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Abstract: Surface soil moisture (SSM), the average water content of surface soil (up to 5 cm depth),
plays a key role in the energy exchange within the ecosystem. We estimated SSM in areas with
vegetation cover (grassland) by combining microwave and optical satellite measurements in the central
Tibetan Plateau (TP) in 2015. We exploited TERRA moderate resolution imaging spectroradiometer
(MODIS) and Sentinel-1A synthetic aperture radar (SAR) observations to estimate SSM through a
simplified water-cloud model (sWCM). This model considers the impact of vegetation water content
(VWC) to SSM retrieval by integrating the vegetation index (VI), the normalized difference water index
(NDWI), or the normalized difference infrared index (NDII). Sentinel-1 SAR C-band backscattering
coefficients, incidence angle, and NDWI/NDII were assimilated in the sWCM to monitor SSM. The soil
moisture and temperature monitoring network on the central TP (CTP-SMTMN) measures SSM
within the study area, and ground measurements were applied to train and validate the model.
Via the proposed methods, we estimated the SSM in vegetated area with an R2 of 0.43 and a ubRMSE
of 0.06 m3/m3 when integrating the NDWI and with an R2 of 0.45 and a ubRMSE of 0.06 m3/m3 when
integrating the NDII.
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1. Introduction

Soil moisture (SM) plays a key role in evapotranspiration as well as the water dynamics and energy
transfer between land and the atmosphere [1–7]. SM has been assimilated in various land surface
models (LSM) and atmospheric models to predict weather, drought, flood, and climate trends [6,8,9].
Understanding the spatial and temporal distribution of SM can therefore help us better analyze the
regional and global water dynamics and improve the hydrology related models. Root zone SM (RZSM),
defined as the SM at a depth from 0.5 to 1 m, is crucial for crop production and serves as an indicator
for crop yield estimation [10,11]. However, RZSM cannot be monitored through satellite techniques
currently. In contrast, surface soil moisture (SSM) is defined as the SM up to a depth of 5 cm and
represents the interface between land and the atmosphere [5–8], various methods have been proposed
to estimate SSM using satellite observations. We applied satellite measurements in this study to
monitor SSM over the central of Tibetan Plateau (TP), since SSM plays a key role in regulating the
energy and water transfer between land and atmosphere and has a significant impact on the regional
climate of TP.

Remote Sens. 2020, 12, 183; doi:10.3390/rs12010183 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-9373-602X
https://orcid.org/0000-0002-6978-2018
https://orcid.org/0000-0002-8186-6839
http://dx.doi.org/10.3390/rs12010183
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/1/183?type=check_update&version=2


Remote Sens. 2020, 12, 183 2 of 18

The cosmic-ray soil moisture observing system (COSMOS) allows to directly measure SM at
various depths [12]. However, such point-based measurements do not fully reflect the overall situation,
since SM shows a high spatial and temporal heterogeneity [6,9,12]. To overcome this limitation, remote
sensing techniques have been used to provide spatial and temporal continuous land surface observation
and are widely applied in SSM monitoring [6,9]. Currently, optical, thermal, and microwave methods
are available [6,9].

When SM increases, the reflectance decreases inversely for solar band with wavelength from 0.4 to
2.5 µm. That is to say, surface soil with high water content is darker. This is the physical principle for
estimating SSM with optical methods [6,9]. Various experiments and approaches have been conducted
to describe the relationship between surface soil reflectance and its water content [13–15]. The thermal
methods depend on the change of soil surface temperature with different SSM. Thermal inertia method
only considers thermal bands, temperature/ vegetation index method analyzes solar reflective bands
and thermal emissive bands together [9,16,17]. However, both optical and thermal bands are affected
by weather conditions, cannot be used when there is a cloud cover. For instance, the 16-day revisit
cycle of Landsat 8 makes it difficult to collect enough valuable observations within a specific study
period. And, the optical/ thermal bands have limited penetration, they are therefore only feasible
within bare soil under clear sky. However, monitoring SSM in a vegetated area is of great importance,
since SSM is an important parameter for agricultural drought monitoring and has been widely applied
in many LSM over vegetated areas.

