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Abstract: This study investigated the relationship between backscattering coefficients of a synthetic
aperture radar (SAR) and the four biophysical parameters of rice crops—plant height, green vegetation
cover, leaf area index, and total dry biomass. A paddy rice field in Miyazaki, Japan was studied
from April to July of 2018, which is the rice cultivation season. The SAR backscattering coefficients
were provided by Sentinel-1 satellite. Backscattering coefficients of two polarization settings—VH
(vertical transmitting, horizontal receiving) and VV (vertical transmitting, vertical receiving)—were
investigated. Plant height, green vegetation cover, leaf area index, and total dry biomass were
measured at ground level, on the same dates as satellite image acquisition. Polynomial regression
lines indicated relationships between backscattering coefficients and plant biophysical parameters of
the rice crop. The biophysical parameters had stronger relationship to VH than to VV polarization.
A disadvantage of adopting polynomial regression equations is that the equation can have two
biophysical parameter solutions for a particular backscattering coefficient value, which prevents
simple conversion from backscattering coefficients to plant biophysical parameters. To overcome
this disadvantage, the relationships between backscattering coefficients and the plant biophysical
parameters were expressed using a combination of two linear regression lines, one line for the first
sub-period and the other for the second sub-period during the entire cultivation period. Following
this approach, all four plant biophysical parameters were accurately estimated from the SAR
backscattering coefficient, especially with VH polarization, from the date of transplanting to about
two months, until the mid-reproductive stage. However, backscattering coefficients saturate after
two months from the transplanting, and became insensitive to the further developments in plant
biophysical parameters. This research indicates that SAR can effectively and accurately monitor rice
crop biophysical parameters, but only up to the mid reproductive stage.

Keywords: VH and VV polarization; Sentinel-1; synthetic aperture radar (SAR); rice crop monitoring

1. Introduction

Rice is a staple food, feeding approximately half of the world’s population. Estimates indicate
that, by the mid-twenty first century, one of the biggest challenges will be to feed the nine billion people
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of the world [1]. Therefore, to address this challenge, cereal grain production, especially systematic
rice monitoring, plays an important role in sustainable development and ecological planning. Several
different types of remote sensing technologies could be used to measure rice growth parameters
including: leaf area index (LAI), plant height, biomass, and canopy [2,3]. Better monitoring of these
parameters could help us better manage the crop development conditions and ultimately increase
rice production. Remote sensing monitoring from different platforms, ranging from the field level to
satellite, can provide information that is useful to identify the status and condition of various plant
and soil parameters throughout the growing season [4]. Examples of this include the following: early
season information about soil fertility and moisture conditions, mid-season crop monitoring for pest
and disease management, and growth trajectory analyses and yield estimation throughout the growing
season. Remote sensing data also provide a convenient method for relating point observations to
spatial management plans [4]. Satellite remote sensing has proven to play a key role in supporting
food security initiatives, and the community has achieved significant progress so far based on this
technology. Optical remote sensing has been utilized for agricultural decision support systems via
crops monitoring, such as by using the vegetation related products of Moderate Resolution Imaging
Spectroradiometer (MODIS), combined with agro-metrology metrics such as precipitation, temperature,
solar radiation, and soil moisture [5]. Examples of these tools are found in several literatures [6–11].

Landsat and its relevant derivative indices have spectral bands sensitive to rice paddy
conditions [12,13]; however, phenological differences between scenes and low temporal frequency in
historical archives have limited mapping of rice at moderate scales over large areas [5]. More than
70% of rice production is during the monsoon or rainy season [14], when cloud cover is extensive [15].
Cloudy regions such as South Asia, often have periods of no or few clear-sky Landsat scenes [5]. A lack
of high temporal frequency of optical imagery is a limitation on rice cultivation mapping over large
regions. In the case of our study area, only one clear-sky Landsat image was available during the
entire cultivation season of paddy rice in 2018 (April to July), and the image was just before harvest.
Clear-sky high-resolution optical images are rarely available from the beginning to the mid cultivation
season, because the cultivation is conducted during rainy season. This is an example of the limitation
in phenological monitoring of rice crop using optical sensors.

