattered to aggregated (SC-AG) (Figure 1). A detailed explanation
of the methodology used to create the map can be obtained in Andrade-Núñez; Aide [9].
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Figure 1. From nighttime light (NTL) images, the infrastructure change between 2001 and 2011 in
South America. The figure depicts the process of NTL images classification into the three infrastructure
density classes: no-development (ND), scattered (SC), and aggregated (AG). (a) NTL image for South
America for 2001. The insert (yellow square) is represented in panels b-e and is an area in the State of
Pará, Brazil. (b) NTL image for 2001. (c) NTL image for 2011. (d) Infrastructure change map between
2001 and 2011. (e) Google Earth high resolution image from 2011 showing two urban areas in the south
and mining and refinery infrastructure in the north that correspond with areas of increased NTL.
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2.2. Infrastructure Expansion Hotspots

An optimized hotspot analysis (ArcGIS 10.5) was used to identify areas of significant total
infrastructure expansion across South America. The hotspot analysis identified statistically significant
clusters of high and low values (i.e., hotspots and coldspots, respectively) and determined the
probability that spatial clustering was not due to random chance. Hotspot analysis is based on the
spatial statistical framework (Getis-Ord G* statistic, Z scores, and p-values) that compared in our case
local infrastructure expansion values with neighboring values. This analysis has been used to identify
hotspots of forest loss [34,35]. We define a hotspot of infrastructure expansion as a contiguous area
that shows statistically significant clustering in the spatial pattern of total infrastructure expansion.

Total infrastructure expansion was defined as the sum of the following transitions: ND-SC,
ND-AG, and SC-AG. We used a grid of 155,855 hexagons of 115.47 km2 each which covered all
South America. To obtain NTL data (specifically infrastructure transition classes) at the hexagon scale
we performed to following steps: (1) convert raster NTL to shapefile; (2) perform a union analysis
(geoprocessing tool) between the NTL and the hexagon grid; and 3) extract the total area of the three
infrastructure transition classes (ND-SC, ND-AG, SC-AG) for each hexagon. The hexagon area of
115.47 km2 was selected to match the scale of analysis of relevant studies of land use change [36,37] to
facilitate comparisons. Using a hexagonal grid to find neighbors is more straightforward than using
circles or squares, because the edge or length of contact is the same on each side, and the centroid of
each neighbor is equidistant. In addition, using equal area units ensures that the number of neighbors
is similar for all features. This is important because, during the process of defining hotspot areas,
each feature and its neighbors are assessed to spatially allocate clusters of high values. For this analysis,
a small hexagon size was selected so that small areas of infrastructure expansion were considered.
Infrastructure expansion within hexagons varied greatly from 0 to 115.47 km2, with a mean of 3.07 km2

and a standard deviation of 9.16 km2.
To avoid subjectivity in the selection of the scale of analysis (i.e., optimal fixed distance band) we

chose to use the average distance selected by the analysis. This decision was made after performing the
analysis using different scales. Regardless of the scale of the analysis, the hotspot areas were consistent,
however, the average distance selected by the analysis (30 neighbors defined as 30,976 m) was able to
capture small and large hotspot areas, depicting local trends across South America [35]. The coordinate
system for the spatial analysis was South America 1969 and the projected coordinate system was South
America Albers Equal Area Conic.

The analysis identified 20,573 hexagons with statistically significant high values based on an
FDR (False Discovery Rate) correction for multiple testing and spatial dependence. A hexagon had
a statistically significant value if it was surrounded by hexagons where infrastructure expansion
occurred; therefore, it was possible for a hexagon with no infrastructure expansion to be included in a
hotspot if its neighbors had significant expansion. The hexagons with statistically significant values
aggregated into 206 hotspots, ranging in size from 115 km2 to 770,345 km2 (Supplementary Figure S2).

2.3. Socio-Economic and Environmental Variables Associated with Hotspots of Infrastructure Expansion

2.3.1. Socio-Economic and Environmental Variables

To understand which socio-economic and environmental variables were associated with regions
of rapid infrastructure expansion (i.e., hotspots) eight socio-economic and environmental variables
were used: agriculture change (km2), pasture change (km2) and woody vegetation (natural tree cover
and shrubs) change (km2), mean elevation (m), mean road density (km/km2), mean purchasing power
parity change (PPPch) (US billion dollars), as well as urban and rural population change.
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These eight variables (Table 1) were selected to characterize infrastructure expansion hotspots
because they can have a direct or indirect relation with infrastructure and land use changes [38–42].
For example, agricultural and pasture lands are generally located near roads, and a positive relationship
exists between the presence of road infrastructure and deforestation for agriculture [38]. In addition,
investment in infrastructure has been identified as an important factor driving agriculture expansion [28].
The increase in urban population generally drives urban expansion, which can be related to an increase
in infrastructure investment in urban areas and even in rural areas in important agricultural zones [42].
On the other hand, the size of the rural population may limit agricultural expansion, but in many
areas, an increase in the rural population is related to an increase in workers to support large-scale
production systems [28].

