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Abstract: Land cover (LC) information plays an important role in different geoscience applications
such as land resources and ecological environment monitoring. Enhancing the automation degree
of LC classification and updating at a fine scale by remote sensing has become a key problem, as
the capability of remote sensing data acquisition is constantly being improved in terms of spatial
and temporal resolution. However, the present methods of generating LC information are relatively
inefficient, in terms of manually selecting training samples among multitemporal observations,
which is becoming the bottleneck of application-oriented LC mapping. Thus, the objectives of this
study are to speed up the efficiency of LC information acquisition and update. This study proposes
a rapid LC map updating approach at a geo-object scale for high-spatial-resolution (HSR) remote
sensing. The challenge is to develop methodologies for quickly sampling. Hence, the core step of
our proposed methodology is an automatic method of collecting samples from historical LC maps
through combining change detection and label transfer. A data set with Chinese Gaofen-2 (GF-2) HSR
satellite images is utilized to evaluate the effectiveness of our method for multitemporal updating
of LC maps. Prior labels in a historical LC map are certified to be effective in a LC updating task,
which contributes to improve the effectiveness of the LC map update by automatically generating
a number of training samples for supervised classification. The experimental outcomes demonstrate
that the proposed method enhances the automation degree of LC map updating and allows for
geo-object-based up-to-date LC mapping with high accuracy. The results indicate that the proposed
method boosts the ability of automatic update of LC map, and greatly reduces the complexity of visual
sample acquisition. Furthermore, the accuracy of LC type and the fineness of polygon boundaries
in the updated LC maps effectively reflect the characteristics of geo-object changes on the ground
surface, which makes the proposed method suitable for many applications requiring refined LC maps.

Keywords: land cover (LC) map update; high-spatial-resolution (HSR) remote sensing; geo-object;
change detection; label transfer; sample collection
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1. Introduction

Land use and land cover change (LUCC) has always been the main tool to investigate and update
the Earth surface resources and environment, and it is also the basis of geographical research and
applications in remote sensing [1]. Land use (LU) refers to the use, protection, and transformation of
land under the guidance of certain purpose and the production modes, in terms of the natural and
social attributes of the surface and the laws of resources and the environment. LU emphasizes the
role of artificial utilization. Land cover (LC) refers to the cover and time sequence changes formed by
the comprehensive influence of nature and man on the surface land, which embodies the complex of
natural formation and human intervention. Therefore, the classification systems of LU and LC are
relevant but different. This paper pays more attention to the land information of LC whose change has
been a hot topic in land resources research. This has important impacts on other environmental issues
such as biodiversity, water, carbon, and nutrient cycling, energy balance, and increased greenhouse
gas emissions in terrestrial ecosystems. Thus, accurate LC products are important and basic for
climate change, the hydrological cycle, and biodiversity conservation simulations [2–4]. The emergence
of remote sensing technology provides a vital role for the timely and accurate acquisition of LC
information [5]. Especially with the opening of the Google Earth Engine (GEE) platform in recent
years, geospatial data, including a variety of remote sensing data, strongly support the monitoring and
mapping of LC change [6,7].

In the past thirty years, artificial visual interpretation methods based on remote sensing images
have become the main way to obtain these products. However, this method cannot meet the current
requirements of timeliness, which is mainly manifested in the following: (1) the automatic degree
of interpretation of remote sensing images is low, and there is a lack of comprehensive and unified
visual interpretation standards; (2) there is a phenomenon of misclassification and omission, which
is limited by the professional background and level of operators. In the past ten years, with the
technological development of artificial intelligence (AI), machine learning (ML) algorithms in LC
classification have improved the automation of classification. These methods, such as neural network
(NN), support vector machine (SVM), and decision tree (DT), have been widely employed in LC remote
sensing classification by synthetically utilizing the essential features of remote sensing images, such as
spectrum, shape, geometric structure, and texture, as well as the relationship between classification
units [8]. The development of these classification methods has greatly satisfied the increasing amount
and speed of LC information extraction.

However, in the process of ML-based classification, the efficiency and accuracy of remote sensing
image interpretation are highly dependent on the LC training samples. The obtainment of training
samples is still based on artificial field visits or visual interpretation of remote sensing images. For
example, 379 sample areas in global soil data products CD-ROM contents (IGBP-DIS) were interpreted
by 39 remote sensing experts in two weeks [9]. Most of the recent works have been performed in
analogous ways. For instance, Szantoi et al. used a Global Positioning System (GPS) equipment to
conduct a field investigation of Everglades National Park in Florida, USA [10]. A total of 66,430 pixels
were obtained as training samples in their model. It can be seen that manual sample collection is
laborious and time consuming, and cannot meet the automation requirements of rapid applications.
Furthermore, the ability of remote sensing data acquisition is increasing, resulting in a large amount
of observation data [8]. Thus, for large-scale classification mapping tasks, it will take vast time and
manpower to label the samples, which restricts the interpretation speed of large-scale remote sensing
areas. This also reduces the timeliness of remote sensing technology in emergency monitoring [11,12].
Moreover, it is difficult to quickly collect sufficient and accurate samples in a manual way, which
will affect rapid LC mapping and change detection with multitemporal remote sensing images [13].
Therefore, the question of how to quickly produce high-quality samples has become an urgent problem
for large-scale remote sensing LC classification [14,15].