Compared with optical sensors, synthetic aperture radar (SAR) can monitor surfaces in any weather
conditions, which is particularly useful for mapping and monitoring rice in South and Southeast
Asia, where frequent cloud cover and precipitation are expected during the cultivation seasons [5,12].
The SAR system transmits electromagnetic pulses and receives the echoes of the backscattered signal
from the Earth’s surface. Microwave is used for SAR monitoring. Typical wavelengths adopted by
satellite-SAR monitoring are 2.5–4 cm (X-band; such as adopted by TerraSAR-X satellite), 4–8 cm
(C-band; such as adopted by Sentinel-1 satellite), and 15–30 cm (L-band; such as adopted by ALOS-2
satellite). The amplitude and phase of the backscattered signal changes by the physical characteristics
of the surface (such as surface geometry and roughness), and the electrical permittivity [16]. For rice
applications, SAR observations at the relevant configuration are sensitive to growth stages, biomass
development, plant height, leaf-ground double bounce, soil moisture, and inundation frequency and
duration [15,17]. During the rice transplantation period, the surface contribution of a rice paddy
causes low backscatter. In the plant tillering period, the volumes of haulm and the leaves increase,
and the backscatter response increases with more interaction and volume scattering. Consequently,
as crops peak and approach harvest, it causes a decrease in backscatter. This makes SAR particularly
useful for mapping rice extent, inundation, and cropping intensity, considering dynamic range and
scattering mechanisms of the rice life cycle. The interaction mechanism between the radar waves
and vegetation canopy has three components: (1) volume scattering, (2) scattering from the ground
made by vegetation layer, and (3) multiple scattering between the volume and ground [18]. X- and
C-bands are suitable to retrieve canopy biophysical parameters because images produced from short
wavelength SAR, such as X- and C-bands, mainly interacts with the top portion of the canopy layer [19].
The relationship between rice growth parameters and radar backscattering coefficients was studied by
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Kurosu et al. [20]. They used the C-band VV (i.e., vertical transmitting, vertical receiving) polarization
data from the European Remote Sensing (ERS-1) satellite. However, few studies investigated using
C-band SAR data. These studies have mainly focused on the relationship between the backscatter
coefficients from rice fields and rice growth parameters. Moreover, HH (i.e., horizontal transmitting,
horizontal receiving) or VV and the ratio of HH/VV backscattered coefficients are frequently used
data sets in the past studies that indicate high correlations with rice growth stages [18,21]. In all these
studies, the cross polarized HV (i.e., horizontal transmitting, vertical receiving) or VH (the reverse
of HV) backscatter was rarely focused on, possibly because of the limited availability of SAR data
in terms of time series and polarization. Sentinel-1 radar platform lunched by the European Space
Agency is able to provide timely and precise high-resolution data [22]. Le Toan et al. reported that,
for X-band SAR data of HH and VV polarization, both HH and VV increased because of the increment
in the vegetation cover vertical structures, but VV is more sensitive to changes in vegetation cover
during the vegetative stages [23]. This idea is further supported by Mansaray et al.—even though VV
polarization produces higher backscatter coefficients values, VH polarization constantly increases and
is more sustained compared with VV, where saturation is reached during the tillering stage [24].

In this study, we introduce the monitoring of rice growth parameters using multi-temporal
Sentinel-1 VH and VV polarization SAR images. Plant height, green vegetation cover, LAI, and the
total dry biomass were acquired by fieldwork, and the coefficient of determination (R2) between
the parameters and the backscattering coefficient derived from SAR data were investigated. While
previous studies typically analyzed the relationship between plant biophysical parameters and the
SAR backscattering coefficients using a single linear or polynomial regression line, this study attempts
to express the relationship using the combination of two linear-regression lines, which is unique to
this study. The two-linear-line approach taken in this study helps to clarify the turning-point of the
response of SAR backscattering signals to rice plant phenology. Also, the approach has the potential to
easily estimate the plant biophysical parameters by SAR backscattering coefficients.