In contrast, microwave techniques can be used under any weather condition using the electromagnetic
radiation in the microwave region (0.5–100 cm) [6,9,18]. Both passive and active microwave sensors
have been widely applied to monitor SSM [6,9,18]. Passive microwave sensors collect signals emitted
by soil, while active microwave sensors send a pulse and analyze the soil reflected signal. Previous
research works have shown that passive microwave sensors can be used to monitor global SSM
through measuring the intensity of microwave emissivity from the soil [19–22]. Currently used
passive microwave sensors for SSM measurements include the scanning multi-channel microwave
radiometer (SMMR), the special sensor microwave imager (SSM/I), the advanced microwave scanning
radiometer for EOS (AMSR-E), soil moisture and ocean salinity (SMOS), and soil moisture active
passive (SMAP) [9,19–22]. Although showing a good temporal resolution (1–2 day), the main limitation
of passive microwave methods is the coarse spatial resolution (10–35 km), making them unsuitable for
applications at the fine scale.

Great progress has been made in mapping regional soil moisture with active microwave sensors,
a microwave pulse that is sensitive to SM is sent and received [6,11]. SSM is estimated based on the
difference between sent and received signals [23]. The active microwave remote sensing approaches
such as synthetic aperture radar (SAR) with fine spatial resolutions (5–30 m), enable SSM monitoring
at finer spatial scales. The SAR monitors SSM with three microwave bands: X-band (~3 cm), C-band
(~6 cm), and L-band (~24 cm). Of these, the L-band has the strongest penetration, while X-band has the
weakest penetration [4,24,25]. Microwave signals with longer wavelengths as L-band can penetrate
the canopy and are reflected by the soil surface [4]. Currently, there are some SAR systems which are
suitable for SM retrieval: the European remote-sensing satellite (ERS)-1/2/3 C-band, RADARSAR-1/2
C-band, advanced land observation satellite (ALOS), the phased array type L-band synthetic aperture
radar (PALSAR), TerraSAT X-band (TSX), Sentinel-1/2/3 C-band (5.404 GHz) [26–30]. In this study,
we used the Sentinel-1A SAR with moderate penetration of the C-band signal for the grassland area.

In the past few decades, SAR has been widely used to monitor SSM [28,31–49]. There is a
strong relationship between the C-band backscattering coefficient and SSM, making the C-band
backscattering coefficient and effective tool to estimate SSM. However, the relationship between
backscattering coefficients and SSM varies significantly under different surface types and vegetation
features [31–36,38,39,43–49]. Artificial neural network (ANN) and support vector machine (SVM) have
been combined with regression algorithms to retrieve vegetated SSM [31–35]. Because of the concerns
about vegetation characteristics, some vegetation backscattering models have been established to
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describe the contribution of vegetation, with the most widely used on being the water-cloud model
(WCM). Based on the radiative transfer theory, the contribution of vegetation was modeled by
considering both the volume scattering produced by vegetation and the attenuation effect of soil under
vegetation on the backscattering. The total backscattering of the of the vegetated surface was derived
from the backscattering of bare surface using the WCM [31–36,38,39,43–49]. The model simulated
the backscattering of vegetated surfaces as a function of soil backscattering and the vegetation water
content (VWC) [31–49].

Wang et al. integrated the advanced integral equation model (AIEM) with WCM to estimate
SSM over vegetated area. However, it is still under debate which vegetation parameter is the most
suitable one to estimate vegetation canopy backscattering in the WCM model. One of the major factors
that affect the canopy backscattering is the VWC [40–42,44,45,48]. Several vegetation indices (VI)
have been successfully applied to retrieve canopy VWC for grassland and agricultural areas [49–54].
The normalized difference vegetation index (NDVI) has been widely applied to monitor vegetation
conditions and has been assimilated into the WCM to take the effects of the canopy on soil surface
backscattering into consideration [48,49]. However, the NDVI is not the most suitable VI to be
assimilated in the WCM, mainly because it is calculated based on the reflectance of the red band and
the near-infrared band. The variation of the canopy’s influence on surface backscattering is mainly
based on the VWC, while the red band in not that sensitive to VWC compared with shortwave infrared
bands, as shown in Figure 1 [55]. Previous studies pointed out that two VIs, the normalized difference
water index (NDWI), and the normalized difference infrared index (NDII) can be applied to monitor
canopy VWC for various vegetation types with good results through linear or nonlinear models
since they target the strong water absorption features of shortwave-infrared bands [53–58]. In this
study, we applied both NDWI and NDII in the WCM to estimate SSM by considering the influence of
vegetation canopy backscattering. Bao et al. tried to use Landsat retrieved VI to estimate VWC [49].
However, with Landsat 8 has the 16-day revisit cycle, and Sentinel-1A with the 12-day revisit cycle,
there is always a 2–6 day time interval between Landsat 8 and Sentinel overpassing day, which makes
it a big issue to fill the time gap. Landsat 8 is very sensitive to cloud cover, only limited valid satellite
observations can be collected. In this study, we applied the daily MODIS reflectance products instead
of combining the Sentinel-1 products on the same observing.