In addition, it should be noted that previously collected samples contain important prior knowledge
for a new task with a target image. However, these historical archived samples cannot be directly reused
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for current target images. The main reason for this is that the spectral features of the prior samples
generally do not follow the statistical probability distribution of the data in the target image (i.e., the
spectral-drift phenomenon). That is, due to the influence of atmospheric scattering and absorption,
phenology, and other factors, the spectrum of similar objects in different remote sensing images
(i.e., different domains) cannot obey an identical statistical probability distribution [16]. However,
traditional ML classification algorithms are based on the assumption that data samples are independent
and identically distributed (i.i.d.), which cannot be directly applied in domains with different statistical
probability distributions. The domain adaptability of existing algorithms is poor, and there is a lack
of an effective strategy to reuse historical samples [17]. Thus, if we do not re-label new training
samples to meet the training requirement of the current target image classification task, then we will
not be able to deploy the traditional classification algorithms. Meanwhile, as pointed out above,
the labeling of new samples will consume a lot of manpower and time. Consequently, the acquisition
of training samples has become an important factor restricting the development of remote sensing
image automatic interpretation. The efficient acquisition of training samples suitable for target images
is the prerequisite to promote the accuracy and efficiency of large-scale high-spatial-resolution (HSR)
remote image classification.

Although historical samples cannot be directly used to establish the model of the current target
image classification task for the above reasons, the prior information and knowledge contained therein
are still helpful to the classification of the current target image.

Transfer learning is a ML method that has been put forward in recent years to solve these domain
adaptation problems via reusing existing information and knowledge [18–21]. This theory provides
a novel way to solve the problem of sample selection in remote sensing classification via relaxing two
hypotheses in traditional ML: (1) training samples and testing samples satisfy the condition of i.i.d.;
(2) sufficient training samples should be utilized to learn a robust model. This model is based on the
given data sets and learning tasks in the source domain, and mining its knowledge to help complete
or perfect the learning tasks in the target domain. Recently, some scholars have carried out research
in this field for the target recognition of remote sensing images, LC classification, and other fields
through the reuse of samples [16,22–31]. For example, Bruzzone and Marconcini proposed an LC map
updating strategy based on a domain-adaptive SVM [16]. Liu et al. presented a classification method
based on case-based reasoning and TrAdaboost for the spatiotemporal information reuse of remote
sensing images [29].

Admittedly, these methods have achieved fairly good experimental results in local areas. However,
most of the current methods in these studies are designed by directly introducing a transfer learning
algorithm from the ML domain, and the geoscience characteristics are considered to be fewer. Such
characteristics mainly focus on directly reusing the historical sample resources by modifying the
probability distribution of sample features to adapt to the domain of the target images, without
considering the invalid samples incorrectly introduced by historical samples. In fact, for a fixed area,
historical LC maps have been published for many time periods [11,32]. However, the rich geoscience
knowledge in these historical maps has not been fully exploited and applied for LC classification of
later phases [4,17,33]. The lack of schemes to reuse previous LC maps results in a waste of historical
resources in existing algorithms. Therefore, the question of how to transfer the prior knowledge in
previous LC maps to the target models and thereby assist in the classification of current target images is
a new entry point to improve the efficiency and accuracy of classification with remote sensing images.

Mining invariant objects from existing LC maps and guiding the automatic extraction of samples
are of great significance to improve the automation and accuracy of LC classification [25]. This can be
considered as the problem of how to carry out automatic and rapid LC map updating in the same area
with the support of historical LC maps. In 2010, MRLC, a multiresolution land characterization agency
in the United States, used the old and new phases of medium-resolution remote sensing images to
detect the changing areas, and used the automatic sample selection method to realize the automatic
classification of the new phase of images. This efficiently completed the updating of the national surface
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coverage database (NLCD) and the thematic data of impervious surface [11]. The global high-resolution
remote sensing mapping carried out in China also draws on the above research ideas [12]. Through
these works, we can see that the transfer of prior knowledge from previous maps to the target model
is feasible in this LC map update framework. However, most of these studies commonly employed
pixel-based processing in their transfer learning-based LC research with medium-resolution remote
sensing data, such as Landsat satellite data. In order to avoid the salt-pepper noise of pixel-level
methods, it is necessary to update LC information based on geo-object units for HSR images. Therefore,
aiming to resolve the problem whereby pixel samples are susceptible to noise, we propose an efficient
LC map update approach at a geo-object scale for HSR remote sensing. An automatic method of
collecting training samples from historical LC maps through combining change detection and label
transfer is designed in this paper, as we aware that change detection can quickly inherit invariant
ground objects’ LC class information. A data set with Chinese Gaofen-2 (GF-2) HSR satellite data
is constructed to evaluate the performance of our method. The experiment results with these data
show that the algorithm can automatically obtain reliable geo-object-level samples for classification in
target images. The method demonstrates effectiveness for automatic LC map updating. The specific
objectives of this study were to: (1) use historical data to update LC information quickly via designing
the ideas and requirements of automatic sample collection; (2) apply HSR remote sensing images
based on the basic scale of geo-objects; (3) discuss the potential impacts of several details in our
proposed method.