These eight variables were calculated at the hexagon scale (~115 km2) and summed or averaged
at hotspot and South America scales. Land-use change data (i.e., agriculture, pasture, and woody
change) were from a set of annual land use/cover maps derived from MODIS (MODerate Resolution
Imaging Spectroradiometer) data at 250-m pixel resolution. These maps have been used in previous
studies [27,43–45], and a detailed description of the methodology used to create them can be found
in the work of Clark et al. [43] and Graesser et al. [27]. In this study, a subset of the data comprising
South America for the years 2001 and 2011 were used. Mean elevation data was calculated from the
SRTM 90 m Digital Elevation Data acquired from the CGIAR CSI (Consortium for Spatial Information).
We used road density data from the Global Roads Open Access Data Set, Version 1 (gROADSv1).
Road density (km/km2) was calculated at the hexagon level by extracting total road length in km
for each hexagon and calculating its density. We used purchasing power parity (PPP) data from the
Global Gridded Geographically Based Economic Data (G-Econ) v4. PPP is the exchange rate between
a country’s currency and U.S. dollars adjusted to reflect the actual cost in U.S. dollars of purchasing
a standardized market basket of goods in that country using the country’s currency [46]. Therefore,
the PPP measure of gross domestic product attempts to equalize purchasing power across countries so
a dollar of PPP should buy the same amount of goods in every country [39]. Specifically, the change
of PPP between 2000 and 2005 was used (Table 1). To obtain mean PPP change at the hexagon scale,
we first performed a change analysis (2000–2005), rescaled to the 0.05 degree, and extracted the mean
value of PPP change for each hexagon. In addition, the mean value for each hotspot based on hexagon
value was calculated. We used the urban and rural population dataset at municipality level (i.e., third
administrative unit) created by Andrade-Núñez; Aide [9]. Population data were obtained from the
last two censuses for each country from Redatam (http://www.redatam.org/redatam/en/index.html)
and national census webpages, and was extrapolated to 2001 and 2011 when necessary using the
arithmetic rate of increase formula. A detailed explanation of the methodology used to create the
population dataset at the municipality level can be obtained in Andrade-Núñez; Aide [9]. Urban and
rural population at municipality were rescaled to the hexagon level by first calculating population
density at municipality level and then calculating the population of each hexagon within a municipality
based on the hexagon area. All spatial analyses were performed using ArcGIS 10.5.

http://www.redatam.org/redatam/en/index.html
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Table 1. Socio-economic and environmental variables used to characterize infrastructure expansion
hotspot areas in South America. Relevant source and variable information are provided.

Variable Unit Source Spatial
Scale

Temporal
Scale Source

Agriculture change km2 MODIS 250-mts 2001–2011 Clark et al. [43],
Graesser et al. [27]

Pasture change km2 MODIS 250-mts 2001–2011 Clark et al. [43],
Graesser et al. [27]

Woody change km2 MODIS 250-mts 2001–2011 Clark et al. [43],
Graesser et al. [27]

Mean elevation mts 90-mts NA CGIAR CSI (Consortium
for Spatial Information)

Road density km/km2 km 1980 to 2010

Center for International
Earth Science Information

Network (CIESIN) and
Information Technology
Outreach Services (ITOS)

Purchasing power
parity change

Billions of US
dollars 1 degree 2000–2005 Nordhaus [46]

Urban population
change Number of people Municipality 2001–2011 Andrade-Núñez; Aide [9]

Rural population
change Number of people Municipality 2001–2011 Andrade-Núñez; Aide [9]

2.3.2. Hotspot and Cluster Analyses

To identify common socio-economic and environmental attributes among the hotspots of
infrastructure expansion, a nonmetric multidimensional scaling (NMDS) and cluster analyses,
using vegan [47] and Nbclust [48] packages respectively, were performed in RStudio 1.1.414
(https://rstudio.com/). For these two analyses, the four largest hotspots (with a total area larger
than 100,000 km2) were excluded because of their extreme sizes and the large socio-economic and
environmental values prevented the analysis from finding an optimal and representative ordination.
Each of the four hotspots were considered separately, and socio-economic and environmental
variables were used at the hexagon level to describe their socio-economic and environmental
characteristics. The main matrix for the NMDS analysis included the sum or average, respectively,
of the eight socio-economic and environmental variables for all the hexagons within each of the
202 hotspots. The variables included were agriculture, pasture, and woody net change, mean elevation,
mean road density, mean purchasing power parity (i.e., economic) change, as well as urban and rural
population change.