Figure 1. Spectral reflectance simulated for MODIS bands, where EWT represents equivalent water
thickness (EWT, cm).

The Tibetan Plateau, the highest plateau on earth, contains a large amount of permafrost soil,
widely distributed. The energy and water dynamics on this plateau is very sensitive to the climate
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change on the Asian continent and, subsequently, on a global scale. TP makes the monsoon on its
southwestern side weaken in the summer, while the drought in central Asia consequently intensifies.
The heat rising by TP in summer strengthens atmospheric circulation, and the SM condition in TP acts
as an amplifier for the drought in central Asia and the monsoon in East Asia. Against the background of
a changing climate, the thawing of the permafrost layer with grassland as the main vegetation type will
considerably impact the water dynamics on the TP. Based on previous studies, the soil energy–water
distribution and freezing–thawing processes vary spatially, and estimating SM at high spatial and
temporal resolution is of great importance to develop protection measures for the plateau [59,60].
In this context, we estimated volumetric SSM (m3/m3) with vegetation cover (grassland) in the central
of the TP, based on a simplified WCM (sWCM) through the soil backscattering coefficient and signal
incident angle, which can be extracted from Sentinel-1 products. Since in the winter (from December
to February) the soil was completely frozen, the study was conducted in spring, summer, and winter
(from March to November). To eliminate the impact of backscattering coefficients from vegetation
canopy, we integrate VI (NDII and NDWI) in the WCM. Both NDII and NDWI can be derived through
MODIS shortwave infrared and near infrared bands. To better understand soil properties on the TP,
including ST and SM at various depths, an in situ measurement network has been built in Naqu,
the center of the TP, providing temporal continuous ST and SM data at four depths. We validated the
retrieval method with ground measurements to demonstrate the feasibility and performance.

2. Study Area

TP is the highest plateau in the world with an average elevation of over 4000 m above sea level.
Our study area is located within the center of the TP (31–32 ◦N,91.5–92.5 ◦E), covering about 10,000 km2.
As shown in Figure 2a,b, the study area is relatively flat, with several hills distributed. As shown
in Figure 2c, over 95% of the study area is grassland, mainly alpine grasslands, but also prairie and
meadows [60,61]. The growing season is short, allowing a grass height of only several centimeters [7,60],
facilitating the application of remote sensing techniques in this area. The soil types are mainly silt
and sand, with a clay content of less than 10%, resulting in a high drainage effect. The climate is
semiarid, with an annual precipitation of about 500 mm, mostly concentrated in summer. According to
long-term records, around 75% of the precipitation occurs from June to August [7,60,61]. SM shows
a strong seasonal behavior, especially in terms of SSM. The annual freeze/thaw cycle considerably
influences the soil water dynamics in the area, impacting SSM measurements. The annual freeze and
thaw cycle of the study area starts to freeze in October, and it starts to thaw in January. From December
to February, the soil surface is fully frozen. Therefore, the ground measurements were conducted from
March and November.
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Figure 2. (a) Relative location of the study area on the Tibetan Plateau (TP) (indicated by the red square.
(b) Locations of all sampling stations within a 1◦ × 1◦ area on the central TP, with blue and yellow
squares representing the 0.3◦ × 0.3◦ and 0.1◦ × 0.1◦ networks, respectively. (c) Distribution of the
sampling stations with the land cover type [61].

3. Data and Methodology

3.1. Data

We applied TERRA MODIS reflectance to generate two vegetation indices (VI) since one of the
shortwave infrared bands of MODIS, band 6, has broken down and cannot be applied to calculate
NDII. The Sentinel-1A SAR incident angle and backscattering coefficients of the land surface were
combined with each VI separately to build the sWCM. Two thirds of the in situ SSM measurements
collected from the CTP-SMTMN were used to train the sWCM proposed in this study, while one third
of the measurements was applied for model validation.

