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Abstract: This study examines whether the Visible Infrared Imaging Radiometer Suite (VIIRS)
nighttime lights can be used to predict population migration in small areas in European Union (EU)
countries. The analysis uses the most current data measured at the smallest administrative unit in 18
EU countries provided by the European Commission. The ordinary least squares regression model
shows that, compared to population size and gross domestic product (GDP), lights data are another
useful predictor. The predicting power of lights is similar to population but it is much stronger than
GDP per capita. For most countries, regression models with lights can explain 50–90% of variances in
small area migrations. The results also show that the annual VIIRS lights (2015–2016) are slightly
better predictors for migration population than averaged monthly VIIRS lights (2014–2017), and their
differences are more pronounced in high latitude countries. Further, analysis of quadratic models,
models with interaction effects and spatial lag, shows the significant effect of lights on migration in the
European region. The study concludes that VIIRS nighttime lights hold great potential for studying
human migration flow, and further open the door for more widespread application of remote sensing
information in studying dynamic demographic processes.

Keywords: VIIRS lights; human population migration; population size; demographic theories; GDP;
spatial lag model

1. Introduction

The applications of nighttime lights in social science studies have flourished since the early
2000s, when nighttime light-based imagery data become available online [1–4]. Yet, its application
in demographic studies are limited. Most applications of nighttime lights concentrate on the simple
estimation of total population or population density [5,6]. In comparison, the field of economics
uses lights data more receptively, probably due to the popular assumption that economic activities
at night need electric lights, which can be detected by sensor-equipped satellites from space [3,4,7,8].
As a result, many studies focus on testing lights as an indicator of static population accounts, or
as a predictor of economic output, or their related phenomena (such as urban extent or pollution).
Interestingly, the variables most closely correlated with the brightness of light—population size,
population density, and GDP—also inherently influence demographic processes. The goal of this
study is to test the possibility that nighttime lights can be used to predict population migration flows.
The study also examines how the lights–migration association fares against population–migration and
GDP–migration associations in the process of revisiting classic demographic approaches to population
migration. If the results of associations are similar, lights can be an effective migration predictor when
population or GDP are not available, as lights have advantages of being available for the entire globe,
updated timely, and versatile to aggregation by different geographic units.
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Demography is a discipline that focuses on studying the causes and effects of population
processes, which include migration, fertility, and mortality [9,10]. The most influential theoretical
framework on human migration was formed around the mid-1900s, and generalized the common
causes of migration, keying in on population size and economic conditions in place of origin and
destinations [9]. Still a dominate theoretical perspective, including population size, density, and
economic variables as underlying causes of migration flows is now normative in demographic research.
Researchers routinely use population size and gross domestic product (GDP) variables in models
to predict migration population size [11–13]. Data collection of these classic predictors rely heavily
on traditional demographic data-gathering methods, including censuses, surveys, or government
statistical reports [11,12]. As accurate population or GDP statistics in small areas are often unavailable
through traditional data-gathering methods [4,14,15], migrations occurring in small areas, such as
counties or towns, are difficult to predict. With fine resolution, imagery data gathered from remote
sensors offer a novel data source to study human migration. Utilizing current and available European
data in small areas—Nomenclature of Territorial Units for Statistics level III region (NUTS III)—this
study is the first attempt to test whether lights can be a useful predictor for migration. The European
Union statistical office provides detailed migration, population, and economic statistics in very small
areas for many countries. Yet, such information is not available in other parts of the world. This makes
the European Union (EU) data a good fit for testing the association between lights and migration and
comparing their relationship with population and economic indicators. Such analysis can potentially
help migration-related policy-making processes and allocating resources at the local level based on
migrants’ needs.

2. Materials and Methods

2.1. Theoretical Background

In the field of demography, the migration process includes internal migration, which refers to
movement within the same country, and international migration, which refers to movement across
countries [9,10]. Based on the characteristics of migrants, migration can also be classified into marriage
and settlement migration, regional and international labor migration, circulation migration, and
refugees and forced migration [9,10]. Most migration processes in human history are voluntary [9].