2. Materials and Methods

2.1. Data Set

2.1.1. Remote Sensing Images

Two GF-2 remote sensing images are selected for this experiment. GF-2 is an optical satellite
with two cameras, a 1-m resolution panchromatic camera and a 4-m resolution multispectral camera
(see Table 1). Thus, its fusion data from panchromatic and multispectral bands have high spatial
resolution, with 0.8 m at sub-satellite points. Figure 1 shows the 4-3-2 band composition in the fusion
data (0.8-m spatial resolution and 12,906 × 8860 pixels). The images were acquired in the subarea of
Gaoxin District, Suzhou City, Jiangsu Province, China, on 23 July 2016 and 15 October 2018, respectively.
The image in the year 2016 (i.e., Figure 1b) is referred to as the reference image of the first phase (T1),
while the image in the year 2018 (i.e., Figure 1c) is referred to as the target image of the second phase
(T2). Then, image registration and relative radiation normalization procedures were performed on
these fusion data.

Table 1. Sensors’ technical specifications of the GF-2 satellite.

Band No. Spectral
Range (µm)

Spatial
Resolution (m)

Swath
Width (km)

Repetition
Cycle (days)

Panchromatic band 0 0.45–0.90 1
45 (two
cameras

combined)
5

Multispectral bands

1 0.45–0.52

4
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89

2.1.2. Ancillary Data

For the ancillary data in our approach, a historical (previous first phase, i.e., 2016) LC map
(see Figure 2), in accordance with Figure 1b, is first chosen to be updated. Cultivated field, tree/grass
field, impervious field, and water field are the main LC types in this area. In addition, the second
version of 30-m Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
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Elevation Model (ASTER GDEM V2) data is utilized for the orthorectification of GF-2 data and derived
terrain features for the follow-up supervised learning. Furthermore, points of interest (POI) data is
also collected for post-processing in our procedure.
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2.2. Methodology

In this paper, we propose a geo-object-based LC map update method, which focuses on
an automatic scheme of object-level training sample collection using previous LC maps. This is
called the geo-object-based automatic land cover update (Auto-LCU) method and includes the
following procedures as shown in Figure 3.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 21 
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First, we apply registration and relative radiometric normalization to two-temporal (T1 and T2)
remote sensing images (called the reference/old image I1 and the target/new image I2) of the same area.
This is essential for accurate change detection. In our process, geometric registration is guaranteed
by the data provider (i.e., product-ready), while a simple panoramic linear regression method is
conduct for relative radiation normalization. That is, the image I1 is linearly normalized according
to the reference image I2 via the band correction one by one. Then, a pixel-based change map is
generated via unsupervised change detection between these two images. Then, we aim to solve the
problems based on geo-objects, which are referred as basic units for updating LC maps. Therefore,
image segmentation using a convolutional neural network (CNN) method is carried out for extracting
geo-objects in the target image I2. The reason why we choose the image I2 to produce the segmentation
image-objects is that our task is to obtain a new LC map of T2 with the help of the LC data in the former
time. The generated polygons from the image I2 are referred as minimum mapping units for display.
Therefore, this is a processing task oriented by LC update, rather than a direct LC change detection
task. Image features of extracted geo-objects can then be calculated for the follow-up training.

Second, unchanged geo-objects are further determined using rules designed in Section 2.2.3.
The class labels in the LC map of T1 (i.e., the historical LC map) can then be transferred to all unchanged
geo-objects. Among these, some reliable geo-object samples for LC classification of the target image I2

are automatically selected with the assistance of the first-phase LC map. Then, a structured geo-object
table is formatted by integrating the pre-extracted image features and multisource ancillary geospatial
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data into each geo-object. This results in a standardized data set for ML. Thus, after training on
samples using ML algorithms, the relationships between the geo-objects’ conditional features and LC
class labels are established. An LC map can be updated for all changed and unreliable geo-objects by
utilizing the relationships from the supervised classification algorithm.

Finally, based on the results of the second step, we correct some LC labels using the information
of POI data, which are centrally distributed in the construction/building areas. The updated LC map of
T2 is then finally produced. Next, we introduce several key steps in detail.

2.2.1. Geo-Object Extraction

In our framework, we use the geo-objects as the smallest spatial unit for mapping, whose vector
polygons can be extracted from HSR remote sensing images using segmentation methods. These
internally homogeneous geographic objects are employed as the basic update units in this study.
Conventionally, multi-scale segmentation is used to generate homogeneous image objects and extract
the corresponding polygon vectors [34,35]. Recently, supervised segmentation methods using CNN
have been proven feasible for extracting the edge information of objects via self-learning features
from images [36]. Hence, in [37], we proposed a CNN-based method for extracting geo-objects from
GF-2 fusion images, which is designed as follows (see Figure 4). First, the polygons of roads and
rivers in a historical LC map are used to zone the target HSR image into several sub-regions for
subsequent processing. That is, the following edge extraction of these sub-region images from division
can be conducted in a parallelization mode. Second, we extract an edge probability map for each
sub-region using a modified VGG16 network [38]. In this network, five stages of convolution layers
are up-sampled and fused by an improved fusion loss layer based on the reference [37,39]. Third, we
employ a vectorization on the edge probability map. The boundary of each geo-object’s polygon is
then extracted from the sub-region images. All sub-region results are combined to structure a whole
geo-object map.
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2.2.2. Feature Extraction