3.1.1. In Situ Measurements

Based on the significance of the TP for the global climate, several in situ measurement networks
have been established there in the last few decades to investigate the soil–vegetation–atmosphere
cycle and its relationship with the local climate [61]. In this study, we used in situ data collected
from a multiscale soil moisture and temperature monitoring network in the central Tibetan Plateau
(CTP-SMTMN) established by the Data Assimilation and Modeling Center for Tibetan Multi-Spheres
(DAM) to evaluate SSM. There are 56 sampling sites in total at three spatial scales, measuring SM and
ST at three spatial scales (1◦, 0.3◦, 0.1◦) and four depths (0–5, 10, 20, 40 cm) from 1 August 2010 to
30 June 2016. The sensors automatically measured SM and ST every 30 minutes, calculating the average
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values for the past 30 minutes. The in situ measurements were validated by taking 10 undisturbed soil
samples from different stations [60]. We used a large-scale network in this study, and randomly selected
observations of 18 sampling sites to train the model proposed in this study; we also used observations
of another eight sampling sites to validate the results retrieved by the sWCM. The geolocation of the
sampling sites used for training and validation are listed in Tables 1 and 2, respectively.

Table 1. Geolocations of 18 sampling sites used for model training.

Site # Longitude (◦E) Latitude (◦N) Altitude (m) Major Soil Type

BC05 92.20 31.17 4548 Sand (49.46%)
CD02 92.41 31.68 4612 Silt (57.98%)
CD03 92.34 31.66 4518 Silt (51.59%)
CD06 92.21 31.54 4769 Silt (50.85%)

MS3475 91.72 31.95 4637 Sand (62.02%)
MS3482 91.70 31.89 4713 Silt (64.89%)
MS3488 91.71 31.84 4799 Sand (56.52%)
MS3494 91.75 31.81 4818 Silt (56.20%)
MS3501 91.78 31.75 4723 Silt (54.95%)
MS3518 91.79 31.66 4574 Sand (55.13%)
MS3527 91.74 31.61 4552 Sand (66.44%)
MS3533 91.79 31.59 4539 Silt (60.85%)
MS3545 91.91 31.57 4671 Sand (54.55%)
MS3614 91.76 31.17 4633 Sand (48.84%)
MS3620 91.73 31.13 4765 Sand (48.68%)
MS3627 91.69 31.09 4736 Sand (71.69%)
MS3633 91.68 31.03 4675 Sand (51.81%)

MSBJ 91.90 31.37 4505 Sand (58.77%)

Table 2. Geolocations of eight sampling sites used for model validation.

Site # Longitude (◦E) Latitude (◦N) Altitude (m) Major Soil Type

BC03 92.31 31.11 4690 Silt (61.05%)
BC04 92.25 31.13 4609 Sand (56.13%)
BC08 92.04 31.33 4470 Sand (63.52%)

MS3523 91.75 31.64 4570 Sand (47.43%)
MS3501 91.78 31.75 4723 Silt (54.95%)
MS3552 91.98 31.55 4574 Silt (57.71%)
MS3559 92.05 31.53 4516 Sand (55.22%)
MS3603 91.80 31.26 4630 Silt (48.54%)

3.1.2. MODIS

We applied TERRA MODIS in this study. The MODIS is a land surface monitoring sensor
launched by the National Aeronautics and Space Administration (NASA) on board the AQAU and
TERRA satellites of the Earth Observing System (EOS) mission. MODIS has 36 spectral bands in
total, monitoring land surface properties, ocean properties, atmosphere properties, among others.
In this study, one near-infrared band (band 2) and two shortwave-infrared bands (band 5 and band
6) were chosen. We selected the MODIS daily 500-m surface reflectance products (MOD09GA) band
2 (841–876 µm) and band 6 (1628–1652 µm) to calculate NDII, band 2, and band 5 (1230–1250 µm)
to calculate NDWI. The VIs were combined with Sentinel measurements in the sWCM to estimate
vegetated SSM.

