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Abstract: The potential applications of computational tools, such as anomaly detection and
incongruence, for analyzing data attract much attention from the scientific research community.
However, there remains a need for more studies to determine how anomaly detection and incongruence
applied to analyze data of static images from remote sensing will assist in detecting water pollution.
In this study, an incongruence-based anomaly detection strategy for analyzing water pollution in
images from remote sensing is presented. Our strategy semi-automatically detects occurrences of
one type of anomaly based on the divergence between two image classifications (contextual and
non-contextual). The results indicate that our strategy accurately analyzes the majority of images.
Incongruence as a strategy for detecting anomalies in real-application (non-synthetic) data found in
images from remote sensing is relevant for recognizing crude oil close to open water bodies or water
pollution caused by the presence of brown mud in large rivers. It can also assist surveillance systems
by detecting environmental disasters or performing mappings.

Keywords: remote sensing; incongruence; anomaly detection; classification; analysis of images;
pattern recognition

1. Introduction

The potential applications of computational tools for analyzing remote sensing data taken
from environments containing large rivers attract much attention in the scientific literature [1–12].
Two of these tools, anomaly detection [13,14] and incongruence [15–18], are important for studies
to find and categorize non-conforming patterns present in images, such as outliers [19–24]. For
example, Qi Liu et al. in [25] presented a framework to detect outliers and anomalous events [19–24].
They highlighted the importance of basing anomaly detection studies on taxonomies of anomalies.
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Kittler et al. in [13] proposed a taxonomy of anomalies which expanded the concept of anomaly beyond
the conventional meaning of outlier. They used sensory data quality assessment [26], contextual [9]
and non-contextual [27–30] classifiers [5,15–18], and an incongruence indicator [16–18] to identify each
type of anomaly [13]. According to this taxonomy [13] anomalies can be, for example, of the types
unknown object, measurement model drift, unknown structure, unexpected structural component, component
model drift, and unexpected structure and structural components. This taxonomy [13] is well-known and
widely accepted by the scientific community because it has the potential to be applied for solving
problems in many different research areas [13]. Therefore, studies related to the application of the
taxonomy [13] on synthetic data are common, such as in [16–18]. However, to the knowledge of the
authors, studies have not addressed the practical application of the taxonomy [13] to solve real-world
problems [2,31–33], because it remains a challenge for all research areas.

Anomaly detection [13] and incongruence [15–18] are two powerful computational tools from
pattern recognition (PR) [3,11–18,34,35] and computer vision (CV) [3,36]. PR is a scientific area of
study dedicated to analyze patterns and regularities in data [3]. PR provides powerful tools [34] for
many different applications and research areas [35] such as scientific research, private and public
industries, military activities, etc., [14,21–24,32,37–48]. For example, PR is important for geosciences
as its tools are used to analyze geographical features of environments in digital images from remote
sensing, i.e., scenes [11,12,49–54]. Additionally, PR also provides powerful tools to help machine
perception for CV [3,36]. CV is a scientific area of study committed to developing artificial systems
responsible for obtaining information from multidimensional data, such as images [36]. A relevant
example of machine perception is the ability of computers to recognize behaviors of geographical
features of interest, such as rivers, lakes, fields, plantations, forests, etc. Our interest goes further than
a solution based on PR and CV for a human user of a computer to apply in order to solve a specific
and already-known problem from remote sensing, such as only detecting water pollution [55–60] as
an outlier in an image. In this case, we could use spectral analysis [61] (spectral index [62] or slope
ratio [63]) to solve our problem directly. Our motivation has been to find a real application to the
taxonomy [13] inspired by the real-world situations captured in images from remote sensing [2,31–33].

When analyzing an image for the first time, a machine could apply each of all known solutions
already used in remote sensing (e.g. spectral analysis [61]), one at a time, until detecting a problem.
However, this could be considered trial and error learning [35]. The use of the taxonomy [13] can bring to
the computational systems a more organized and structured approach of machine learning [28,35,64–74]
for detecting problems, i.e., more “intelligence.” In this case, for example, a decision-making system
should itself first identify a problem with the minimum interaction with humans before offering an
adequate solution that could be based on spectral analysis [61]. A decision-making system [13,16–18]
is a software installed in a computer which needs to identify different types of problems in order to
automatically select appropriate responses to deal with each type of problem [13]. In other words, the
machine should choose the appropriate response to the detected problem based on the type of anomaly
identified by the system that could be, for example, unexpected structure and structural components [13].
Our research is applied in this context.