Specifically, the following steps were performed using different functions within the vegan and
NbClust packages: (1) the main matrix was standardized by range; (2) an NMDS was conducted using
the function metaMDS based on Euclidean distance and three dimensions. The maximum number of
random starts was set to 200; and (3) once we obtained the ordination with the lowest stress value
(an index of agreement between the distances in the graph configuration and the distances in the
original data matrix) [49], we evaluated the correlation and the significance of each socio-economic
variable with the ordination (i.e., NMDS solution) by fitting a second environmental matrix to the
three-dimensional ordination using the function envfit. The significance of fitted vectors was assessed
using permutation tests with 999 random permutations of the data [50]. The second matrix was
composed by the eight socio-economic and environmental variables for the 202 hotspots. Through these
steps, we were able to identify the variables that were correlated with the ordination. To better recognize
clusters (i.e., groups of hotspots that share similar characteristics) among the infrastructure expansion

https://rstudio.com/
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hotspots (4) an optimal cluster analysis was performed using the NbClust package, which identifies
the optimal number of clusters after testing 30 indices of clustering performance. The socio-economic
variables standardized by range were used as input data, the distance measure selected was Euclidean,
and the agglomeration method selected was ward.D2. This agglomeration method minimizes the
total within-cluster variance because at each step it finds the pair of clusters that leads to a minimum
increase in total within-cluster variance after merging.

3. Results

3.1. Infrastructure Expansion Hotspots

We identified 20,573 hexagons with statistically significant high values of infrastructure expansion,
which were aggregated into 206 areas of major infrastructure expansion (i.e., hotspots) (Figure S2).
The hotspots included four very large continuous areas in NE Brazil, SE Brazil, Ecuador and Argentina,
some large hotspots in Venezuela, Brazil, Colombia, Ecuador, Chile and Argentina, and several medium
to small hotspots dispersed across Brazil, Peru, Colombia, Bolivia, Paraguay, Uruguay, Argentina,
and Suriname. No hotspot was identified in Guyana and French Guiana (Supplementary Figure S2).
The size of hotspots varied greatly, ranging from 115 km2 to 771,141 km2, with a mode of 115 km2.

Hotspots covered a total area of 2,328,484 km2 (13%) of the South American continent in 2011 and
encompassed 337,310 km2 (70%) of the infrastructure expansion area between 2001 and 2011 (Table 2).
Approximately 10.4% (35,178 km2) of this expansion occurred in no-development areas (i.e., ND-SC
and ND-AG classes) in hexagons without previous infrastructure (i.e., no SC-SC and AG-AG transition
classes) (Supplementary Figure S3).

We found differences in the socio-economic and environmental characteristics between the hotspots
of infrastructure expansion and the overall pattern for South America (Table 2). For instance, although
the area of pasture increased in South America, it decreased within the infrastructure expansion
hotspots between 2001 and 2011 (Table 2). Woody vegetation demonstrated a net increase of 11,708 km2

within the hotspots, but a net decrease at the scale of South America (Table 2). On the other hand,
agriculture, economy (measured as mean purchasing power parity), and urban and rural population
showed similar changes at the hotspot and South America scales (Table 2).

Table 2. The values of nine socio-economic and environmental variables for the infrastructure expansion
hotspots and for all of South America.

Variable Hotspots South America

Total area (km2) 2,328,484 17,700,186
Infrastructure expansion area (km2) 337,310 479,914
Agriculture net change (km2) 63,798 259,587
Pasture net change (km2) −77,013 121,306
Woody net change (km2) 11,708 −353,130
Mean road density (km/km2) 0.086 0.046
Mean purchasing power parity
change (U.S. billion dollars) 1.04 0.25

Urban population net change 25,771,844 48,064,394
Rural population net change −576,836 −8178

3.2. A Comparison of Socio-Economic and Environmental Variables among Infrastructure Expansion Hotspots

The ordination of the 202 hotspots of infrastructure expansion based on socio-economic and
environmental attributes had three dimensions and a final stress value of 0.0754, indicating an adequate
projection of the dissimilarity matrix [47]. All variables were significantly correlated with the ordination
(p-value ≤ 0.003) (Table 3), however, mean elevation (r2 = 0.94) and mean road density (r2 = 0.93)
had the highest correlation coefficients, followed by urban population change (r2 = 0.53) and mean
purchasing power parity change (r2 = 0.46) (Table 3, Figure 2).
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Table 3. Non-metric multidimensional scaling ordination (NMDS) results showing the location of the
head arrow for each variable on a three-axis ordination (NMDS1, NMDS2, and NMDS3), correlation
coefficient (r2), and p-value for each variable used to explain the ordination of the 202 hotspots of
infrastructure expansion in South America. This analysis excluded the four largest hotspots.