After the shape extraction of the geo-object, features extraction is further carried out on each
geo-object. In our method, each geo-object corresponds to a data record, and the features designed
here are extracted from the relevant data for classification. Here, we focus on the image features of
spectrum, shape and texture. First, the mean, standard deviation, brightness and maximum differences
of spectral signals, normalized difference vegetation index (NDVI), and normalized difference water
index (NDWI) are employed as spectrum features in our extraction. These indexes are calculated
from the high-spatial-resolution image bands (one value per pixel), and the mean values on the
corresponding pixels covered by each geo-object are employed as features of the geo-object. Second,
the main direction, length–width ratio, pixel shape index (PSI) [40], and shape index [41] are calculated
as shape features of geo-objects. Third, the texture-derived built-up presence index (PanTex) [42,43]
and measures of the gray-level co-occurrence matrices (GLGM) [44] are extracted as the texture features
of geo-objects. In addition, terrain features, including mean topographic elevation, slope and aspect,
are calculated from digital elevation model (DEM) data. Similarly, these features extracted from
DEM-based raster data are one value per pixel. The average values of the pixels covered by each
geo-object are taken as its features. In Table 2, we list the four classes of extracted features, which will
be input into ML algorithms. Figure 5 presents a graph showing instances of the NDVI feature for the
selected LC types with the units of geo-objects. Other multisource ancillary geospatial data can be
further overlaid onto the geo-objects, and more features can be generated reflecting the Earth surface’s
LC characteristics and change.
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Table 2. List of geo-object features used in ML.

Spectrum Features Shape Features Texture Features Topographic Features

Mean of spectrum signals in band 1 Length–width ratio Homogeneity Elevation
Mean of spectrum signals in band 2 Length of geometry Contrast Slope
Mean of spectrum signals in band 3 Width of geometry Dissimilarity Aspect
Mean of spectrum signals in band 4 Compactness Second moment

Standard deviation of spectrum signals in band 1 Main direction of geometry Entropy
Standard deviation of spectrum signals in band 2 Number of points Correlation
Standard deviation of spectrum signals in band 3 Length of border
Standard deviation of spectrum signals in band 4 Shape index

Brightness of spectrum signals Number of corner points
Maximum differences of spectrum signals

Normalized difference vegetation index (NDVI)
Normalized difference water index (NDWI)

2.2.3. Automatic Scheme of Sample Collection using Change Detection and Label Transfer

Training samples are the source of knowledge to distinguish LC classes in supervised learning.
Hence, here, an automatic collection scheme of geo-object-level samples is designed on the target
images based on a historical LC map. The basic foundation is that the LC classes of an area do
not change much in a short period. That is, most of the LC classes of geo-objects are unchanged in
neighboring years. If we can collect a foregone LC map (it may be out of date and needs to be updated),
the positions, spatial distribution, and LC labels of the unchanged geo-objects in this map are reliable
prior knowledge for the follow-up update. Under this assumption, we design the sample collection
scheme using change detection and label transfer, which takes previously interpreted LC maps as
a reference. The locations, distribution, and LC labels of unchanged geo-objects are utilized in sample
labeling on target images.

The scheme is implemented according to Figure 6. First, pixel-based unsupervised change detection
is conducted on images I1 and I2. In our experiments, the intensity of change is measured by change
vector analysis (CVA), and the binarization is realized using an Otsu’s thresholding method [45–47].
We mark the locations of unchanged pixels on the image I2, and unchanged geo-objects are determined
by judging whether the percentage of unchanged pixels in the geo-object is greater than a given
threshold th1. These unchanged geo-objects, through checking the proportion of unchanged pixels
in their coverage areas, are referred as candidate objects for training samples. Second, prior labels
from the LC map of T1 are totally linked to the unchanged pixels of the image I2. Third, three rules
with thresholds th2 and th3 for filtering unchanged geo-objects are employed to select more reliable
geo-objects. That is, the percentage of pixels labeled in each geo-object and the percentage of pixels
labeled by the same label are required to be simultaneously higher than the given thresholds th2 and
th3. Geo-objects that do not satisfy these thresholding rules will be filtered out and cannot be selected
as training samples. Under these constraints, the pixels’ LC class labels with the highest proportion
in the reliable unchanged geo-objects are transferred as their labels. These threshold setting will be
discussed in Section 3.2.1. Finally, geo-object-level training samples with prior labels are rapidly
collected in a large-scale area for the LC classification of the target image. Thus, we obtain a structured
geo-object-based table with several labeled training samples. The unlabeled geo-objects in this table
will be updated via classification.