The innovation of this work is to introduce the first solution to a practical application of the
taxonomy [13] to solve real-world problems [2,31–33]. What makes our study unique is that our study
allows computers to categorize real-world problems based on the use of a thorough taxonomy [13]
which is a “scaffolding” [75] to increase the machine’s abilities [35]. In other words, beyond identifying
problems, this study opens precedents for the machines to recognize the contexts in which the problems
are inserted. Each type of anomaly represents a different context [13]. Therefore, the most appropriate
response to a real-world problem depends on the context in which that problem is inserted [13].
Humans can learn how to solve problems inserted in different contexts much better than machines [75].
However, our study focuses on machines rather than humans. Providing conditions for a machine
to learn how to distinguish and detect different real-world problems taking into consideration the
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different contexts and based on a single concept (the taxonomy [13]) make our study unique. This
leads to a higher level of meaningful learning, i.e., an evolution in machine learning [28,35,64–74].

Among all relevant areas of research, we have found the first solution to this problem just in
remote sensing. It opens up an entirely new perspective and a set of possibilities for future work in
remote sensing and many other areas. In remote sensing, for example, the already known solutions for
specific problems, such as those based on spectral analysis [61], can be used to spread the taxonomy [13]
to be applied on different problems. In this research, the real-world situation captured in images from
remote sensing which inspired us to investigate solutions in PR and CV is water pollution, mainly
regarding occurrences of disasters [31–33]. If this situation could be revealed by the disagreement
between classifiers [13,15–18], then water pollution could be discovered by anomaly detection [13].

Therefore, this paper presents an incongruence-based anomaly detection strategy for analyzing
images from remote sensing, with the aim of describing its practical application in detecting water
pollution. Therefore, the practical application of the taxonomy [13] is introduced as a strategy for
detecting anomalies in real-world application [31–33], i.e., non-synthetic data present in images
from remote sensing. We used divergence [16,17] between two image classifications [5,13,15–18]
(contextual [9] and non-contextual [8,27–30]) in order to detect incongruence [13,15–18], revealing
the presence of anomalies [13]. This research focuses only on the detection of anomalies of the type
unexpected structure and structural components, which have been described by Kittler et al. in [13].

This paper is organized as follows: Section 2 presents a background; Section 3 comments on related
work; Section 4 summarizes the proposed strategy; Section 5 describes the materials and methods used
for performing the experiments; Section 6 reviews the achieved results; Section 7 discusses the results
and Section 8 presents the conclusions.

2. Background

2.1. The Differences between Outlier, Anomaly, and Incongruence

In a statistical analysis, an outlier [19–24] is an observation which deviates significantly from
other observations [19]. The deviation makes the observation appear to be generated by a different
mechanism. Therefore, the observation appears to be inconsistent with the remainder of the data series.
For example, consider an image of a large river for which all pixels are blue except one red pixel. In
this case, the red pixel is an outlier. Outlier, in the conventional meaning, is a term used to define any
type of anomaly [19]. The term “detection of outlier” [19–24] must be used when it is not necessary to
categorize the anomaly. The term “detection of anomaly” [13] must be used only when it is necessary
to categorize the anomaly. Therefore, it is common to find inadequate exchange of these terms in the
scientific literature [14,19].

Anomaly detection is the activity of discovering and categorizing non-conforming patterns and
occurrences when there is a failure to relate observed sensory data to information we already know
about the image [13]. For example, the detection of absence of water in the part of an image that is
correspondent to a large river is an out-of-pattern occurrence and, therefore, an anomaly. Because there
are different types of anomalies [13], their detection must distinguish each type of anomaly.