Early generalizations about migration were set forth by E.G. Ravenstein during the late 1800s.
Known as the “Laws of Migration” [16], they were mostly derived from empirical observations, such as
“most migrations are over a short distance”, “migrations often occurs in steps”, “long-range migrations
are usually to urban areas”, “most migrants are adults”, “large towns grow more by migration than
birth rate”, and “migration increases with economic development”. During the 1900s, theoretical
attempts to understand migration mechanics gained popularity. An early example of this was the
gravity model of migration. Based on Newton’s law of gravity, it proposed that the populations of
sending and receiving places could be viewed as analogous to mass in studies of physics. The larger
the population of two places, and the closer the two places are in physical distance, the more migration
we can expect to occur between the two places [17,18]. By the mid-twentieth century, push and
pull factors were integrated into the framework to explain migrations [19]. The push factors at the
place of origin and pull factors at the destination were widely defined, ranging from employment
opportunities, income-generating opportunities, and the general state of the economy, to climate, safety,
and educational opportunities. For example, we can consider a low employment rate as a push factor,
pushing residents out to other places to find jobs, while a mild climate in a destination can be viewed
as a pull factor, attracting more populations to reside there.

Since the twentieth century, economic models have gradually gained a dominant position
in migration theories. There are multiple renditions of economic explanations of migration,
including neoclassical economics [20], dual labor market theories [21], and household-based migration
decisions [22]. All of them are based on a common assumption; that is, the larger the expected economic
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gain at destinations compared to the place of origin, the more power it has in influencing migration
decisions and behaviors.

Based on these classic theories, population size/density and general economic measures of
destinations, often derived from GDP or GDP per capita, are used as common predictors of migration
in most empirical studies on migration. The general argument is that larger populations or a stronger
economy attract more migrants, both internal and international migrants. Depending on the topic of
individual research, other variables, such as government policy, immigration laws, culture, language,
geography, and physical environment, are hypothesized and tested. Again, these predictors are
typically treated as time- or region-specific manners.

The production of nighttime lights data in recent years has resulted in an uptick of empirical
studies focusing on application of lights in understanding human settlement and economic activities.
Among the applications of nighttime lights to demographic studies, most have examined the relationship
between nighttime lights and population counts or density [23–25]. These studies found that nighttime
lights have moderate to strong correlation with regional or country level populations. There are,
however, very limited studies that investigate lights and dynamic population processes, such as fertility,
mortality, or migration. Outliers to the general trend include studies using lights to verify European
population decline as a result of low fertility rates [26], studies predicting infant mortality level in
Chinese counties [27,28], and studies mapping refugee populations in Africa and the Middle East [29].

The most extensive application of nighttime lights appears in the field of economics.
Rigorous statistical models were developed over the last decade using lights to predict national
and regional GDP and income [2,30–32]. These studies found that the relationship between lights
and economic statistics vary by region and countries and that lights are a more reliable predictor for
cross sectional than time series analysis [33]. In addition, nighttime lights are also used to predict
development-related phenomena, such as urban extent and CO2 emission [34–36].

With the recent advent of nighttime lights data to study human populations and their economic
activities, most research confirms the close connection between lights and population and general
economic statistics. What must now be confirmed is whether or not lights can be further used to
understand and predict dynamic population processes, such as migration, other than static population
mass or the state of economic development. This study is the first to inquire whether nighttime light
captures local attributes that explain migration across small areas, and whether the association between
nighttime lights and migration are comparable to the association between population size or GDP
and migration. The following analysis will use updated VIIRS lights to predict migration population
in the EU and compare the results with the results of population and economic predictors.

2.2. Data and Methods

Geographic boundaries, demographic and economic statistics used in this analysis were
downloaded from the Eurostat database. Eurostat is the statistical office of the EU, providing
the most updated and reliable statistics that enable comparisons between countries and regions of
the EU. For statistical purposes, the EU classifies subregions within EU countries into three levels.
This analysis uses Nomenclature of Territorial Units for Statistics level III region (NUTS III), which
contains the smallest administrative regions of EU countries. For instance, there are around 100 NUTS
III regions in France and about 400 NUTS III regions in Germany. The samples are selected from
the most current classification (NUTS year 2016), which specifies 1348 regions at the NUTS III level.
These regions cover all EU member states as well as European Free Trade Association (EFTA) countries.
Switzerland is excluded because its regional economic data are not available. Countries with less than
15 NUTS III regions, such as Luxembourg, Denmark, and Slovenia are also excluded from the analysis,
as the small sample size can result in unreliable regression estimates. The total NUTS III regions used
in the following analysis without missing values are 1256 from 18 countries.