2.2.4. Geo-Object-Based Supervised Classification

To accurately update the changed LC information, we further conduct a geo-object-level supervised
learning by using the collected training samples with their 30-dimensional feature vectors (see Table 2).
Here, a tree-based random forests (RF) algorithm is employed for training in our framework due to its
robustness in generating prediction functions via high-dimension learning. Detailed descriptions of this
algorithm can be found in the literature [48]. After the training step, supervised geo-object-oriented LC
classification is conducted to predict LC labels for all unlabeled geo-objects (i.e., unsampled geo-objects,
including changed and unreliable unchanged geo-objects). The number of class-labels generated in
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our method is five general LC types in Figure 2 (i.e., impervious field, water field, cultivated field,
tree/grass field, and other field). The LC labels of geo-objects will be totally obtained, and an updated
LC map of T2 can be produced with final label correction using POI data in the study area. POI mainly
refers to some geographic entities closely related to people’s life, such as schools, banks, supermarkets,
etc. Such POIs describe the spatial and attribute information of these geographic entities, such as the
name, address, coordinates, and classes of the entities. Hence, POIs can greatly enhance the ability to
describe the location of entities and reflect urban activities. In this step, we contrast the POI classes on
the spatial location of the geo-objects with the LC types we identify. If there is not a match, we correct
our classification labels according to the information of POI classes. This is effective because most POI
data are located in building areas and can indicate the impervious surface of LC information.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 21 
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3. Results Analysis and Discussions

3.1. Experimental Results

In this paper, the target image (i.e., Figure 1c) is input to segment polygons of geo-objects using the
method in Figure 4. Figure 7 shows the GF-2 image and simple instances of geo-objects (i.e., the yellow
polygons). As shown in Figure 7, the GF-2 fusion data with 0.8-m spatial resolution can accurately
depict the surface information in detail, and the 1338 polygons of geo-objects are performed along the
edges of land parcels. These are referred to as the smallest units for the subsequent LC map update.

The change detection technology is then conducted by comparing Figure 1b,c. Based on the
auxiliary data of Figure 2, geo-object samples are rapidly collected according to Figure 6. In our
experiments, all the three proportion thresholds in Figure 6 are set as the same value th = 0.85 for the
convenience of computation, i.e., th1 = th2 = th3 = 0.85. That is, the rules are described in the following
aspects: (1) the percentage of unchanged pixels in the geo-objects is higher than 85%; (2) the percentage
of labeled pixels in the geo-objects is higher than 85%; and (3) the proportion of labeled pixels with
the same labels is higher than 85%. The distributions of the selected training geo-object samples for
the target image are shown in Figure 8 from the reliable unchanged geo-objects. Then, the unlabeled
geo-objects in Figure 8 can be further classified according to the training of these collected samples, and
an updated LC map can finally be obtained via post-correction of POI data (see Figure 9). The results
in Figure 9 obviously display that the LC labels of some changed geo-objects are intuitively updated.
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In order to quantitatively evaluate the accuracy of the updated results, we collected some
verification points via a field survey in November 2018. Five thousand verification points
(1000 points/class × 5 classes) were randomly picked out in this area. All the points in their geo-objects
were located, and the LC classes of these points (i.e., ground truth) were labeled via visual interpretation.
In order to improve the objectivity, the labelling was repeatedly sampled three times by different
interpreter. Then, we compared the label accuracy using a confusion matrix (Table 3) and a statistical
table (Table 4). The results show that the majority of LC classes can be accurately updated. Although
the accuracy of cultivated field is not high (89.4%), the accuracy of water field is relatively high (98.7%).
The accuracies of impervious field, tree/grass field, and other field are also all higher than 95% (95.6%,
95.0%, and 96.50%, respectively). The kappa coefficient (KC) and overall accuracy (OA) are 0.9324
and 95.22%, respectively, which illustrates that the proposed method can automatically update LC
information with a reliable performance. Therefore, it is a feasible procedure for updating LC maps in
an automatic manner.

Table 3. Confusion matrix of the LC update using the proposed geo-object-based Auto-LCU method.

LC Class
Number of Artificially Interpreted Points Producer

Accuracy (%)Impervious
Field Water Field Cultivated

Field
Tree/Grass

Field
Other
Field

Impervious
field 956 2 3 34 5 95.6

Water field 0 987 1 12 0 98.7

Cultivated
field 4 1 894 40 61 89.4

Tree/Grass
field 6 3 21 950 20 95.0

Other field 0 1 1 33 965 96.5

User
accuracy (%) 99.0 99.3 97.2 88.9 91.8 —

Overall
measures Overall accuracy (OA) (%): 95.22 Kappa coefficient (KC): 0.9324
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Table 4. Statistical table of itemized accuracy of each LC class for the proposed geo-object-based
Auto-LCU method.

LC Class Number of Artificially
Interpreted Points

Number of Correctly
Classified Points

Accuracy
(%)

Main
Misclassification

Impervious field 1000 956 95.6 Tree/Grass field

Water field 1000 987 98.7 Tree/Grass field

Cultivated field 1000 894 89.4 Tree/Grass field +
Other field

Tree/Grass field 1000 950 95.0 Cultivated field +
Other field

Other field 1000 965 96.5 Tree/Grass field

Total 5000 4761 95.22 —

3.2. Discussions

The quantity and quality of training samples in supervised LC classification have an important
influence on classification accuracy. The conventional visual method via man–machine interaction is
high-cost, time-consuming and thus cannot be adapted to meet the needs of the current time efficiency.
In order to solve the problem of lack of automation in the process of LC update, this paper proposes
an automatic collection method of classification samples based on historical LC data. On this basis,
we construct an automatic architecture for LC update. The experimental results in the previous
section show that it makes full use of the characteristics of high confidence of classification accuracy
in the spatially consistent area of historical LC data, and reduces the impact of invalid samples on
classification accuracy through some criterion about spatial heterogeneity in Figure 3. On this set of
methods, we will make further discussion on the following issues.