3.1.3. Sentinel-1 SAR

Since only the Sentinel-1A product covered our area in 2015, it was selected for our study.
Compared with the MODIS product, the main advantage of Sentinel-1 is they can be acquired under
all weather conditions, and Sentinel-1 radar sensors are not affected by cloud cover. Sentinel-1
carries a C-band (5.4 GHz) SAR sensor with multi-polarization imaging capability, which supports
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both single polarization (HH, VV) and dual polarization (HH + HV, VV + VH). There are four
imaging modes (stripmap model (SM), interferometric wide swath (IW), extra-wide swath (EW),
and wave mode (WM)) for the Sentinel product, which mainly differentiate in the stripe width. The
SM, IW, and EW are available in both single and dual polarization, while WV is only available in
single polarization. The IW swath mode is the main acquisition mode over land and satisfied the
majority of service requirements; for this reason, it was selected in our study. We applied the VV IW
backscattering coefficients and incident angle measurement in the model proposed above to estimate
SSM (https://www.asf.alaska.edu/sar-data-sets/sentinel-1/).

3.2. Methodology

We used one MODIS near-infrared band and two shortwave-infrared bands to calculate NDWI
and NDII to represent VWC; the backscattering coefficients and incident angle were extracted from
sentinel-1A SAR products. These parameters were assimilated into the simplified WCM (sWCM) to
monitor SSM combining in situ measurements, as illustrated in Figure 3. Two-thirds of the ground
measurements were used to train the model, while one-third were applied for model validation.
For this, we randomly selected 18 sampling sites from CTP-SMTMN to train the semi-empirical sWCM
and eight sampling sites for model validation.

Figure 3. Flow chart of the main procedures.

The MODIS level-3 reflectance products were processed with the MODIS reprojection tool (MRT)
conducted by NASA to subset the study area and projected to the UTM WGS84 46 zone with a
500-m spatial resolution. In addition, the Sentinel application platform (SNAP) was used to conduct
the radiometric calibration/terrain calibration and to obtain the incident angle and backscattering
coefficients that are required in the sWCM. The backscattering coefficients were generated through
a linear conversion of the intensity of the microwave signal. Similar as in MODIS processing, SAR
images were subset first to select the study area and were projected to UTM projection with a 500-m
spatial resolution.

The main difference between NDII and NDWI is the wavelength of the selected shortwave-infrared
band. The NDII applied near-infrared band with a wavelength of 860 µm and the shortwave-infrared

https://www.asf.alaska.edu/sar-data-sets/sentinel-1/
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band with a wavelength of 1640 µm as illustrated in Equation (1), while NDWI applied the same
near-infrared band and shortwave infrared band with a wavelength of 1240 µm as illustrated in
Equation (2). We calculated both NDII and NDWI through the MODIS reflectance product and applied
them in the WCM separately to the estimated SSM:

NDII = ρnir(860 µm)−ρswir1(1640 µm)

ρnir(860 µm)+ρswir1(1640 µm)
(1)

NDWI = ρnir(860 µm)−ρswir2(1240 µm)

ρnir(860 µm)+ρswir2(1240 µm)
(2)

where ρnir represents the reflectance of the near-infrared bands, ρswir, ρswir2 represents the reflectance
of two shortwave-infrared bands separately.

There is a linear relationship between these two vegetation indices and the VWC, which has been
verified by several studies conducted in agricultural and grassland areas [54,57,58]:

VWC = a ∗VI + b (3)

where a and b are empirical parameters in the linear model.
To better describe the backscattering of the soil and vegetation in vegetated areas, the original

WCM adapted in this study, proposed by Attema and Ulaby, is based on the radiation transport
model, considering the vegetation canopy to be uniform, with horizontal clouds, and ignoring multiple
scattering. The backscattering coefficient monitored by SAR C-band signals composes surface soil
scattering and scattering reflected from the vegetation; the WCM is illustrated using Equations (4)–(6):

σ0 = σ0
veg + c ∗ σ0

soil (4)

σ0
veg = A ∗VWC ∗ cos(θ) ∗ (1−C) (5)

C = exp(−2 ∗ B ∗VWC ∗ sec(θ)) (6)

where σ0 is the surface backscattering, σ0
veg represents the vegetation canopy backscattering, σ0

soil
represents surface soil backscattering, θ represents the SAR incident angle, and VWC can be estimated
from Equation (1) to Equation (3). In this model, A and B are two empirical parameters that are applied
to simulate the backscattering of vegetated surfaces as a function of the soil backscattering and the
VWC. Previous studies have pointed out that the empirical parameters can be set as A equals to 0.0855
and B equals to 0.0126 at VV polarization through model assimilation [35].