One way to measure migration population is migration flows. It considers the number of migrants
entering and leaving (inflow and outflow) a country/region over a specific time period, typically
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one year. Eurostat measures this concept with net migration, which is the difference between the
number of immigrants and the number of emigrants from a NUTS III region during a year. When the
number of emigrants exceeds the number of immigrants, net migration is negative. In some cases,
the numbers of immigrants and emigrants cannot be accurately estimated due to the lack of official
or government records. This situation could happen to EU countries, since EU citizens can travel
and move freely across EU country borders. To reduce estimation errors of net migration, Eurostat
reports the net migration plus statistical adjustments at the NUTS III level. The adjusted net migration
is based on the difference between population change and natural change starting 1 January for
two consecutive years. That is, it combines information from the difference between inward and
outward migration as well as other changes in the population which cannot be attributed to births,
deaths, immigration or emigration. Total population and GDP per capita data are also downloaded
from Eurostat. According to Eurostat, “total population” is measured with the “usually resident
population,” which represents the number of inhabitants of a given area on 1 January of the year
in question. GDP per capita is measured with purchasing power standard (PPS) per inhabitant at
current market prices. The area size of regions is measured in square kilometers. Total population,
GDP per capita, and area size are all measured at the NUTS III level.

The Earth Observations Group (EOG) at The National Oceanic and Atmospheric Administration
(NOAA)/National Centers for Environmental Information (NCEI) produces the annual and monthly
VIIRS composites [37]. This analysis uses VIIRS lights rather than stable lights, as VIIRS sensors
generate higher quality images [38–40]. Further, VIIRS lights have better predictability than stable
lights for both population and economic accounts [33]. The VIIRS monthly composites are available
from April 2012 to the present, while the annual composites are available for 2015 and 2016. The process
of generating annual VIIRS composites filters out temporal lights, such as those from aurora, fires, boats,
and other background noises [40]. The monthly composites do not filter out these noises. Thus, we can
expect that annual VIIRS composites have better results in predicting trends and patterns of population
processes than monthly VIIRS composites. A very recent study suggests that annual composites have a
stronger correlation with annual economic accounts than averaged monthly composites [30]. Since net
migration is calculated at an annual basis, the following analysis reports the results of the annual
composite first, and then compares this to the results of averaged monthly lights from 2014 to 2017.
All lights data are aggregated to the NUTS III level using administrative unit maps from 2016.

The analyses use ordinary least squares regression and spatial lag models. The dependent variable
is net migration population, and the independent variables include nighttime lights, total population,
and GDP per capita. All variables are measured at the NUTS III level. Areas size is controlled in all
regression models. In the models that include multiple years or multiple countries, year and country
dummy variables are also included in the analysis.

3. Results

Table 1 reports the pairwise Pearson’s correlation coefficients and the number of observations
used in the analysis. Net migration correlates with VIIRS lights variables, GDP per capita as well as
population size. All coefficients are significant at p = 0.05 level, and have a similar magnitude, ranging
from 0.11 to 0.300. Compared to annual VIIRS lights 2015 and 2016, averaged monthly VIIRS lights
show a weaker correlation with migration, GDP per capita, and population, but a stronger correlation
with area size. The two lights variables are not perfectly correlated (r = 0.78). This is probably due to
the different processes of generating annual and monthly VIIRS lights. Both annual and monthly lights
show a moderate correlation with population (r ranges from 0.45 to 0.74), but a fairly weak correlation
with GDP per capita (0.014 to 0.045).

Considering that the EU has over twenty countries, and these countries vary by government
policies, geographic location, and cultural and historical background, this study will first examine
the small area migration for 18 large EU countries individually, comparing the effect of lights with
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the effects of population and GDP. Then, this study will examine the model with interaction effects,
and the nonlinear and spatial lag models for the European region.

Table 1. Pairwise correlation coefficients and the number of observations.

Net Migration Lights (Annual) Lights (Averaged Monthly) GDP per Capita Population

Lights (annual) 0.202 *
2512

Lights (averaged monthly) 0.109 * 0.783 *
5051 2566

GDP per capita 0.189 * 0.045 * 0.014
3902 2566 3983

Population 0.300 * 0.739 * 0.454 * 0.053 *
5051 2566 5132 3983

Area size (km2)
−0.036 * 0.418 * 0.741 * −0.098 * 0.087 *

5051 2566 5132 3983 5132

Pearson correlation coefficients and the numbers of observations. * p < 0.05. GDP: gross domestic product.