3.2.1. Impact of the Threshold Setup

The thresholds in Figure 6 are critical parameters in the proposed geo-object-based Auto-LCU
algorithm. The issue of how to set the parameters so that the algorithm has a better ability to express
the characteristics of the LC map update is a focus of the proposed procedure. In the experiments,
the three proportion thresholds are set as the same value th for the convenience of computation, i.e.,
th1 = th2 = th3 = th. Then, the influence of the threshold th on the reported results is further discussed
via analyzing the effect on the update accuracy with the change of its threshold value. We also choose
the presented data set as the experimental data for this study and set the threshold value in the range
from 0.0 to 1.0. As presented in Figure 10a, the accuracies of the updated results under these setups
are assessed using OA and KC. Figure 10b shows the change in geo-object sample size via automatic
collection with different threshold values.

Figure 10a suggests that the update accuracy increases with the increase in threshold value when it
is less than 0.85 and decreases when the threshold value is greater than 0.85. This process is divided into
the following stages. First, when the threshold is too small, the rules of sample collection in Figure 6
are weak. This makes the number of automatically selected samples large (see Figure 10b), and the
classification accuracy is relatively low as some impure samples are mixed in with the training set.
Then, with the increase in threshold value, the rules of sample collection in Figure 6 are gradually
strengthened, and the number of automatically selected samples decreases (see Figure 10b). This
means that the purity of selected samples is gradually improved, and the classification accuracy also
increases. When the threshold value reaches 0.85, the classification accuracy reaches the optimal value.
At this point, the sample size is 401, OA is 95.22%, and KC is 0.9324. However, when the threshold
value continues to increase, the classification accuracy drops sharply. There are two reasons for this
phenomenon. On the one hand, when the threshold value is greater than 0.85, the rules of sample
collection in Figure 6 are too strict and thus the selected samples are very few (e.g., the sample size is
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247 for th = 0.9, 122 for th = 0.95, and 2 for th = 1.0, see Figure 10b). A small sample size will seriously
affect the robustness of the classification. On the other hand, there is a large label-imbalance in the
sample set when the threshold value is greater than 0.85. It may even occur that almost no samples of
a certain class are selected (e.g., when th = 1.0, only two samples are collected), which leads to a sharp
decline in Kappa coefficients in the final classification results. In particular, there is a sharp decrease
in Figure 10a when threshold value changes from 0.85 to 1.0. The main reason for this phenomenon is
that, after the threshold value is greater than 0.85, there is an increasing imbalance in the automatically
collected samples. In our experiment, the sample numbers of other field, water field, and impervious
field are far less than those of cultivated field and tree/grass field. Thus, when the threshold value is
greater than 0.85, the sample size obtained by the classes of other field, water field, and impervious
field cannot support the construction of a robust classifier, resulting in unreliable classification results.
Therefore, the accuracy has a rapid decline. In summary, the above analysis indicates that too small
or too large threshold values are inappropriate. A good threshold setting in our approach should
achieve a balance between sample size/balance and sample purity. For the HSR remote sensing data
used in our experiments, the threshold is appropriately set between 0.7 and 0.85. This is beneficial for
improving the performance of the algorithm.
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3.2.2. Analysis of Sample Separability

In order to analyze the effectiveness of the automatic extraction steps of land cover data samples,
this paper makes a comparative analysis of the characteristics of the LC classification samples obtained
by the automatic extraction of samples. Here, we employ the Jeffries–Matusita (J-M) distance between
the multiple features of two LC classes of samples. The calculation formula of J-M distance is

JMi j =
√

2− e−Bi j (1)

where i and j represent different LC classes, respectively, and Bij is the mean of Bhattacharyya feature
distance for the samples of i and j LC classes [49,50]. The value of J-M distance is between 0–2, which
can be used to measure the separability between the features two kinds of LC. The larger the value, the
better the separability [51,52]. When the J-M distance is between 1.0 and 1.9, the samples of different
LC classes can be divided. However, it is easy to cause confusion. When the J-M distance is between
1.9~2.0, it has better separability [49,50].
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Table 5 quantitatively describes the feature separability of LC classification samples via the way of
automatic collection in the study area. As a whole, the feature separability of sample using our scheme is
great as the J-M distances of the samples obtained by the automatic collection method have high values
(all greater than 1.7). In terms of each LC class, the samples have better classification characteristics in
impervious field and water field. They have higher J-M distances by the combination of two classes. To
sum up, from the analysis results of the separability of sample features for LC classification, the sample
collection method designed in this paper has a high stability for the separability and performance in
sampling process.

Table 5. The mean values of Jeffries–Matusita (J-M) distance between the features of two LC classes of
automatically collected samples.