For example, anomalies of the type unexpected structure and structural components are those ones
detected when the analyses are performed taking into consideration the features which allow classifiers
to identify components of samples and how they are structured to compose the samples [13]. The
same analyses are applied to detect where differences related to components or their structures can be
found in the image, i.e., spatial analyses [13]. Nonetheless, it does not consider when they occurred,
i.e., temporal analyses [13]. Therefore, there is no time-series [76–78], i.e., satellite images before
and after the occurrence of an event [19] or disaster [31–33], involved in the context. Moreover,
detection of anomaly of this type depends on other three conditions to be satisfied: high sensory data
quality [26], contextual [9], and non-contextual [8,27–30] classification [5,13,15–18] of the same image,
and incongruence [13,15–18]. An example of this type of anomaly is related to detecting brown mud
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where there are high levels of turbidity in large rivers. In contrast, for example, incongruent results
from contextual and non-contextual classification of images qualified with low values indicate the
presence of another type of anomaly [13]. In another example, incongruent results from contextual
and non-contextual classification of time-series images [76–78] qualified with high values indicate the
presence of a third type of anomaly [13].

Incongruence [13,15–18] is the presence of discordant results and occurs whenever there is
contradictory evidence provided by the analyses of sensory data performed by different types of
classifiers [13]. For example, taking into consideration the two parallel analyses of the same part of an
image that is correspondent to a large river, there is incongruence if water is detected by one analysis
and not detected by the other one.

2.2. Non-Contextual and Contextual Classifiers

An environment can be modeled by some computational tools, e.g., those based on machine
perception, using samples (aggregation of pixels) from the application domain and previous information
about the problem [15]. Models trained with different samples are able to be represented by
classifiers [16]. In PR, classifiers are experts or learners which perform classifications, i.e., they
assign objects to one class or category among predefined others [79]. While predicting classes for a
common input, such as a scene, classifiers are expected to present similar probability estimates despite
the environment [16]. Consequently, computational tools, which base their decision-making actions on
the use of multiple classifiers, usually expect all classifiers to support the same hypothesis [17].

There are two different types of classifiers, non-contextual and contextual [13]. Non-contextual
classification is a general-level task that results in a weak learner, but it is less constrained than the
contextual one [79]. It is more powerful than a random classifier, despite being much less precise when
compared to the contextual one [79]. Contextual classification is a specific-level task which leads to a
strong learner, but it is more dependent on specific knowledge such as previous knowledge or training
data [9]. It is composed of multiple weaker classifiers that work in synergy to reach a more robust
classification [9].

On one hand, when either two non-contextual [27–30] or two contextual [9] classifiers diverge
in their classifications [13,15–18], this condition only exposes the limited classification of one of the
classifiers. It does not present any relation to incongruence detection [13,15–18] for both classifiers. On
the other hand, models of an environment which are represented by non-contextual and contextual
classifiers can be used for identifying incongruences if they are used concurrently [15]. After receiving
input data, both types of classifiers produce class-posterior probabilities as results [15]. Incongruence
happens when the input data presented to both classifiers induces a significantly large discrepancy
between posterior probabilities, i.e., incongruence is a conflicting prediction that happens when the
probability calculated by some non-contextual classifier is much bigger than the probability calculated
by some contextual classifier [15].

Therefore, the concurrent use of non-contextual and contextual classifiers allows systems to
recognize the occurrence of conflicting classifications [15]. It enhances the capability of decision-making
systems to detect incongruence [15–18]. Consequently, decision-making systems can have their control
actions also conditioned by the monitoring and detection of incongruence [15–18]. Decision-making
systems can guide computers to give adequate and fast responses after detecting problems [13], e.g., to
prevent water pollution disasters or to analyze their extents in the case of their occurrences. For this
reason, incongruence is of considerable interest for decision-making systems, since the strategy reveals
the occurrence of some type of anomaly [13].



Remote Sens. 2020, 12, 43 5 of 36

3. Related Work

3.1. Research on Outliers Detection

Most current research focuses on outlier detection, such as [1,14,19–25,44,51–54,66,76–78,80–82],
however we discuss below only those research which are more relevant to this article. An outlier-based
change detection method to detect abnormal points in multi-scale time-series images from remote
sensing was proposed by Yin Shoujing et al. in [76]. The method analyzes time-series images from
remote sensing and detects temporal and spatial changes. For that research, changes caused by
weather condition variation, climate changes, sensor aging, vegetation phenology, human activities,
and emergencies (such as drought, fire, pest, insect, etc.,) were considered abnormal. The research
focused on land cover changes. These changes are relatively rare over large areas, even for a long
period. The research concluded that the land cover changes registered in the images were outliers.