2. Materials and Methods

2.1. Study Area

The study field is in the Kibana Agricultural Science Station of the University of Miyazaki, in the
Miyazaki prefecture of Japan (Figure 1). The study area lies at a base elevation of approximately 21 m
above sea level and it is located at 31◦50′14” north and 131◦23′56” east. The climate of Miyazaki is
humid subtropical, with hot and humid summers and cool winters. The average annual temperature
is 17.1 ◦C, and annual precipitation is 2550 mm. Figure 2 shows the monthly average air temperature
and rainfall in Miyazaki. The primary rainy season is from early June to mid-July. The season is
called as “plum rain” and a large amount of the precipitation is a result of the East Asian monsoon
system. In 2018, more than half of the days in June had recorded precipitation around the study area.
The monsoon rain is a fundamental water resource for paddy rice cultivation in this area. Another peak
of monthly precipitation appears in August to September, which is typically from short-term heavy
rains brought by typhoons. Rice is the major staple food in Japan. Popular Japanese rice varieties,
Oryza sativa ‘Koshihikari’ and ‘Hinohikari’, are most commonly cultivated around the study area.
The first variety, which was planted in the study field, is typically planted in early season (transplants
in late March to early April and harvest in late July) for the purpose of avoiding the risk of damage by
typhoons in late summer; the later variety is planted in normal season (transplants in June and harvest
in October). Figure 3 represents the rice development stages in the study area during 2018, determined
by actual field surveys, following the framework of rice development stages used by Wu et al. [25].
The vegetative stage lasts for about 45 days, while the reproductive and flowering stages last for 45
and 20 days, respectively. The number of days slightly changes by year and farmer, depending on the
weather conditions and cultivation practices.



Remote Sens. 2020, 12, 189 4 of 17
Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 

 

 
Figure 1. Location of study site. 

 
Figure 2. Monthly average air temperature and rainfall in Miyazaki, Japan. 

0

50

100

150

200

250

300

350

400

450

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Te
m

pe
ra

tu
re

 (°
C

)

R
ai

nf
al

l (
m

m
)

Rainfall

Temperature

Typhoon season
Rainy season

Figure 1. Location of study site.

Remote Sens. 2020, 12, x FOR PEER REVIEW 4 of 17 

 

 
Figure 1. Location of study site. 

 
Figure 2. Monthly average air temperature and rainfall in Miyazaki, Japan. 

0

50

100

150

200

250

300

350

400

450

0

5

10

15

20

25

30

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Te
m

pe
ra

tu
re

 (°
C

)

R
ai

nf
al

l (
m

m
)

Rainfall

Temperature

Typhoon season
Rainy season

Figure 2. Monthly average air temperature and rainfall in Miyazaki, Japan.
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Figure 3. Rice crop growth stages in the study area in 2018.

2.2. Data Acquisition and Analysis

This study compares Sentinel-1 VH and VV backscattering coefficients with ground-measured
biophysical parameters of a rice crop, to investigate the potential and limitations in estimating the
biophysical parameters used by satellite SAR monitoring. Table 1 summarizes the data used in
this study.

Table 1. Data used in this study. VH, vertical transmitting, horizontal receiving; VV, vertical transmitting,
vertical receiving; LAI, leaf area index.