Classic migration theory suggests that places having higher GDP per capita and more population
tend to attract more migrants. The ordinary least square (OLS) regression results suggest that such
reasoning may not be applicable to all countries (Table 2). The estimated beta coefficients allow us to
compare results across samples and models. For instance, the coefficient of GDP per capita indicates
standard deviation increases in net migration for one standard deviation increase in GDP per capita.
Table 2 shows that the economic pull factor, GDP per capita, significantly predicts migration in only
six EU countries: Croatia, Finland, Italy, Netherlands, Spain, and the UK. The magnitude of the
coefficient of GDP is relatively small, except for Croatia. In Finland, Netherlands, Spain, and UK, one
standard deviation increase in GDP per capita only increases net migration population by less than 0.20
standard deviation. Population size of NUTS III area has significant, positive effects in the following
countries: Austria, Finland, Germany, Netherlands, Spain, Sweden, and the UK. More importantly, the
magnitude of the population’s effect is much larger than the GDP. The coefficient of population for
several countries is close to 1.0, suggesting one standard deviation increase in population can lead to
about one standard deviation increase in net migration population.

Annual lights are expected to have a positive effect on net migration, similar to population
and GDP. Table 2 shows that this is the case for Belgium, Bulgaria, France, Greece, Hungary, Norway,
Poland, and Romania. For these countries where lights have significant effects, the magnitude of these
effects are also quite large and comparable to the effect of population size. The coefficient of lights is
slightly weak for France (0.29) and Norway (0.40), but substantially stronger for Hungary (5.55).

To summarize, the analysis by country suggests that neither GDP pull factor nor population
gravity effect can explain migration for all countries. For many EU countries, GDP per capita and
population have negative effects on net migration, which run opposite of theoretical predications.
VIIRS nighttime lights significantly predict net migration population for as many countries, but, just
like GDP and population variables, they cannot significantly predict migration population for some
countries tested. Overall, coefficients of lights and population are larger than GDP for most counties.

The above results indicate that lights, GDP per capita, and population can predict migration.
However, testing all three variables in one model makes the interpretation of coefficients difficult,
as lights correlate with population and GDP for certain countries. Regression estimates with
multicollinearity are still BLUE (best linear unbiased estimators), but the estimated coefficients
can have larger standard errors. A preliminary analysis shows that lights have small to moderate
correlations with GDP per capita in almost all countries, except for annual VIIRS lights in Bulgaria
and Romania. Yet, for 10 out of 18 countries tested, lights are highly correlated with population
(r > 0.80). These countries include Austria, Belgium, Bulgaria, Croatia, France, Germany, Hungary, Italy,
Portugal, Romania, and Spain. To address the collinearity issue in interpreting coefficient estimates,
this study will test VIIRS lights and population in separate models for all countries.
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Table 2. Regression results for annual VIIRS composites, GDP per capita, and population.

Lights GDP per Capita Population Year 2016 Area Size (km2) N adj. R2

Austria 0.084 −0.023 0.845 * −0.133 * −0.098 * 70 0.902
Belgium 0.908 * 0.100 −0.693 * −0.218 * 0.145 88 0.224
Bulgaria 0.739 + 0.198 −0.01 −0.06 −0.226 * 56 0.820
Croatia 0.384 0.775 * −0.523 −0.129 −0.198 + 42 0.535
Finland −0.073 0.170 * 0.908 * 0.059 −0.037 38 0.945
France 0.291 + −0.459 * −0.337 + 0.006 0.068 194 0.347

Germany 0.070 −0.014 0.793 * −0.268 * −0.075 * 802 0.802
Greece 0.899 * −0.346 * −1.123 * 0.205 * −0.129 + 104 0.644

Hungary 5.554 * −0.946 * −4.342 * −0.244 + 0.004 40 0.471
Italy 0.288 0.466 * 0.028 0.057 −0.112 + 220 0.390