An algorithm capable of identifying outliers in the global data (distributed earth science databases)
without moving the whole data to a single database was presented by Bhaduri et al. in [80]. The
algorithm analyzes the data to search for extremes or outliers. The algorithm detects outliers which
are missed when data is available only at a single database. Their achieved results were compared to
the achievements of other algorithms which also detect outliers. An unsupervised outlier detection
framework was proposed by Qi Liu et al. in [25]. The framework requires no prior knowledge to
detect outliers and anomalous events. The research defined outliers as objects which have either low
spatial or temporal coherence with their neighbors, and it defined an anomalous event as a group
of outliers that share similar spatial and temporal anomalous behaviors. The research has defined
four different categories of outliers or anomalous events and has reinforced the importance of basing
anomaly detection studies on taxonomies of anomalies. Nonetheless, outlier detection is not enough
for systems to categorize many types of problems. Anomaly detection can overcome this drawback.

A new daily snow cover dataset was developed by Bormann et al. in [81]. The dataset is a
satellite-based observational record useful to characterize snow duration and cover extent. These
snow cover observations are important to detect outliers such as anticipated melt of snow, declines
in snow cover extent, and short season duration. The dataset was assessed using snow detection
estimates derived from Landsat Thematic Mapper data and was compared to another snow cover
dataset. Although the study focused on satellite data for the alpine region in Australia, the approach
can be applied to other regions and other sensors to help assess snow monitoring. Consequently, the
study contributes to research on water resource management and snow hydrology.

A method for detecting anomaly regions in each image of satellite image time-series was proposed
by Zhou et al. in [77]. The method identifies spatial-temporal dynamic processes of unexpected
changes of land cover based on seasonal autocorrelation analysis. The detection of spatial-temporal
processes of flooding in satellite data was used to assess the method. A deep-learning approach for
change detection applied to satellite time-series images was presented by Sublime and Kalinicheva
in [66]. Their approach was compared against other machine-learning methods. The achieved results
are better than the results of other existing techniques because of the method’s higher performance and
relative fast analysis. An online change detection algorithm was proposed by Chandola and Vatsavai
in [78]. They used a Gaussian process based non-parametric time-series prediction model in an online
mode. The process solves a large system of equations involving the associated covariance matrix which
grows with every time step. Their algorithm identifies changes monitoring the difference between the
predictions and previous observations within a statistical control chart framework.

An automatic clearance anomaly detection method was proposed by Chen et al. in [82]. The
clearance anomaly detection measures the distance between power lines and other objects (e.g., trees
and buildings) to evaluate whether the clearance is within the safe range. The clearance measurements
were compared with the standard safe threshold to find the clearance anomalies. The results were
validated through qualitatively visual inspection, quantitatively manual measurements in raw point
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clouds, and on-site field survey. The achieved results show that the proposed method detects the
clearance hazards, such as tree encroachment, effectively, and the clearance measurement is accurate.

3.2. Research on Anomaly Detection

Anomaly detection can be used by systems to categorize problems based on the use of taxonomies,
such as in [13]. Regarding identification of different types of anomalies useful to help decision-making
systems, a unified framework for anomaly detection was proposed by Kittler et al. in [13]. According
to them, the scientific literature conventionally understands an anomaly as an outlier. However, their
framework has expanded the concept of anomaly beyond the conventional meaning of outlier. They
claim that anomalies are related to many other occurrences, such as rare events, unexpected events,
distribution drift, noise, and novelty detection of an object or an object primitive. The framework
presented the multifaceted nature of anomalies and suggested effective mechanisms to identify and
distinguish each of them. The research has provided a taxonomy of anomalies that includes, for example,
unknown object, measurement model drift, unknown structure, unexpected structural component, component
model drift, and unexpected structure and structural components. Because the practical application of the
taxonomy is relatively new, and the detection and identification of the type of the anomaly involves
complex aspects, it is appropriate to study the practical application of each type of anomaly individually.
The research asserts that by identifying different types of anomalies, systems can select appropriate
responses to deal with each type of anomaly. For decision-making systems, the application of the
anomaly detection is potentially increased when it is based on incongruence.