Data Type Items Data Acquisition Dates in 2018

Satellite images Sentinel-1A, VH and VV
polarization images

10 April, 22 April, 4 May, 16 May, 28
May, 9 June, 21 June, 4 July, 15 July, and
27 July

Ground-measured biophysical
parameters of rice crop

Plant height
Green vegetation cover
LAI
Total dry biomass

Same as above

2.2.1. Satellite Images

Ten Sentinel-1A time series images of the study area were acquired for the entire cultivation
season from April to July 2018. The dates of the image acquisitions are given in Table 1. Sentinel-1
ground range detected (GRD) data of dual polarization (VH and VV polarization), acquired with
interferometric wide (IW) mode, were used in this study. The GRD image products with the IW mode
are provided by 10 m × 10 m pixel size, but the reference spatial resolution is 20 m × 22 m (range
and azimuth directions, respectively), because the product is created by the multi-look procedure of
IW images [26]. The acquired SAR images were preprocessed using ESA’s open source Sentinel-1
Toolbox [21]. The process includes radiometric calibration, terrain flattening, and geometric correction.
Topographic variations can dominate the radiometric backscatter signal strongly because of the local
area illuminated within each azimuth and slant range [27]. The reference area used within the beta
naught (β0), sigma naught (σ0), and gamma naught (γ0) backscatter conventions is described by
Small [28]. Each convention differs in their choice of definition. The β0 convention is the slant range
plane itself [27]. The contents of images conforming to its convention are not subjected to modifications
based on ellipsoid or terrain Earth models [28]. σ0 is the ground as modeled by an ellipsoidal Earth.
For γ0, the area is the projection in the plane perpendicular to the slant range direction [29]. In our study,
first, the radiometry of the SAR backscatter product was transformed into β0 backscatter convention,
as is also recommended by Small et al. [30]. Secondly, the range Doppler terrain correction was
applied. In this process, once the DEM integration was completed, the normalization was performed
by converting β0 to γ0. In this study, the averages of VH and VV polarization backscatter signals read
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by four pixels from the center of the crop sampling field were used. The locations of the sampling
pixels are shown in Figure 4. The study area was composed of five paddy rice fields that were all
managed similarly. Considering the 20 × 22 m effective resolution of Sentinel-1A GRD images, the
sampled SAR backscatter signals used in this study are not affected by surface conditions outside of
the study area.
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2.2.2. Ground Measurements of Plant Biophysical Parameters

Field surveys were conducted simultaneously with the dates of satellite image acquisitions,
to obtain ground-measured plant height, green vegetation cover, LAI, and total dry biomass of rice crop.
The actual field conditions during the cultivation period are shown in Figure 5. Representative plant
height for an image date was determined by averaging the measurements at ten different locations
in the study field. The standard deviations for the 10 samples, indicating the spatial variation of the
plant height, were small (1 to 4 cm) in the vegetative and reproductive stages, and large (7 to 10 cm) in
ripening stage. The spatial heterogeneity of plant height in the ripening stage was the result of different
degrees of rice ears hanging. For green vegetation cover, ten photo image samples were taken from
70 cm above the top of the plant canopy, and the average fractional green canopy cover of rice plant
was analyzed by a smartphone application, Canopeo [31]. The fractional green canopy cover is a key
variable for determining canopy development, light interception, and evapotranspiration. The average
standard deviation of 10 samples was 6%. In each observation, four plant hills that represent the
average conditions of the field were sampled for measurements of LAI and dry biomass. ImageJ
software [32] was used to compute LAI values by sampled leaves after scanning.

2.2.3. Data Analysis

The ground-based biophysical parameters were compared with VH and VV polarization
backscattering coefficients of Sentinel-1A, to analyze the relationship between plant biophysical
parameters and the SAR backscattering coefficients. The relationships were analyzed using two types
of regressions. The first approach describes the relationship with a single polynomial regression
equation determined by the least-square method, which is a traditional method of statistical analysis
popularly used in this type of study. Another method attempts to describe the relationship by the
combination of two linear regression lines. The concept of the two-linear-lines method is illustrated
in Figure 6. The basic assumption of this approach is that the SAR backscattering coefficients first
linearly increases as the rice plant develops (first period in Figure 6), and then the backscattering
coefficient reaches a saturation level at a specific date termed the “turning point” during the cultivation
season. In this research, the turning point is defined as the point where the R2 of the linear regression
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for the first period reaches its maximum. The R2 of the linear regression for the second period
(Figure 6) is expected to be a small value, because the SAR backscattering coefficient is saturated in the
second period, and thus the backscattering coefficients no longer explain the further changes in plant
biophysical parameters.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 17 
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Figure 6. Diagram expressing the relationship between plant biophysical parameters and synthetic
aperture radar (SAR) backscatter signals using two linear regression lines. VH, vertical transmitting,
horizontal receiving; VV, vertical transmitting, vertical receiving.
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3. Results and Discussion