LC Classes Impervious
Field Water Field Cultivated

Field
Tree/Grass

Field Other Field

Impervious
field — 1.9243 1.9021 1.8946 1.7592

Water field 1.9243 — 1.9234 1.9357 1.8979
Cultivated field 1.9021 1.9234 — 1.5233 1.6348
Tree/Grass field 1.8946 1.9357 1.5233 — 1.7324

Other field 1.7592 1.8979 1.6348 1.7324 —
Mean Value 1.8701 1.9203 1.7459 1.7715 1.7561

3.2.3. Comparison with the Pixel-based Method and Manual-based Method

Besides the automatic scheme of sample collection, the classification scheme using units of
geo-object-based polygons is another innovation in the proposed method. Thus, a further experiment
is carried out to study the performance comparison with pixel units. Table 6 shows a comparison of
the accuracy achieved using the proposed geo-object-based method with the traditional pixel-based
method. In this experiment, all the interpreted pixels are used as validation points. In Table 6, they
all have good performances by our designed scheme of sample collection, and our geo-object-based
classification can achieve a relatively better performance. We can obtain about a 3% advance in OA over
the pixel-based method, which illustrates that the use of geo-object units with finer boundaries in the
Auto-LUP method outperforms the pixel units for HSR remote sensing data. In addition, although the
accuracy of the pixel-based method is acceptable, the conventional pixel-based units are not consistent
with the homogenized land geo-parcels. This is unsuitable for the precision application as the pixels
cannot be justifiably used as the reasonable mapping units as they cannot finely characterize the
objects in terms of geoscience. With the improvement of HSR of remote sensing image (especially
the appearance of sub-meter spatial resolution images), the application of land monitoring, precision
agriculture, and environmental management have produced a great demand for fine information
with a homogenized land geo-objects. Hence, pixel-based mapping is only suitable for the un-fine
applications. Even if it has an acceptable accuracy, the salt/pepper noise and regular grids with zigzag
boundaries in the pixel-based scheme also are weaknesses by comparing our geo-object-based LC
update [53]. Therefore, it is more appropriate to choose irregular spatial polygons of geo-objects as the
units as they are more consistent with the land parcels’ attributes in natural resources field.

Meanwhile, we visually interpret the bentch-mark LC types of each extracted geo-objects with
precise boundaries (i.e., the 1338 polygons in Figure 7). Then, in Table 7, we presented the comparison
of accuracy and interpretation time with manual based method. We have estimated that it taken about
1.8583 h to fully interpret the LC type information of these 1338 polygons. The average decoding time
of each geo-object is about 5 s, which is completed under continuous work without visual transfer. Of
course, we think that the accuracy of this manual-based method is 100%. In this paper, the accuracy
of LC update based on our presented automatic sampling and ML is 91.41% (taking all the 1338
geo-objects as statistical units and using the percentage of correctly marked geo-objects as statistical
accuracy) and the estimated proportions of area is 0.9346 (taking all the 366,436 km2 area for verification
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and using area estimation errors suggested by [54,55]), which is still high for an acceptable mapping
as large areas of cultivated land, tree/grass land, and impervious land have been correctly identified.
Moreover, this method is very efficient with a rapid automatic calculation. It took only 0.0014 h to
complete the whole update task. This is the important innovation advantage of our method.

Table 6. Comparison of the accuracy achieved using the proposed geo-object-based method with the
pixel-based method.

Classification Method OA (%) KC

Geo-object-based method 95.73 0.9421
Pixel-based method 92.71 0.9012

Table 7. Comparison of the accuracy and interpretation time achieved using the proposed automatic
method with the manual-based method.

Mapping Method Accuracy from Number
Statistics

Accuracy from Area
Statistics Interpretation Time

Our automatic method 1223/1338 = 0.9141 34.2455/36.6436 = 0.9346 0.0014 h
Manual-based method 1338/1338 = 1.0000 36.6436/ 36.6436 = 1.0000 1.8583 h

3.2.4. Misclassification and Future Works

Note that misclassification still exists in the experiments. One reason for this is that samples
are located in areas with easily confused classes, such as tree/grass and cultivated field. Another
reason is the error propagation in our proposed procedure. First, the error in change detection may
cause incorrect determination of unchanged units. The object-based post-processing approach and
quantifying regional differences in land cover change can be used for enhancing raw LC change
detection results [56,57]. Second, the filtered units with label transfer according to Figure 6 are not
exactly true. From this point of view, it is advisable to choose a larger threshold th to obtain more
reliable samples. However, as shown in Figure 10, this will reduce the number of training samples.
Therefore, we believe that this method can be adopted when the samples are adequate over a wide
range of areas. Third, the reliability of the method depends upon the accuracies of the historical
LC map. The errors in the previous LC map would be propagated to the labels of automatically
collected training samples. All these factors influence the accuracy of sample collection and thus lead
to misclassified results. Furthermore, as shown in Figure 8, the automatically collected geo-object
samples are mainly distributed in rural areas outside the urban zone. Few samples are distributed in
dense areas of building fields, which results in sample imbalance. This is the problem of projection
difference in urban buildings, which can be easily identified as changed areas in the process of change
detection due to building shadow, and thus leads to their rejections as candidate samples. This is
a difficult problem in change detection of HSR remote sensing images, which needs to be solved
further [58]. Although such multiple factors are ineluctable, we illustrate that they could be further
adjusted in future research. For instance, error detection based on feature similarity between samples
with the same label can be added into the scheme of Figure 6. In addition, to obtain more reliable
samples, we can further optimize the rules in Figure 6 by integrating domain knowledge. In order to
highlight the core process, at present, the sample purification adopts relatively simple criteria. In the
follow-up research, more accurate invalid sample detection method can be further used.