Netherlands −0.107 + 0.194 * 0.849 * 0.145 * −0.217 * 80 0.812
Norway 0.395 + −0.102 0.372 −0.073 −0.476 * 34 0.511
Poland 0.630 * 0.080 −0.087 0.100 0.027 146 0.357

Portugal 1.129 0.256 −0.931 0.036 0.071 50 0.134
Romania 1.381 * −0.418 * −1.241 * 0.016 −0.126 84 0.482

Spain −1.452 * 0.176 * 2.129 * 0.102 * −0.153 * 118 0.807
Sweden 0.139 −0.076 0.900 * 0.135 * −0.177 * 42 0.968

UK −0.234 * 0.129 * 0.678 * −0.124 * 0.140 * 304 0.297

The dependent variable is net migration population size. The independent variables include lights, GDP per capita,
and population size. Area size and year dummy variables are control variables. The coefficients are standardized
beta coefficients. The sample is pooled from year 2015 and 2016. + indicates p < 0.10, * indicates p < 0.05.

Tables 3 and 4 report separate analysis for VIIRS lights and population. Table 3 uses VIIRS annual
lights and pooled data from 2015 and 2016. Table 4 uses VIIRS averaged monthly lights. There are more
observations for each country in averaged monthly lights analysis, as this lights product is available
from 2014 to 2017. GDP per capita for 2017 is only available for Belgium, Bulgaria, Hungary, and the
UK. Thus, only analysis of those four countries include data up to 2017. For the remaining countries,
the analysis uses data from 2014 to 2016. Year dummy variables are also included in the model to
control unobserved yearly differences, but are not reported in the tables.

Table 3. Regression results for VIIRS annual lights versus results for population.

Lights Model Population Model

N VIIRS Annual GDP per Capita adj. R2 Population GDP per Capita adj. R2

Austria 70 0.821 * −0.022 0.747 0.916 * −0.016 0.902
Belgium 88 0.365 * −0.038 0.167 0.099 0.146 0.107
Bulgaria 56 0.729 * 0.198 0.824 0.644 * 0.278 * 0.811
Croatia 42 −0.136 0.800 * 0.525 −0.197 0.839 * 0.537
Finland 38 0.515 * 0.435 * 0.610 0.860 * 0.163 * 0.944
France 194 0.027 −0.587 * 0.341 −0.015 −0.571 * 0.340

Germany 802 0.823 * −0.073 * 0.724 0.857 * −0.007 0.802
Greece 104 0.046 −0.534 * 0.269 −0.404 * −0.294 * 0.392

Hungary 40 0.785 * −0.346 0.265 0.597 * −0.145 0.194
Italy 220 0.316 * 0.466 * 0.393 0.293 * 0.478 * 0.386

Netherlands 80 0.117 0.686 * 0.566 0.791 * 0.185 * 0.807
Norway 34 0.589 * 0.083 0.501 0.791 * −0.274 0.467
Poland 146 0.548 * 0.080 0.360 0.324 * 0.278 * 0.301

Portugal 50 0.227 0.262 + 0.124 0.184 0.287 + 0.109
Romania 84 0.561 * −0.679 * 0.056 −0.673 * 0.361 * 0.155

Spain 118 0.639 * 0.177 * 0.579 0.731 * 0.152 * 0.704
Sweden 42 1.088 * −0.071 0.852 0.979 * −0.034 0.967

UK 304 0.295 * 0.112 * 0.118 0.496 * 0.127 * 0.278

The dependent variable is net migration population size. The independent variables include annual VIIRS lights
and GDP per capita in the left panel and population size and GDP per capita in the right panel. Area size and year
dummy variables are controlled in both models. The coefficients are standardized beta coefficients. The sample
is pooled from year 2015 and 2016. The bold number indicates a positive and significant coefficient of lights or
population. + indicates p < 0.10, * indicates p < 0.05.
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Table 4. Regression results for VIIRS averaged monthly lights versus results for population.