3.1. Temporal Changes in Plant Biophysical Parameters

Figure 7 shows ground-measured biophysical parameters of the rice crop (plant height, green
vegetation cover, LAI, and total dry biomass) in the study field. Plant height (Figure 7A) constantly
increased until around 72 days after transplant (middle of reproductive stage). The green vegetation
cover (Figure 7B) gradually increased in the early vegetative stage, and then rapidly increased
during the late vegetative stages. The green vegetation cover maintained at maximum during the
reproductive stage, and then rapidly dropped during the ripening stage when the leaves turned yellow.
LAI (Figure 7C) had a similar trend as the green vegetation cover, with some delays in the timing.
The total dry biomass (Figure 7D) did not significantly increase during the vegetative stage, and
constantly increased during the reproductive and ripening stages.
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Figure 7. Ground measured temporal variations in (A) plant height, (B) green vegetation cover, (C) leaf
area index (LAI), and (D) total dry biomass, after transplantation.

3.2. Transitions in VH- and VV-bands Backscattering Coefficients

Figure 8 shows the temporal variation in VH- and VV-bands’ backscattering coefficients.
The numbers are the averages of four pixels from the center of the study field (Figure 4). Throughout
the cultivation season, VV is higher than VH. Both VH and VV backscattering coefficients were the
lowest during the initial period of rice cultivation. During this period, green vegetation cover was low
(Figure 7B), and the dominant surface observed by satellite is the water surface flooded in the paddy
field. The backscattering coefficients increased during the late vegetative stage, and became stable
after 48 days (VV) or 60 days (VH). This trend in the backscattering coefficients agrees with those in
previous studies [2,25,33].
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Figure 8. Temporal variation in SAR backscattering coefficients after transplantation.

3.3. Relationship between Backscatter and Rice Biophysical Parameters Expressed with Polynomial Regression

The relationship between VH or VV and the plant biophysical parameters, with single polynomial
regression lines, is shown in Figures 9–12. Our results from the polynomial regression agree with the
results reported by Chakraborty et al. [19], where they studied rice crop biophysical parameters, that is,
crop height, using SAR data obtained by Radarsat. They found that polynomial relationships are the
most appropriate to link plant height and SAR backscattering coefficients. They obtained coefficients of
determination between backscatter and plant height, where R2 = 0.694, 0.693, 0.527, and 0.947 for beam
S-1, S-5, S-6, and S-7, respectively, while in our case, R2 = 0.952 and 0.874 for VH and VV, respectively
(Figure 9). In a similar type of study, Le Toan et al. studied the relationship between backscatter
and rice crop parameters, that is, plant height and biomass, using ERS-1 data [34], demonstrating a
high-performance description by polynomial regression. R2 values shown in Figures 9–12 indicate
that VH is superior to VV. Compared with VV, VH backscattering coefficients have a much stronger
relationship to all of the tested biophysical parameters, where plant height, green vegetation cover,
and LAI versus VH had an R2 greater than 0.9 (Figures 9–11). Compared with these three biophysical
parameters, total dry biomass had a weaker relationship to backscattering coefficients (Figure 12).
Total dry biomass is constantly low during the vegetative stage, but the backscattering coefficients
change significantly during the period (Figures 7D and 8). In the following reproductive and ripening
stages, total dry biomass increases significantly, but the backscattering coefficients values are stable.
Therefore, it is difficult to correlate the total dry biomass and backscattering coefficients.
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Figure 9. Backscattering coefficients as a function of plant height, expressed by polynomial regressions.
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Figure 10. Backscattering coefficients as a function of green vegetation cover, expressed by
polynomial regressions.
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Figure 11. Backscattering coefficients as a function of LAI, expressed by polynomial regressions.
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Figure 12. Backscattering coefficients as a function of total dry biomass, expressed by
polynomial regressions.