Variable NMDS1 NMDS2 NMDS3 r2 Pr (>r)

Agriculture net change −0.05175 0.98103 0.18681 0.3489 0.001
Pasture net change −0.37733 −0.77478 0.50728 0.1042 0.003
Woody net change 0.1838 −0.86232 −0.47184 0.2047 0.001
Mean elevation 0.95727 0.07904 0.2782 0.9492 0.001
Mean road density 0.29263 0.0821 −0.95269 0.9366 0.001
Mean purchasing power
parity change 0.16574 −0.97019 −0.17682 0.4673 0.001

Urban population change 0.22689 −0.97329 0.03509 0.5268 0.001
Rural population change −0.02136 −0.99743 0.06842 0.3418 0.001

The 202 hotspots of infrastructure expansion were clustered into four groups based on the optimal
cluster analysis. We named the four clusters, based on the socio-economic and environmental variables
that grouped the hotspots, as follows: urban sprawl (n = 12), agriculture expansion (n = 125), highland
mining (n = 17), and lowland rural development (n = 48) (Figures 2 and 3).
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Figure 2. Non-metric multidimensional scaling ordination (NMDS) of the 202 infrastructure expansion
hotspots in a three-dimension solution based on socio-economic and environmental variables.
Colors represent hotspots with similar socio-economic and environmental variables obtained in
the cluster analysis. Lines indicate the direction and strength of the variables on the axes. (a) Clusters
separated mainly based on mean elevation (Elev) and mean road density (Road). (b) Urban population
change (UrbPch) and economic change (PPPch) separated clusters in the NMDS2 axis. The contributions
of the other variables are also depicted. See Table 3 for detailed information of the NMDS results.
Other abbreviations: Agrch = agriculture change, RurPch = rural population change, Wdch = woody
change, Pach = pasture change.

In addition, the four very large continuous hotspots of infrastructure expansion (Supplementary
Figure S2) were considered as individual clusters. We named these clusters as Argentina Humid
Pampas, Brazil megalopolis, Caatinga, and Ecuador Coastal and Mountain (Ecuador C&M) (Figure 3).
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Figure 3. Socio-economic and environmental trends associated with the 206 hotspots of
infrastructure expansion across South America. A total of eight clusters (sharing similar
socio-economic and environmental characteristics) of hotspots were identified based on Hotspot,
NMDS, and cluster analyses.

The eight clusters of infrastructure expansion (Figure 3) showed differences in total extent and
in the area of infrastructure expansion within them (Figure 4, Table 4). The Brazil megalopolis was
the largest cluster with a total area of 771,141 km2 and 118,935 km2 of infrastructure expansion while
the highland mining cluster had a total area of 66,899 km2, of which 7667 km2 showed an increase
in infrastructure between 2001 and 2011 (Figure 4 and Table 4). The Caatinga region had the largest
percent (17.5%) of infrastructure expansion area in relation to the cluster size, while highland mining
had the smallest percent (11.8%) (Figure 4).

Although the socio-economic and environmental variables varied among hotspots (or hexagons)
within a cluster (Figures 5 and 6), there was greater variation among the eight clusters than within
them (Figure 7). For instance, agriculture increased in the following clusters: Brazil megalopolis
(44,203 km2), agriculture expansion (19,295 km2), Argentina Humid Pampas (9043 km2), and in the
lowland rural development (1486 km2), while it decreased in the urban sprawl cluster (–8260 km2),
Ecuador C&M (–984 km2), and in the Caatinga clusters (–854 km2) (Figure 7 and Table 4). Pastureland
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expanded the most in the lowland rural development cluster (5097 km2), and in the Ecuador C&M
cluster (4543 km2), and decreased in the Brazil megalopolis (–59,124 km2), followed by the Caatinga
(–14,265 km2), the agriculture expansion (–9315 km2), and the Argentina Humid Pampas (–6629 km2)
clusters (Figure 7, Table 4). Woody vegetation increased in the Caatinga (15,978 km2), the Brazil
megalopolis (11,235 km2) and in the urban sprawl (10,021 km2) clusters, and decreased in the other
clusters (Figure 7 and Table 4). Agriculture expansion and lowland rural development were the
clusters where woody vegetation decreased the most with a net reduction of 12,841 km2 and 6290 km2,
respectively (Figure 7 and Table 4).Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 22 
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Economic activity, measured as purchasing power parity change, varied among the clusters.
The urban sprawl and the Brazil megalopolis clusters demonstrated the greatest economic growth,
while the highland mining cluster had the lowest economic increase between 2000 and 2005 (Table 4).
The lowland rural development cluster had low road density, while the Argentina Humid Pampas,
highland mining, and agriculture expansion clusters had the densest road network (Table 4). In general,
the hotspots of infrastructure expansion were located in low elevation zones (Figure 3, Table 4) as
most urban areas and productive lands are generally located in lowlands and coastal areas [51].
The Caatinga and lowland rural development clusters were located mainly in areas <1000 m, while the
highland mining cluster was composed of hotspots of infrastructure expansion located above 2500 m
(Table 4). Urban population increased in all clusters, but the largest increase occurred within the Brazil
megalopolis, urban sprawl, agriculture expansion, and the Caatinga clusters (Table 4). Regarding the
rural population, while some clusters demonstrated a net increase in rural population (e.g., Ecuador
C&M, urban sprawl, and lowland rural development), in others, there was a decline in the rural
population (e.g., Brazil megalopolis, Caatinga, agriculture expansion, highland mining, and in the
Argentina Humid Pampas) (Table 4).
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Table 4. Socio-economic and environmental characteristics of the eight infrastructure expansion clusters. Land-use and population change data were calculated
between 2001 and 2011, and economic change was calculated using purchasing power parity data from 2000 and 2005.