Lights Model Population Model

N VIIRS Monthly GDP per Capita adj. R2 Population GDP per Capita adj. R2

Austria 105 0.728 * 0.016 0.671 0.921 * −0.017 0.915
Belgium 176 0.400 * 0.002 0.213 0.133 0.179 + 0.145
Bulgaria 112 0.702 * 0.208 + 0.712 0.715 * 0.158 0.749
Croatia 63 −0.096 0.793 * 0.600 −0.142 0.825 * 0.605
Finland 57 0.182 0.642 * 0.431 0.861 * 0.168 * 0.950
France 194 0.023 −0.585 * 0.341 −0.015 −0.571 * 0.340

Germany 1203 0.842 * −0.045 * 0.708 0.869 * 0.007 0.816
Greece 156 −0.009 −0.516 * 0.287 −0.489 * −0.258 * 0.470

Hungary 80 0.756 * −0.202 0.383 0.624 * −0.061 0.330
Italy 330 0.400 * 0.382 * 0.386 0.349 * 0.406 * 0.366

Netherlands 80 0.105 0.697 * 0.564 0.791 * 0.185 * 0.807
Norway 51 0.394+ 0.328 * 0.414 0.721 * −0.047 0.589
Poland 219 0.519 * 0.113 0.410 0.308 * 0.311 * 0.319

Portugal 75 0.034 0.266 * 0.100 −0.029 0.299 * 0.099
Romania 126 0.673 * −0.777 * 0.130 −0.621 * 0.328 * 0.149

Spain 177 0.215 * 0.129 + 0.178 0.299 * 0.104 0.220
Sweden 63 0.272 0.717 * 0.659 0.942 * 0.016 0.969

UK 635 0.331 * 0.150 * 0.126 0.521 * 0.156 * 0.314

The dependent variable is net migration population size. The independent variables include VIIRS averaged
monthly lights and GDP per capita in the left panel and population size and GDP per capita in the right panel. Area
size and year dummy variables are controlled in both models. The coefficients are standardized beta coefficients.
The sample is pooled from year 2014 and 2017. The bold number indicates a positive and significant coefficient of
lights or population. + indicates p < 0.10, * indicates p < 0.05.

Compared to the results in population models (Table 3), the coefficients of VIIRS annual lights are
significant in predicting net migration for 13 countries. That is, one country more than population
models. The magnitude of the coefficient of lights is similar to that of population, which is above 0.5
for most countries. This means that for one standard deviation increase in lights, the net migration
increases by at least 0.5 standard deviation. The difference between lights and population models is
large for Belgium, the Netherlands and Romania. For Belgium, lights variable has more explanatory
power than population. For the Netherlands, population explains migration much better than lights.
For Romania, annual lights data have a positive, significant effect, but population has a negative effect.
The variance in net migration can be explained by the data, and the lights model and population model
show similar results. That is, for most countries, lights or population can explain 50–90% of variances
in migration.

The coefficient of averaged monthly VIIRS lights is similar to that of annual VIIRS lights for most
countries, and just slightly weaker for a few countries (Table 4). However, for Finland, Norway, and
Sweden, the coefficients of averaged monthly lights are noticeably smaller than that of annual data.
This suggests that filtering out background noises in processing annual lights results in different
statistical outcomes, particularly for countries at higher latitudes.

Compared to the effects of lights and population, GDP has less consistent results across all countries.
For about half of the countries tested, GDP per capita has a negative effect on migration. This is
different from the hypothesis of classic demographic theories. For countries where the coefficient of
GDP is significant, its magnitude is small, except for the countries of Croatia, Finland, Italy, and the
Netherlands, where the coefficient of GDP is consistent and moderate. Overall, GDP per capita is a
less important factor in predicting migration for most countries compared to population and lights.

It is worth noting here that there is no obvious geographic pattern indicating where lights are more
or less useful in explaining migration. Figure 1 illustrates the coefficients of lights by countries based
on annual lights analysis (Table 3). The category with the lowest value of coefficients (–0.14 to 0.23)
highlights countries for which lights cannot significantly predict migration populations. These
countries, including the Netherlands, France, Portugal, Croatia, and Greece, are scattered throughout
Europe. In Northern Europe, the lights variable has a relatively stronger effect on net migration. Yet, in
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Central, Western, and Southern Europe the effect of lights is mixed. In short, there is little evidence to
suggest a clear geographical pattern of usefulness of nighttime lights in predicting migration.
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The regression results of combined data from 18 countries with lights interaction terms also reveal
the varying effect of lights on migration across countries. Table 5 shows the effects of interaction
terms between lights and GDP, lights and population, and lights and country dummy variables.
The significant coefficients suggest that lights’ effect on migration varies by population and GDP
per capita. Hungary is used as a reference in the model to test lights’ varying effects across EU
countries. Results in Tables 2 and 3 suggest that the effect of lights is larger in Hungary than in most
other EU countries. Lights variable has a significant, positive effect on migration at the base level.
Most interaction terms between lights and country dummy variables are also significant, and with a
negative sign, thus confirming lights’ varying effects across countries and that the magnitude of its
effect is smaller in most countries than in Hungary.