3.3. Research on Incongruence

The use of incongruence for detecting the occurrences of some types of events was deeply discussed
by Weinshall et al. in [15]. They identified distinct types of events based on the conflicting predictions
given by weak and strong classifiers. Their study presented a framework for the representation and
processing of those incongruent events. According to them, an incongruent event is an event for
which the probability is divergent when computed based on the use of different types of classifiers.
They applied their methodology on pictures of dogs and motorcycles, and indoor videos recorded
to simulate common situations, such as people walking and talking. Similar to the other studies
we have reviewed, this work also does not present the application of their methodology to solve
real-world problems.

The decision cognizant Kullback–Leibler (DC-KL) divergence was proposed by Ponti et al. in [16].
The DC-KL divergence reduces the contribution of the minority classes which obscure the true degree
of classifier incongruence. Simulations, i.e., synthetic data, were used to analyze the properties of
the novel divergence measure. The measure is more robust to minority class clutter, less sensitive to
estimation noise, and achieves much better statistics for discriminating between classifier congruence
and incongruence than the classical KL divergence.

The delta divergence measure was proposed by Kittler and Zor in [17]. This measure focuses
on the most probable hypotheses. Consequently, it reduces the effect of the probability mass
distributed over the non-dominant hypotheses. The measure satisfies symmetry and independence of
classifier confidence.

A new classifier incongruence measure was proposed by Kittler and Zor in [18]. The measure
overcomes the shortcomings of previous measures and presents relatively low sensitivity to estimation
noise, under the assumption of constrained Gaussian distribution. Moreover, the measure determines
incongruence thresholds at given levels of statistical significance for different measured values corrupted
with different levels of noise.

3.4. Research on Real-World Problems, Which Inspired This Study

The studies commented in this subsection inspired us to investigate the potential application of the
taxonomy [13] to solve real-world problems. Spatially explicit long-term monitoring frameworks and
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priority mitigation measures to cope with acute and chronic risks were proposed by Fernandes et al.
in [31]. The research focused on the dam failure in Mariana, Brazil, where a dam breach abruptly
discharged between 55 and 62 million m3 of ore tailings into the Doce River. They claimed that
environmental disasters like that of the Doce River would become more frequent in Brazil. The study
is based on differential analyses of Landsat 8 scenes.

An automatic approach to enhance and detect river networks was proposed by Kang Yang in [2].
The research characterizes rivers in accordance with their Gaussian-like cross-sections and longitudinal
continuity. River cross-sections were enhanced by a Gabor filter. The approach was applied to detect
rivers in Landsat 8 images.

A study which focuses on the mapping and monitoring of the spatial extent of surfaces affected by
mine waste was presented by Mielke et al. in [32]. They studied the influence of sensors on the ability
to discriminate mine waste surfaces from their surroundings. The research explored the potential use
of images from remote sensing to map and monitor the spatial extent of mine waste surface material
in areas with mine tailings. They claimed that remote sensing analysis is very important to monitor
the extent of mine waste surfaces and that mine waste sites have the potential to contain problematic
contaminants, such as chrome, lead, uranium, etc. The research was based on the use of Landsat 8 data.

The impacts of oil extraction on the environment and health of indigenous communities in the
Northern Peruvian Amazon (Marañon) were assessed by Rosell-Melé et al. in [33]. They investigated
the occurrence of crude oil pollution in soils and river sediments caused by voluntary discharges or
accidental spills. Their study is related to a very productive oil area in Peru, which is placed in the
headwaters of the Amazon River. Their findings suggest that wildlife and indigenous populations in
the Marañon region are exposed to the ingestion of oil, and local spillage of oil in the watercourses
could have eventually reached the Amazon River.