Cluster Name Area
(km2)

Infrastructure
Expansion

(km2)

Woody
Change
(km2)

Pasture
Change
(km2)

Agriculture
Change
(km2)

Urban
Population

Change

Rural
Population

Change

Mean Road
Density

(km/km2)

Mean
Elevation

(m)

Mean Economic
Change (U.S.

Billion Dollars)

Brazil megalopolis
region 771,141 118,935 11,235 −59,124 44,203 9,460,190 −1,249,899 0.08 529 1.55

Agriculture
expansion 510,954 62,319 −12,841 −9315 19,295 3,753,095 −168,643 0.10 480 0.33

Caatinga 355,226 62,158 15,978 −14,265 −854 2,855,132 −270,618 0.09 295 0.38

Urban sprawl 295,857 43,078 10,021 1693 −8260 6,328,442 481,716 0.09 870 2.57

Ecuador Coastal
and Mountain

region
114,510 17,446 −3733 4543 −984 1,552,182 594,422 0.07 1229 1.38

Lowland rural
development 108,936 13,326 −6290 5097 1486 429,866 58,937 0.03 333 0.30

Argentina Humid
Pampas region 104,962 12,381 −2644 −6629 9043 465,402 −1591 0.10 184 0.55

Highland mining 66,899 7667 −18 988 −131 927,533 −21,160 0.10 3491 0.21

Total 2,328,484 337,310 11,708 −77,013 63,798 25,771,844 −576,836 0.08 926 0.91
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Figure 5. Socio-economic and environmental characteristics of the four largest and continuous clusters
of infrastructure expansion identified across South America. Variables included are: (a) agriculture,
(b) pasture, and (c) woody change between 2001 and 2011; (d) mean purchasing power parity (PPP)
change between 2000 and 2005; (e) road density;(f) mean elevation, and (g) urban and (h) rural
population change between 2001 and 2011. Data is provided at the hexagon level (~115 km2),
and outliers are shown as black dots.
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Figure 6. Socio-economic and environmental characteristics of four clusters of infrastructure expansion
identified across South America using cluster analysis. Variables included are: (a) agriculture,
(b) pasture, and (c) woody change between 2001 and 2011; (d) mean purchasing power parity (PPP)
change between 2000 and 2005; (e) road density; (f) mean elevation, and (g) urban and (h) rural
population change between 2001 and 2011. Data are provided at the infrastructure expansion hotspot
level, and outliers are shown as black dots.
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expansion in South America. Land uses represented are: woody, agriculture, and pasture. The exact
value of each land-use transition for each cluster is shown in Table 4.
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4. Discussion

4.1. Infrastructure Expansion Hotspots

Hotspots of infrastructure expansion encompassed 70% (337,310 km2) of the expansion previously
reported in South America between 2001 and 2011 [9] (Table 2). The hotspots included large cities
such as Sao Paulo, Rio de Janeiro, Belo Horizonte, Santiago, Medellín, Quito, Santa Cruz, La Paz,
and Asunción. The hotspots also included many small and medium-sized urban areas. These cities
have been expanding at a faster rate than larger cities [52], and infrastructure expansion occurred
mainly in municipalities with an urban population of less than 50,000 [9]. Despite differences in the
rate and spatial configuration of urban expansion amongst urban areas in South America, there is a
general trend of increasing urban sprawl without planning around the fringes of most cities [53–55].
This general pattern of unplanned urban expansion has resulted in an increase in infrastructure
investments to meet the demand for public services [56].

Furthermore, 10.4% of the increase in infrastructure occurred in areas without previous
development (i.e., rural areas) (Supplementary Figure S2). We expect that the expansion of infrastructure
in rural areas is likely to continue due to the increasing demand for productive systems (e.g., mechanized
agriculture, livestock, and plantations), hydroelectric dams, oil extraction, mining, and housing.
All these activities require infrastructure and services (e.g., roads, buildings, sheds, and electricity).
For instance, several hotspots were mining sites located across the Amazonian lowlands in Colombia,
Suriname, Ecuador, Peru, and Brazil [57], while many others overlap with major areas of agriculture
expansion [27].