Meanwhile, we selected five general LC types (i.e., impervious field, water field, cultivated field,
tree/grass field, and other field) which can be shown visual feature differences on HSR remote sensing
images in our experimental area. We pay more attention to the computer-based automatic classification
in this paper and thus choose these five comprehensive types of LC, which are relatively simple but
publicly used with computer-based LC mapping process based on simple visual features. Even though
the cultivated field, tree/grass field, and other field are relatively more confused in the experiments.
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The analysis shows that the spectral features of different vegetation are somewhat similar. Next,
we can add more features for increasing the distinguishability of LC types. In addition, the current
method is applicable to the analysis of LC classes with certain comprehensiveness (e.g., the above five
general LC classes), while the analysis of subclasses needs to be further explored. That is to say, if the
classification system is more complex (e.g., the subclasses of above five general LC classes) in a larger
experimental area, the performance of our method is still to be further verified. Therefore, we add
another experiment in a larger study area. As shown in Figure 11a, this is the GF-2 data of the whole
Gaoxin District, Suzhou City (the data source and collection time are consistent with the previous
one). The LC map shown in Figure 11b is obtained by updating the historical LC map according to our
procedure. The overall visual perception of this result is good, and the areas with obvious changes
such as the newly increased impervious land have been better updated. However, the quantitative
accuracies are slightly less than those of the previous results in the subareas. This is due to the increase
of heterogeneity and complexity with the increase of spatial scope. A hierarchical classifier could seek
a better separability among these detailed LC subclasses in a large spatial area.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 21 
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Figure 11. Large area experiment and its mapping results: (a) experimental GF-2 remote sensing image
(15 October 2018) of Gaoxin District, Suzhou City; (b) the updated result of the 2018 LC map using the
proposed approach.

In summary, the proposed method is more applicable to the regions that have the historical LC
maps dominated by previous interpretation. It provides an efficient way to update LC information.
One of the primary limitations here is the requirement of having historical LC maps, which are not
available for all regions. In addition, the LC classification system in our update procedure should
be consistent with the legends of historical LC maps. In the future, we can consider increasing or
decreasing classes in the sample set to increase the flexibility of classification system adjustment. Other
current limitations of the use of this approach have been pointed out above, including error propagation
between process steps in our procedure. For this, in the future work, we will quantitatively evaluate
the error size of each step in stages, and carry out further more in-depth researches and innovation
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on the steps with large errors, such as the change detection, geo-object extraction, and object-based
image classification options. Although geo-object polygon detection using shape edges is actually
another innovation of this paper, its performance is not presented due to its comparison with other
methods will be published soon in our other work. Readers can pay more attention to our works,
which are helpful to further understand this step in the process of this article. In addition, for a more
efficient performance, the rules and over-sampling technique in the sample collection process need
to be further developed. Furthermore, we want to design a hierarchical scheme for the problems of
structuring a reasonable hierarchical classification. Also, some novel ML technologies, such as deep
learning [59], semi-supervised learning [60], active learning [61], and distance metric learning [62] can
been employed to improve classifier performance. Moreover, the results show that the LC class with
unobvious visual characteristics demonstrated relatively low classification accuracies, and the converse
is also true with this method. Thus, more auxiliary data are intended to be utilized for adding features
that can be used to better classify LC classes, which may improve the total classification accuracy. These
challenging issues for overcoming current primary limitations are worthy of further investigation in
our proposed Auto-LCU framework. Using this approach allows different improvement strategies
for each added step. What’s more important in this paper is to show the ability and feasibility of our
proposed method. Multiple LC change monitoring and mapping represents the core value of this
method’s potential application.

4. Conclusions

With the increasing ability of remote sensing data acquisition, the degree of automation has
become a key problem in large-scale remote sensing LC classification and update. However, the existing
manual collection method of training samples has become the bottleneck of automation in the field of
LC mapping. Meanwhile, the background database of historical LC maps contains a large amount
of domain knowledge, which can effectively reflect the actual meaning and spatial locations of LC
classification objects, and thus provide heuristic information for extracting spatial samples. Hence, in
order to design an automatic LC map update based on HSR images, this paper presents a geo-object
LC update approach by carrying out a geo-object-level sample collection method based on prior label
transfer from a historical LC map. The method’s performance is validated using an experiment based
on a GF-2 satellite data set, and several important issues are further discussed in detail.

In the proposed method, the key step is the automatic sample collection using change detection
and label transfer. Prior labels in a historical LC map are certified to be effective in an LC updating
task. This contributes to improving the effectiveness of the LC map update to automatically generate
a number of training samples for supervised classification. Therefore, we conclude that the prior
knowledge in historical LC maps is helpful to rapidly update LC maps based on a new target image. In
addition, the designed method increases the degree of automation of the LC map update and greatly
reduces the complexity of visual sample acquisition. Hence, our methodology can be used to produce
LC maps in applications that require rapid updating. This provides a technical reference for automatic
remote sensing image interpretation using prior knowledge.
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