Previous studies have shown that there is a good linear correlation between the soil backscattering
coefficient and SSM. Therefore, the soil backscattering coefficient can be described by soil volumetric
moisture SSM (Equation (7)) [48,49]:

SSM = c ∗ σ0
soil + d (7)

where c and d are empirical parameters in the linear model.
The coefficient of determination (R2), bias, the root-mean-square error (RMSE), and unbiased

RMSE were applied to evaluate the retrieved SSM results based on in situ measurements. These
evaluators mentioned above were calculated via Equations (8)–(11):

R2 =
∑n

i=1(Pi−O)
2∑n

i=1(Oi−O)
2 (8)

bias =
∑n

i=1(Oi−Pi)

n
(9)
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RMSE =

√
1
n

n∑
i=1

(Oi − Pi)
2 (10)

ubRMSE =

√
(RMSE)2

− (bias)2 . (11)

where n is the number of observations for validation, P is the predicted results, O is the in situ
observation, and O average of all observed value.

4. Results and Discussion

We estimated vegetated SSM within the central TP through sWCM combining multi-source
satellite observations (MOD09 and Sentinel-1A SAR) and in situ measurements from CTP-SMTMN.
In situ measurements were also applied to validate the monitoring results. Based on the statistical
results obtained for 2015 (Table 3), the sWCM integrating MODIS and SAR observations can be applied
to effectively retrieve SSM in the study area. Both NDII and NDWI were suitable (R > 0.6) and can be
integrated into the sWCM for SSM monitoring. The NDII worked relatively better, with a higher R2,
a lower RMSE, and a lower ubRMSE. Both NDII-sWCM and NDWI-sWCM slightly overestimated
SSM with positive bias values over the study. Tables 4 and 5 are the statistical results of NDII-sWCM
and NDWI-sWCM, respectively.

Table 3. Statistical results of the methods proposed in this study (all sites), with R2 (coefficient
determination), RMSE (root-mean-square error) (m3/m3), ubRMSE (unbiased root-mean-square error)
(m3/m3), and bias (m3/m3).

Vegetation Index Applied R2 RMSE (m3/m3) ubRMSE (m3/m3) bias (m3/m3)

NDII 0.4513 0.0609 0.0603 0.0085
NDWI 0.4264 0.0613 0.0607 0.0083

Table 4. Statistical results of NDII-sWCM (normalized difference infrared index- simplified water-cloud
model) for each validation sites, with R2 (coefficient determination), RMSE (root-mean-square error)
(m3/m3), ubRMSE (unbiased root-mean-square error) (m3/m3), and bias (m3/m3).

Site # RMSE (m3/m3) ubRMSE (m3/m3) bias (m3/m3)

BC03 0.0591 0.0589 −0.0051
BC04 0.087 0.0610 0.0620
BC08 0.0656 0.0654 0.0043

MS3501 0.0926 0.0470 0.0798
MS3523 0.0368 0.0368 −0.0005
MS3552 0.0347 0.0346 −0.0020
MS3559 0.0407 0.0392 −0.0112
MS3603 0.0389 0.0363 −0.0141

Table 5. Statistical results of NDWI-sWCM (normalized difference water index- simplified water-cloud
model) for each validation sites, with R2 (coefficient determination), RMSE (root-mean-square error)
(m3/m3), ubRMSE (unbiased root-mean-square-error) (m3/m3), and bias (m3/m3).

Site # RMSE (m3/m3) ubRMSE (m3/m3) bias (m3/m3)

BC03 0.0564 0.0553 0.0112
BC04 0.0941 0.0681 0.0650
BC08 0.0724 0.0507 −0.0521

MS3501 0.0839 0.0441 0.0714
MS3523 0.0308 0.0296 −0.0087
MS3552 0.0389 0.0389 0.0009
MS3559 0.0415 0.0407 −0.008
MS3603 0.0395 0.0371 0.0143
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Figure 4a illustrates the scatterplots between observed and predicted SSM values, considering VI
as NDII or NDWI separately (with 1:1 red line shown). Both NDII and NDWI overestimated SSM
under low SSM conditions (in situ SSM < 0.15 m3/m3), and both VIs underestimated SSM under high
SSM conditions (in situ SSM > 0.2 m3/m3). Figure 4b represents the histogram of the differences
between observed and predicted SSM values, the value accumulated (over 70%) between −0.05 to
0.05 m3/m3 for NDII, between −0.06 to 0.07 m3/m3 for NDWI.

Figure 4. (a) Scatter plots for observed and predicted surface soil moisture (SSM) values using
normalized difference infrared index (NDII) and normalized difference water index (NDWI), respectively.
(b) Histogram showing the differences between observed and predicted SSM values using NDII and
NDWI, respectively.