4.2. Infrastructure Expansion Hotspots: Socio-Economic and Environmental Net Changes at Regional Scale

Several infrastructure expansion hotspots overlap with areas of significant cropland expansion in
Argentina, Brazil, Paraguay, and Uruguay [27], which could explain the net increase of 63,800 km2

of agriculture between 2001 and 2011 within the hotspots (Table 2). The net reduction in pasture
(−77,013 km2) within hotspots could be a consequence of a regional intensification of agriculture,
which led to the replacement of pastures by cropland [27]. In addition, many infrastructure expansion
hotspots overlap with areas of major reforestation across South America [58], which could explain the
net increase of 11,708 km2 on woody vegetation within hotspots (Table 2). This increase in woody
vegetation could be explained by the differing socioeconomic conditions observed in different areas.
For instance, the Caatinga underwent reforestation due to an increase in rainfall coupled with a decline
in agriculture (e.g., corn, wheat, coffee, and rice), and rural population [44,59]. Meanwhile, in other
areas, such as within the Brazil megalopolis and the urban sprawl clusters (Figure 7), the increase
in woody vegetation could be related to peri-urban forest expansion associated with environmental
policies [58,60,61].

Fifty-three percent of the increase in urban population in South America occurred within the
infrastructure expansion hotspots (Table 2). As mentioned before, hotspots included large to small
urban areas, and many cities have experienced an increase in urban population coupled with urban
expansion [62,63]. For instance, areas within the Brazil megalopolis cluster experienced a dramatic
pattern of industrialization and urbanization during recent decades [64]. Furthermore, hotspots
included urban areas considered important centers of economic growth and major productive zones
(Figure 3), which can explain the differences in mean road density and economic growth in comparison
with South America (Table 2). The noticeable decline in rural population within the infrastructure
expansion hotspots (Table 2) can be a consequence of rural-urban and international migration due to
agricultural intensification and severe climatic conditions that occurred in some of these areas during
the study period [63,65,66].
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4.3. Socio-Economic and Environmental Characteristics of Infrastructure Expansion Hotspots

The expansion of the built environment is a complex process linked to a myriad of variables,
including social, economic, topographic, and environmental factors, and no single driving force or set
of driving forces explained the infrastructure expansion across South America. Instead, the spatial
pattern of infrastructure expansion coupled with different combinations of four main factors (mean
elevation, mean road density, urban population change, and mean purchasing power parity change)
clustered hotspots with similar or regional socio-economic and environmental conditions (Table 3,
Figures 2 and 3).

Clusters of Infrastructure Expansion

Argentina Humid Pampas: Infrastructure expansion in this cluster (12,381 km2) could be associated
with the expansion of agriculture (net increase of 9043 km2) coupled with urban population growth
(net increase of 465,402 people). Pastures, natural grasslands, and forests previously used for cattle
grazing have been converted into cropland (mainly soybean), and the number of feedlots has been
increasing [67]. The intensification of agriculture and livestock production is accompanied by an
increase in infrastructure needed to maintain supplies (e.g., fertilizer, machinery, food), and store
harvested crops. Furthermore, the region stands out as an important economic area and is located
within the most important agricultural zone in Argentina. The cities of Rosario and Córdoba are rated
as the best Argentinean business places due to the dense transportation network (e.g., Rosario–Córdoba
highway), natural resources availability, port infrastructures, and accessibility to market, among
others. Agro-industries and specialized ports are located along the Paraná River, and an increase in
infrastructure has been needed to process and transport the increasing export-oriented production.

Ecuador Coastal and Mountain: The large extent (17,446 km2) and continuous spatial pattern of
infrastructure expansion in this cluster could be related with the social and economic consequences of
an increasingly urban and rural population (1,552,182, and 594,422 respectively). In Ecuador, urban
areas showed high growth rates, and urban expansion occurred in major cities such as Quito and
Guayaquil, as well as in medium-sized cities (e.g., Manta, Cuenca, and Esmeraldas) [68]. In rural areas,
the diversification of the rural economy [69] and remittances contribute to the economic subsistence
of smallholders [70], preventing migration to urban centers. Since 2000, remittances from emigrants
has become the second largest source of national income, after oil exports, and this economic input
is used primarily for housing [71]. The large investment in housing and land has transformed once
rural areas into a peri-urban/agricultural landscape [72]. Furthermore, in suburban and rural areas,
land fractioning has increased the number of retirement and second homes of foreign citizens, especially
in touristic areas with an international reputation such as Cotacachi, Vilcabamba, and Cuenca cities [73].