3.4. Relationship between Backscattering Coefficients and Rice Biophysical Parameters Expressed by Two Linear
Regression Lines

Even though the polynomial regression reasonably expresses the relationship between
backscattering coefficients and the biophysical parameters, except the total dry biomass, the polynomial
approach has an operational inconvenience for rice crop monitoring by satellite SAR. The polynomial
equation accepts two solutions for a specific backscattering coefficient value. For example, VH =

−13 dB can either take LAI = 1.6 or 2.5 (Figure 11), which is inconvenient when estimating LAI by
satellite-observed backscattering coefficients. As a unique attempt by this study, Figures 13–16 show
the relationship between VH or VV and plant biophysical parameters by a combination of two linear
regression lines. The regression equations shown in the figures are for the linear regressions of the first
periods, where the first period is defined in Figure 6. Data plot by triangles, appearing in Figures 14
and 15, are the data for the last day of ground observation, where some reductions of green vegetation
cover and LAI were confirmed by plant senescence (Figure 7B,C). Such data were treated as the data
for second period.
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Figure 13. Backscattering coefficients as a function of plant height, expressed by a combination of two
linear regressions.
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Figure 14. Backscattering coefficients as a function of green vegetation cover, expressed by a combination
of two linear regressions.

Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 17 

 

 
Figure 15. Backscattering coefficients as a function of LAI, expressed by a combination of two linear 
regressions. 

 
Figure 16. Backscattering coefficients as a function of total dry biomass, expressed by a combination 
of two linear regressions. 

Table 2. Statistical summary of the linear regression lines. 

Combination 
First Period Second Period 

p-Value R2 p-Value R2 
Plant height and VH 0.01 0.953 0.834 0.017 

Green vegetation cover and VH <0.001 0.976 0.446 0.204 
LAI and VH <0.001 0.973 0.610 0.097 

Total dry biomass and VH 0.04 0.959 0.314 0.249 
Plant height and VV 0.034 0.822 0.061 0.626 

Green vegetation cover and VV 0.045 0.786 0.698 0.041 
LAI and VV 0.044 0.789 0.045 0.674 

Total dry biomass and VV 0.045 0.785 0.22 0.346 

Figures 9–16 show the backscattering coefficients as the y-axis, which is a typical format in 
similar studies. However, backscattering coefficients should be the explanatory variable and the 
biophysical parameters should be the objective variables when estimating plant biophysical 
parameters by satellite-SAR monitoring. Figure 17 shows the relationship between VH and the 

y = 8.4404x - 22.754
R² = 0.9728

y = 11.689x - 14.809
R² = 0.789

-25

-20

-15

-10

-5

0

0 0.5 1 1.5 2 2.5 3

V
H

, V
V

 (d
B)

LAI

VH VV

y = 37.397x - 22.853
R² = 0.9591

y = 45.148x - 14.7
R² = 0.7854

-25

-20

-15

-10

-5

0

0 1 2 3 4

V
H

, V
V

 (d
B)

Total dry biomass (kg m-2)

VH VV

Figure 15. Backscattering coefficients as a function of LAI, expressed by a combination of two
linear regressions.
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Figure 16. Backscattering coefficients as a function of total dry biomass, expressed by a combination of
two linear regressions.

By the analysis of R2 values, the “turning point” for all combinations of biophysical parameters
and VV was 48 days after transplant, which is the beginning of the reproductive stage. The turning
point is later in most combinations with VH and was 60 days after transplant (the mid-reproductive
stage). Compared with VV, VH has higher R2 values, and has a later turning point (meaning that VH
has higher tolerance to saturation), indicating that VH is superior to monitor the rice crop. The nearly
horizontal regression lines in the second stages indicated that both VH and VV backscatter coefficients
were saturated after passing the turning point. Further changes in biophysical parameters after the
turning point cannot be described by SAR monitoring. Table 2 shows the summary of significant
test for the regression lines with the R2 values of the lines. The linear regression lines are statistically
significant (p-value < 0.05) for all combinations during the first period, but not in the second period
(p-values > 0.05) except the combination of LAI monitored by VV (p = 0.045). In the first period,
p-values are smaller (i.e., more significant) in VH than VV for all biophysical parameters, indicating
that VH is superior to monitor the rice crop. Compared with the polynomial approach, the two
linear regression approach better described the relationship between biophysical parameters and SAR
backscattering coefficients, especially with VH. The lines visually fit well to the scatter plot, even for
total dry biomass, which was difficult to describe with the polynomial line.