Figure 5a shows the time series of observed and predicted SSM values for eight validation sites
separately. The red line represents the observed SSM values, green line represents the predicted SSM
values with NDII integrated in sWCM, blue line represents the predicted SSM values with NDWI
integrated in sWCM. For sites MS3552 and MS3603, the trend of predicted SSM (NDII-sWCM and
NDWI-sWCM) matched the observed SSM quite well. For all sites, summer (May to August) has the
highest SSM values which is consistent with the information provided above, that summer has the
most precipitation within the year. Observed SSM values drop rapidly at the beginning of August
for all sites, predicted SSM values of some sites drop rapidly at the same time. Such situation is not
understood yet. Figure 5b,c illustrates the scatter plot between observed and predicted SSM values
when NDII or NDWI were applied in the sWCM separately. In one site (BC08), sWCM overestimated
SSM for the whole study period; while in two sites (BC04 and MS3501), sWCM underestimated SSM
for most of the study period. In three sites (BC03, MS3523, and MS3552), SSM was overestimated when
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it was low and underestimated when it was high, which is consistent with the results from Figure 4.
In two sites (MS3559 and MS3603), the scatterplots were distributed along the 1:1 red line. When the
same parameters were applied, different validation sites yielded different results.

Figure 5. (a) Time series of the observed and predicted surface soil moisture (SSM) values. (b) Scatter
plots between the observed and predicted SSM values via normalized difference infrared index (NDII).
(c) Scatter plots between the observed and predicted SSM values via normalized difference water index
(NDWI) for each validating site.
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Figure 6a shows the Landsat 8 false color image using the reflectance band (band1) as red, the
shortwave-infrared band (band2) as green, and the near-infrared band (band3) as blue, where red
indicates regions with vegetation cover and brown indicates bare soil. From left to right, the images
acquired are on 25 May, 18 July, and 22 October. Based on the false color images, in May and October,
the study area contained mostly bare soil, while in July, it was fully covered by grass. Figure 6b,d,
from left to right, are the generated SSM images when NDII or NDWI were integrated in the sWCM
separately. Figure 6c,e show the scatter plots between observed and predicted SSM values when NDII
or NDWI were applied in the sWCM, respectively. In spring, both NDII and NDWI overestimated
SSM. In summer and autumn, the distribution was along the 1:1 red line and the scatterplots were also
accumulated along the 1:1 red line, suggesting that the model works better for soil with vegetation
cover compared with bare soil. We observed a spatial-temporal pattern of SSM distribution, with the
highest and lowest levels in summer and winter, respectively. Most likely, this is because the active
layer starts to thaw in spring, resulting in a rapid increase in SSM. In contrast, in autumn and winter, the
soil is mostly frozen, with decreased SSM levels. In spring, the eastern part of the study area showed
relatively high SSM values when compared to the western part, while in summer, SSM was lowest
in the central part. In winter, the lowest levels were observed for the central and eastern parts. Both
images generated by NDII-sWCM and NDWI-sWCM illustrate the same distribution. The NDII-sWCM
show lower SSM values compared to the NDWI-sWCM for spring, summer, and autumn.