Brazil megalopolis: This is the largest continuous cluster with 118,935 km2 of infrastructure
expansion (Figure 3). The Brazil megalopolis is a major agricultural (increase of 44,203 km2) and
economic (mean PPP change: 1.55 US Billion dollars) region and is highly urbanized (9,460,190 of
urban population increase). The expansion of large-scale farming (mainly soybean) far from
urban areas increased the demand for infrastructure (e.g., transportation and storage logistics) [37].
In addition, sugarcane production for biofuels has increased and replaced pastures [74]. Investments
for sugarcane/ethanol production are concentrated in the states of Sao Paulo and Mato Grosso do
Sul [75], and the number of ethanol plants has increased. The cluster holds major urban agglomerations,
of which many have expanded in a sprawling pattern [76]. Some of these cities include Londrina,
Florianopolis, Belo Horizonte, Curitiba, Porto Alegre, Sao Paulo, and Rio de Janeiro, which play
significant economic, technological, industrial, and touristic roles in South America.

Caatinga: Infrastructure increased 62,158 km2 between 2001 and 2011 within this cluster.
This expansion could be explained by a combination of environmental and socio-economic conditions.
The area experienced a decline in agriculture crops such as sugar cane, rice, corn, soybean, cotton,
wheat, and coffee. This decline was a result of the loss of economic competitiveness and periods of
severe drought [59]. Consequently, rural people, mostly smallholders, abandoned their lands (rural
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population decreased by 270,618 between 2001 and 2011 in this cluster) and migrated to urban areas
within the region (urban population increased by 2,855,132). This rural–urban migration led to the
development of strategic urban nodes which showed high rates of urban growth [77].

Urban sprawl: The increase in infrastructure (43,078 km2) in this cluster could be related to the
expansion of urban areas [78] tied to industrial development. This region holds relevant economic areas,
and within the study period, the mean PPP increased 2.57 US billion dollars. For instance, in Venezuela,
urban areas have been expanding and industrial services have relocated to the fringe of cities [79].
In addition, infrastructure expansion occurred in urban areas within or near gas and oil exploitation
zones (e.g., the areas related to the Orinoco Heavy Oil) [42], and in rural areas that have experienced
an increase in infrastructure (e.g., oil and gas fields, pipelines, refineries, and terminals), and roads [80].
In Colombia, industrialization led the growth and expansion of economically important urban areas,
such as Bogotá, Medellín, Cali, and Barranquilla [68]. In Brazil, the Brasilia–Goiania economic
center played a key role in the economy of the region and experienced infrastructure expansion in
a sprawling pattern [78,81,82]. Belem expanded rapidly with the advance of the agriculture frontier
and economic development projects [83]. Similar urban growth patterns presented in major cities
in Chile, and Paraguay (e.g., hotspots around Santiago and Asunción) (Figure 3) [82]. For instance,
the metropolitan area of Santiago expanded, in a sprawling pattern, into agricultural land and natural
vegetation on flat areas, and more recently into the Andean piedmont [55,82]. In general, land-use based
activities (e.g., agriculture) on nearby rural areas do not constitute the main economic sources of these
cities. Consequently, rural people did not have to migrate as a response to the lack of competitiveness
due to agriculture intensification, a common scenario in areas where agriculture plays a key economic
role [84]. Therefore, the rural population increase (481,716) between 2001 and 2011 in this cluster and
urban population growth (6,328,442) could be a consequence of urban-urban migration.

Agriculture expansion: This cluster is composed of a large number of hotspots (n = 125),
with a mean size of 4088 km2, located across South America (except in Guyana and French
Guyana where the analysis identified no hotspots) (Figure 3). The increase in infrastructure
(62,318.90 km2), could be related with the expansion of agriculture (19,295 km2) coupled with
urban growth (3,753,095 people). For instance, agriculture expansion and intensification occurred in
areas like San Luis, Tucumán/Santiago del Estero/Catamarca, Gualeguaychú, Mar del Plata (Argentina),
Santa Cruz (Bolivia), Dourados, Vitoria da Conquista and Campo Grande (Brazil), San Pedro (Paraguay),
and Canelones/San José (Uruguay). These areas experienced an increase in the built environment due
to urban expansion, coupled with an increase in infrastructure related to agro-business (e.g., ethanol
plants, silos, logistic facilities) which are generally located outside the fringe of urban areas [37].
An increase in feedlots was also observed in many hotspots. For example, water-dependent agriculture,
feedlots (specifically for chicken) and urban areas have been expanding in the coastal desert region in
Peru [85]. Furthermore, in several hotspots where agriculture did not expand considerably, mining
and oil extraction activities, livestock production, and forestry could be linked to the expansion
in infrastructure.