Finally, this study uses a quadratic model to test the non-linear relationship between migration
and lights, and a spatial regression model to test the effect of lights under the assumption of
spatial autocorrelation. These results are compared to the results of the linear model. All three
models (Table 6) show the significant effects of lights on migration. The general model fit indicators
suggest that the quadratic and spatial lag models fit the data better than the linear model. Figure 2
illustrates the quadratic relationship between the net migration size and nighttime lights values
of NUTS III areas in EU countries. The spatial lag model assumes that migration population
observed at one location is correlated with migration population of the neighboring areas or attributes
of neighboring areas. The spatial lag model can capture the effect of surrounding areas, or the
migration spillover effect. In such models, the spatial parameter q is estimated for the migration
population of surrounding areas. The standardized spatial weight matrix, W, is the first order queen
continuity weight matrix. The parameters in the spatial lag model are estimated with the maximum
likelihood method.



Remote Sens. 2020, 12, 169 9 of 13

Table 5. Regression results of interaction terms between lights and other predictors.

Net Migration

Coef. of Xi var. Coef. of Interaction Term (Xi var. × Lights)

Lights 1.262 *
GDP per capita −0.001 −0.153 *

Population 0.016 0.483 *
Country dummy variable

Austria −0.004 0.245 *
Belgium 0.105 * −0.107 *
Bulgaria 0.014 0.006
Croatia 0.004 −0.058
Finland 0.048 −0.511 *
France 0.241 * −0.687 *

Germany 0.215 * 0.364 *
Greece 0.115 * −0.166 *

Italy 0.185 * −0.593 *
Netherlands 0.144 * −0.297 *

Norway 0.070 + −0.244 *
Poland −0.006 −0.104 +

Portugal 0.077 * −0.363 *
Romania 0.032 −0.115 *

Spain 0.159 * −0.794 *
Sweden 0.120 * −0.314 *

United Kingdom 0.254 * −0.106 +

N 2512
adj. R2 0.507

The dependent variable is net migration population size. The independent variables include annual VIIRS lights,
GDP per capita, population, and 17 dummy variables, and the interaction terms between lights and non-lights
variables. The coefficients are standardized beta coefficients. The sample is Nomenclature of Territorial Units for
Statistics level III region (NUTS III) areas in 18 countries in the years 2015 and 2016. The analysis also controls the
effects of year and area size. The reference country is Hungary. + indicates p < 0.10, * indicates p < 0.05.
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Moran’s I statistics indicate that a spatial model is preferred over the linear OLS regression.
Shown in Table 6, the estimated coefficients of lights, GDP per capita, and population are similar in
OLS as in the spatial lag model. Most importantly, lights have a positive, significant effect on migration
in both OLS and the spatial lag models. Furthermore, the spatial lag parameter q is also significant,
thus showing that spatial dependence of the data should be considered when we study migration in
small areas. Log likelihood and robust Lagrange multiplier (LM) test index indicate that the spatial lag
model is preferred over linear OLS as well.

The sample is NUTS III areas of 18 EU countries used in this study. The migration and nighttime
lights are the values of the year 2006.

Table 6. Regression coefficients and t and z statistics (in parentheses) of ordinary least squares (OLS)
regressions and spatial lag model.

Linear Model Quadratic Model Spatial Lag Model

Lights 0.012 * −0.0194 * 0.010 *
(3.568) (−3.840) (3.107)

Lights squared 0.000 *
(7.913)

GDP per capita 0.016 * 0.016 * 0.012 *
(3.400) (3.444) (2.600)

Population 0.002 * 0.003 * 0.002 *
(7.347) (8.996) (8.327)

Area size (km2) −0.037 * −0.008 −0.030 *
(−2.442) (−0.520) (−2.075)

Constant −539.113 * −231.704 −753.450 *
(−3.016) (−1.296) (−4.394)

Spatial lag parameter (p) 0.311 *
(9.175)

N 1256 1256 1256
adj. R2 0.172 0.208611 0.242

Log likelihood −11,834.9 −11,804.2 −11,792.4
Moran’s I (error) 13.992 *

Lagrange multiplier (LM; lag) 106.382 *
Robust LM (lag) 55.960 *

The dependent variable is net migration population size. The independent variables include annual lights, GDP per
capita, and population. Lights squared variable is added in the quadratic model. Spatial lag variable is added in
the spatial lag model. Area size is controlled in all three models. The sample is NUTS III areas in 18 EU countries
during the year 2016. + indicates p < 0.10, * indicates p < 0.05.