Although the model proposed in this study achieved good results in the grassland area in TP, we
recognize that there are some uncertainties. First, there were uncertainties from satellite measurements,
as the MODIS solar bands have associated atmospheric uncertainties. Second, some uncertainties were
associated with the ground observations, mainly caused by technique design and experimental design,
although calibration and validation were conducted. Third, we estimated the backscattering of the
vegetation canopy mainly based on the VWC, but there are other factors that also affect the surface
backscattering of active microwave signals such as soil surface roughness. Fourth, the WCM only
considers the surface backscattering composed of backscattering from soil and vegetation and assumes
there is no reflection within the vegetation canopy. Such assumption can, however, not be made for the
“real world”. Soil texture and soil roughness are important factors that affect the backscattering of
C-band signals, and omitting such factors may cause uncertainties in the retrieved SSM values when
there is a vegetation cover. In addition, both NDII-sWCM and NDWI-sWCM were more suitable when
there was a vegetation cover, and the model may need to be revised in this regard. From the scatter
plots shown in Figure 4a, we recognized that sWCM underestimates SSM under high SSM conditions
in summer and overestimates SSM under low SSM conditions in spring and autumn. The uncertainties
within field experiments may induce the monitoring errors. From time series shown in Figure 5a,
we see that although the average in situ SSM value is relatively high in summer, for each sampling
site the SSM observations vary a lot. There are days for some sites with extremely low SSM values,
while other sites with relatively high SSM observations. Besides that, both MODIS and Sentinel-1A
only measure the land surface properties, there may be a delay for surface condition change caused
by SSM, and it may not be timely observed by satellite sensors. Although the soil temperature is
above 0 ◦C in March and November within the study area, there may exist ice crystals in the soil, the
heat absorption or release within the phase change of water may also affect SSM monitoring. In this
study, we analyzed the study period together, while the empirical parameters in the sWCM varies
under different conditions. If different seasons were studied separately, the monitoring results may
be improved.
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Figure 6. (a) Landsat 8 false color images, (b) normalized difference infrared index (NDII)-retrieved
surface soil moisture (SSM) map, (c) scatter-plot between observed and predicted SSM values by NDII,
(d) normalized difference water index (NDWI)-retrieved surface soil moisture (SSM) map, (e) scatter plot
between observed and predicted SSM values by NDWI on 20 March, 18 July, 22 October, respectively.
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5. Conclusions

We mapped SSM at a 500-m resolution for a vegetated area (grassland) of the TP during the
non-frozen period (March to November in 2015), combining TERRA MODIS and Sentinel-1 SAR
products using the sWCM proposed in this study. The method is based on the relationship between
SSM and SAR C-band backscattering, which is based on the soil dielectric variation due to changes
in the water content. The impact of vegetation canopy backscattering on the signal SAR received
can be dealt with by integrating two VIs (NDII and NDWI) into the WCM, resulting in the models
NDII-sWCM and NDWI-sWCM. Both models are well suited for vegetation SSM monitoring, with
NDII-sWCM showing better results.

The main contributions of this study are: 1) monitoring of the SSM in a high-latitude permafrost
region by combining optical and microwave products during the non-frozen period; 2) elimination of
the effects of vegetation canopy backscattering on SAR by assimilating two VIs in the original WCM,
resulting in the two simplified water-cloud models NDII-sWCM and NDWI-sWCM. The retrieved
SSM values were validated by in situ measurements from CTP-SMTMN. Both NDII and NDWI can be
applied in the sWCM to retrieve SSM values for vegetated areas; 3) determination of the temporal and
spatial patterns of SSM within the study area from March to November 2015. The central TP showed
the highest values in summer and the lowest ones in winter, indicating that the spatial distribution
of SSM varies throughout the year. The retrieved 500-m SSM values for vegetated areas are of great
importance for further ecosystem and climate research over TP, since the soil water content plays a key
role in the water cycle and energy transfer between land and atmosphere via evapotranspiration.
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AIEM Advanced Integral Equation Model
ALOS Advanced Land Observation Satellite
AMSR-E the Advanced Microwave Scanning Radiometer for EOS
ANN Artificial Neural Network
CAS Chinese Academy of Sciences
COSMOS The COsmic-ray Soil Moisture Observing System
CTP-SMTMN Multiscale Soil Moisture and Temperature Monitoring Network on the central Tibetan Plateau
DAM Data Assimilation and Modeling Center for Tibetan Multi-spheres
DEM Digital Elevation Map
EOS Earth Observing System
ERS European Remote-Sensing Satellite
ESA European Space Agency
LSM Land Surface Model
MODIS Moderate Resolution Imaging Spectroradiometer
NASA National Aeronautics and Space Administration
NDII Normalized Difference Infrared Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
PALSAR the Phased Array type L-band Synthetic Aperture Radar
R2 Correlation of determination



Remote Sens. 2020, 12, 183 15 of 18

RMSE Root Mean Squared Error
ubRMSE unbiased RMSE
SAR Synthetic Aperture Radar
SNAP Sentinel Application Platform
SMAP Soil Moisture Active Passive
SMOS Soil Moisture and Ocean Salinity
SM Soil Moisture
SSM Surface Soil Moisture
SSM/I the Special Sensor Microwave Imager
SMMR Scanning Multi-channel Microwave Radiometer
ST Soil Temperature
SVM Support Vector Machine
TSX TerraSAR X-band
TP Tibetan Plateau
VI Vegetation Index
VWC Vegetation Water Content
WCM Water Cloud Model
sWCM simplified Water Cloud Model
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