Highland mining: At higher elevations in the Andes, mining and the urbanization of large
and medium urban areas (urban population increased by 927,533) could explain the expansion of
infrastructure within this cluster (7667 km2). Large mining concessions in Peru, Bolivia, and Chile and
at the border between Chile and Argentina were identified within this cluster (Figure 3). Examples of
these concessions are the open pit mining project for gold, silver, copper in the border of Argentina
and Chile, the lithium mining in the Salar de Atacama in Chile, gold, and other mineral mining in
Bolivia, and copper mining in Southern Peru. In addition, urban population and economy have
increased in many urban areas located within this cluster. For example, the medium-size cities of
Cusco (approximately 348,935 inhabitants) and Cajamarca (approximately 162,326 inhabitants) in Peru
have experienced large population and economic growth in the last decades due to their international
importance for tourism and mining activities [86].
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Lowland rural development: This cluster comprised 48 hotspots with a mean size of 2270 km2, and
encompasses 13,325 km2 of infrastructure expansion in Venezuela, Colombia, Ecuador, Bolivia, Peru,
Chile, Argentina, and Brazil (Figure 3). Lowland rural development was characterized by low road
density (mean 0.03 km/km2) and low elevation (hotspots are located at mean elevation <1100 m) areas
(Figure 5e,f). Most hotspots included small-medium size urban areas, and several were solely located
in rural areas. In this cluster, urban population, agriculture and pastures increased (Figures 6 and 7,
Table 4) and infrastructure expansion could be related to the expansion and intensification of natural
resource extraction activities [42,77]. For instance, the establishment of agrobusiness promotes urban
population increase and urban expansion, as well as an increase in infrastructure (e.g., sheds, silos,
and ethanol and pulp plants) in suburban and rural areas [37]. In addition to agriculture and cattle
ranching, oil and babassu palms plantations [87,88], forestry [89] and cattle and chicken feedlots among
others were land uses located within this cluster. Furthermore, infrastructure related to hydroelectric
dams [90], mining [57], forestry [91], oil, and hydrocarbon extraction increased near and far from
several urban areas within this cluster [92].

5. Conclusions

South America is being heavily exploited, and humans are using infrastructure to access, extract,
and process natural resources, even in remote places. In addition, urban areas of all sizes are expanding
across South America. Our study found that infrastructure expansion showed different socio-economic
and environmental characteristics across the region, and that urban population growth and large
economic investment in mining, as well as the expansion and intensification of productive systems
(e.g., agriculture and meat production) play a dominant role. Under the current trends of globalization,
infrastructure investments [93], and land changes, we foresee a continued increase of infrastructure
expansion, reaching even remote areas and leading to deforestation and land degradation.

Our study also found a net increase of woody vegetation in some rural and peri-urban areas
as well as an increase of cropland at the expenses of pasturelands. These are examples of positives
land trends towards forest transition and land sustainability as forest is not being cleared to provide
land for agriculture, and because cropland is in general a more efficient way to produce food than
pasturelands [27]. Further research in this area is needed to identify which are the local and regional
drivers of these trends, and to identify if these positive land trends are also occurring outside of the
infrastructure hotspots. To fully address the direct and indirect impacts of land change in natural
ecosystems, and to provide better management alternatives for the conservation of high biodiversity
areas, and peri-urban areas with conservation value we highlight the need to: (1) focus the attention
on the interactions of rural and small-medium sized urban areas; (2) consider infrastructure in land
use change analysis beyond the general “built-up”/“urban” definition; and (3) delineate land planning
regarding the establishment of infrastructure in suburban and rural areas.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/1/116/s1,
Figure S1: The use of night-time light (NTL) data as a proxy for infrastructure in South America. a) Electrification
rate (%) (defined as the percentage of population with access to electricity) in 2000 and 2011 for 12 countries
in South America. b) Relationship between the difference in housing units and NTL data between 2001 and
2011 in South America countries: including Brazil (left), and excluding Brazil, due to its extreme value (right).
Figures were extracted from Andrade-Núñez, Aide [9]. Figure S2: Hotspot areas of infrastructure expansion
between 2001 and 2011 in South America. Optimized hotspot analysis results are showed as following: Gi_Bin
scores of: +3 (statistically significant at the 99 percent confidence level); + 2 (statistically significant at the 95
percent confidence level); + 1 (statistically significant at the 90 percent confidence level); and 0 (not statistically
significant). Infrastructure expansion clusters are depicted. Figure S3: New infrastructure areas within hotspots of
infrastructure expansion between 2001 and 2011 in South America. The red areas depict those hexagons (115
km2) that showed new infrastructure expansion (defined as the increase of infrastructure from no development to
scattered (ND-SC), and from no-development to aggregated (ND-AG)), and had no scattered to scattered (SC-SC)
or aggregated to aggregated (AG-AG) transition classes between 2001 and 2011.
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