Table 2. Statistical summary of the linear regression lines.

Combination
First Period Second Period

p-Value R2 p-Value R2

Plant height and VH 0.01 0.953 0.834 0.017
Green vegetation cover and VH <0.001 0.976 0.446 0.204

LAI and VH <0.001 0.973 0.610 0.097
Total dry biomass and VH 0.04 0.959 0.314 0.249

Plant height and VV 0.034 0.822 0.061 0.626
Green vegetation cover and VV 0.045 0.786 0.698 0.041

LAI and VV 0.044 0.789 0.045 0.674
Total dry biomass and VV 0.045 0.785 0.22 0.346

Figures 9–16 show the backscattering coefficients as the y-axis, which is a typical format in
similar studies. However, backscattering coefficients should be the explanatory variable and the
biophysical parameters should be the objective variables when estimating plant biophysical parameters
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by satellite-SAR monitoring. Figure 17 shows the relationship between VH and the biophysical
parameters for the first period, where the biophysical parameters are plotted as the y-axis. A caution to
use with the regression equation (shown in Figure 17), for predicting plant biophysical parameters
in operation, is that the minimum number of the biophysical parameters should be limited as zero,
because negative numbers of these parameters do not have any physical meaning. The linear regression
accurately reproduced the biophysical parameters for the first period, with a root mean square error
(RMSE) = 0.039 m for plant height, 4.05% for green vegetation cover, 0.065 for LAI, and 0.013 kg m−2 for
total dry biomass. However, this approach is not applicable after about 60 days from transplant, owing
to saturation of the backscattering coefficients of VH in late cultivation season. Rice crop biophysical
monitoring by SAR is very effective, but only up to mid reproductive stages.
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Figure 17. Plant biophysical parameters (A); plant height, (B); green vegetation cover, (C); leaf area
index, (D); total dry biomass) expressed by VH backscattering coefficients for the first period before the
turning point. RMSE, root mean square error.

While this study demonstrated the potential and the limitation in applicability of the combination
of linear regression lines, sensitivity of the calibrated constants in the estimation equation to a
variation of field conditions (e.g., different field, year, region, variety of rice crop) has not been
evaluated. Future study topics include the application of the suggested methodology to different years
and/or locations to investigate how the relationship between SAR backscatter coefficients and the
rice biophysical parameters are sensitive to the field management and yearly change of the weather
condition. Enhancing the number of ground sampling is another future topic to better stabilize the
data for analysis.
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4. Conclusions

The objectives of this research were to study the relationship between SAR backscattering
coefficients and rice crop biophysical parameters using Sentinel-1 satellite imagery, and to suggest
an approach to evaluate plant biophysical parameters of rice crop using a combination of linear
regression lines. Setting a study area in paddy rice fields in Miyazaki, Japan, ground measurements
were conducted for plant height, green vegetation cover, LAI, and the total dry biomass of rice crop,
every 12 days, simultaneously to the Sentinel-1A satellite SAR observations. Relationships between
the plant biophysical parameters and SAR backscattering coefficients (VH and VV polarization)
were analyzed. The results indicated that SAR backscattering coefficients linearly increase as plant
biophysical parameters develop, until the “turning point,” which is 48 (VV) or 60 (VH) days after
transplant. The timing corresponds to the beginning of the mid reproductive stages. During the period
from transplant to the turning point, plant height, green vegetation cover, LAI, and total dry biomass
were precisely described by SAR monitoring, especially with VH polarization. The performance of crop
monitoring by SAR was very high during the period; RMSE in estimations of these four biophysical
parameters by VH backscattering coefficients were 0.039 m for plant height, 4.05% for green vegetation
cover, 0.065 for LAI, and 0.013 kg m−2 for total dry biomass. However, backscattering coefficients
saturate after the day of the turning point, and become insensitive to further developments of the plant
biophysical parameters. Specifically, this research indicates that rice crop monitoring of biophysical
properties by SAR is very effective, but only up to mid reproductive stages. Future study includes a
sensitivity analysis of regression equations for field management.
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