4. Discussion

There are several important findings in this analysis. First, in general, VIIRS nighttime lights are
useful in predicting migration population. Compared to population size and GDP, the two variables
hypothesized within classic demographic theories, lights-based variables have more predicting power
for very small regions in many European countries. This result not only presents in individual country
analysis, but also is confirmed with the combined country sample and the spatial regression model.
The effect of lights on migration is similar to that of population size, but much stronger than that
of GDP for many countries. Second, annual lights and averaged monthly lights show slightly
different results for most countries in Europe, but their differences are more pronounced in Northern
European countries. Countries in high latitude regions, such as Iceland and Finland, can be influenced
by aurora lights, therefore the different filtering processes in generating VIIRS lights products influence
their statistical results. Researchers need to be cautious in selecting lights series in empirical analyses,
especially when high latitude regions are among the sample tested. Third, in individual country
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analysis, neither GDP nor population had a consistent, positive effect on migration as theories suggested,
nor did lights. There exist large variations across countries in how these variables can be used to predict
migration flows. This is probably because at first, migration is such a dynamic phenomenon that no set
of common variables provide equal explanation on migration for all countries. Government policies,
history, location, natives’ sentiments, and other unique factors can also affect migration. Second,
there are wide cultural differences and different patterns in light use across countries. This is well
documented in light pollution literature and other light-based studies [41–43]. Thus, to understand
migrations in local areas, particularly regarding their relationship with lights and GDP, it is important
to examine data specific to a country. Fourth, there is no obvious geographic pattern indicating
where lights data are more or less useful. Across Europe, from Bulgaria to Germany, from Austria to
Sweden, lights variable is a strong predictor of migration flow for many countries, but also insignificant
for others. Finally, the significant effect of lights appears in linear, quadratic, and spatial lag models.
In comparison, quadratic model and spatial lag model fit the data better than the linear model.
This suggests more advanced models, including nonlinear and spatial effect, are needed in future
studies about migration. In addition, with the longer time series data, especially the long time series in
high quality lights gathered over time, future studies need to examine the growth patterns of migration,
which will help migration forecasts and population projections.

5. Conclusions

Nighttime lights data from remote sensing presents a novel approach to social science disciplines.
Studies repeatedly show that nighttime lights correlate with GDP and population, but their correlations
are not perfect, nor consistent across regions. This implies that nighttime lights capture or reflect other
attributes of locality other than static population size or general economic output. For many European
countries, nighttime lights are more useful in predicting migration flow than predictors proposed by
classic demographic theories. The possible explanation is that migration process is a such dynamic
process, influenced by culture, history, different industry sectors, local amenities, infrastructure, and
other factors. The classic demographic perspective emphasizes a general measure on population
size and GDP, but these variables may not capture other local attributes that help explain migration.
Nighttime lights, on the other hand, may reflect some of those attributes. Thus, although lights are not
a direct driving force of migration, they can be used to predict migration better than population size or
GDP for certain countries.

Migration not only determines population, gender structure, and racial and ethnicity makeup,
but also relates to other demographic processes, including fertility, mortality, and population growth.
Classic demographic theories are still relevant today, but new data based on nighttime lights present
additional opportunities to expand conventional explanations. With its advantage of being scaled to
small areas and updated monthly, nighttime lights has potential to identify and track the dynamic
demographic process better than other social or economic predictors in some regions. This will help
policy makers to allocate resource or adjust local policy according to migrants’ needs in a timely fashion.
This study demonstrates that, in addition to estimates of static population or economic statistics,
lights data can further our understanding about more dynamic, fluid population processes, such
as human migration, and it opens a door for further applications of remote sensing information in
demographic studies.
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