4. The Proposed Strategy

4.1. Introduction to the Proposed Strategy

The flowchart in Figure 1 summarizes the methodology of the proposed strategy. More detailed
descriptions of this methodology as well as of each parameter used here can be found in Section 5
and Appendix A. All chosen Landsat 8 images (see the fourth column in Table 1) were thoroughly
evaluated by applying the proposed strategy. Each environment was evaluated separately. Many
Landsat 8 scenes were previously checked visually to assess their conditions in order to select only
those with low overlay contamination by cloud cover. This is critical to making geographical features
as visible as possible. Afterwards, each Landsat 8 scene (see the fourth column in Table 1) was chosen
according to its date of acquisition. In cases in which disaster had already occurred, the scene with
the date of acquisition closest to the date of the disaster (see the fifth column in Table 1) was chosen
in order to best evaluate the environment after the disaster. In the cases in which no environmental
disaster had occurred, the most recent images with low overlay contamination by cloud cover were
chosen (that is the case of the Athabasca, Elbe and Tietê Rivers).
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Figure 1. Flowchart of the proposed incongruence-based anomaly detection strategy. Landsat 8
band used, wavelength, and resolution: Band 1—coastal aerosol (0.43–0.45 µm) 30 m; Band 2—blue
(0.45–0.51 µm) 30 m; Band 3—green (0.53–0.59 µm) 30 m; Band 4—red (0.64–0.67 µm) 30 m; Band
5—near infrared (NIR) (0.85–0.88 µm) 30 m; Band 6—SWIR 1 (1.57–1.65 µm) 30 m; Band 7—SWIR 2
(2.11–2.29 µm) 30 m, and Band 8—panchromatic (PAN) (0.50–0.68 µm) 15 m. The coordinate reference
system (CRS) adopted uses the WGS84 geodetic reference frame and the universal transverse mercator
(UTM) map projection. The samples selected by the user (under input data) can be lakes, rivers, artificial
reservoirs, waterways, oceans, fields, forests, clouds, cities, highways, mountains, plantations, and
shadows of clouds. The figure also shows the border between the data preprocessing and learning and
classification approaches.
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Table 1. Information about the studied environments.

Environment
and

Country

UTM Zone
and

Center:
Latitude/Longitude

Disaster
Landsat 8

Image
(Scene)

Date of the: Image
Acquisition/Environmental

Disaster

Number
of

Samples

Doce River
Brazil

23
20◦13′48.07”S
42◦43′47.24”W

Dam
Breach

LC08_L1TP_217074_
20151112_20170402_01_T1

12 November 2015
5 November 2015 250

Athabasca
River

Canada

12
57◦18′35.86”N

112◦33′13.21”W
______ LC08_L1TP_043020_

20170826_20170913_01_T1
26 August 2017

No Disaster 100

Elbe River
Germany

32
54◦30′31.36”N
9◦29′07.80”E

______ LC08_L1TP_196022_
20180509_20180517_01_T1

9 May 2018
No Disaster 100

Marañon
River
Peru

18
4◦20′20.54”S

74◦45′45.97”W

Pipeline
Disruption

LC08_L1TP_007063_
20160827_20170321_01_T1

27 August 2016
22 August 2016 100

Tietê River
Brazil

23
23◦06′46.33”S
46◦30′16.96”W

Permanent
Sewage
Disposal

LC08_L1TP_219076_
20170827_20170914_01_T1 27 August 2017 Permanently 100

Arava Valley
Israel

36
30◦18′22.86”N
35◦02′25.51”E

Pipeline
Disruption

LC08_L1TP_174039_
20141214_20170416_01_T1

14 December 2014
4 December 2014 100

4.2. The Advantages of Our Strategy

The following are advantages of our strategy: (1) It takes into consideration the multifaceted
nature of anomalies exposed by [13]. (2) It helps to offer an appropriate response to deal with anomalies
of the type unexpected structure and structural components. (3) To the knowledge of the authors, this is
the first effort of a series of studies dedicated to investigate the practical application of detection of
anomalies in accordance with the taxonomy published in [13] to solve real-world problems. (4) This
research overcomes the number of categories studied in previous investigations, e.g., [25], which
presented four different anomalies, because our strategy is based on that taxonomy [13] which presents
ten different domain anomalies. (5) It processes just a single Landsat 8 image (scene), whereas other
proposed anomaly detection methods use time-series of Landsat 8 images for each environment to be
able to detect outliers. Time-series will only be used to detect anomalies of the types measurement model
drift and component model drift in future papers.

Additionally, this research has established a relationship between the occurrence of anomalies of
the type unexpected structure and structural components and the presence of brown mud in large rivers.
Let us consider the example of a mining company which needs to monitor whether the brown mud of
its reservoir is polluting a large river. In this example, the mining company does not need to deal with
any other type of pollutant other than brown mud, therefore a system able to detect only brown mud
is enough for the company. The fewer the images, the fewer the demands for computational resources,
consequently making the system cheaper. Moreover, the fewer the images the less data there is to be
processed, consequently making the system faster. Therefore, a system based on the application of the
proposed strategy, which deals with only one image per environment, will be advantageous. This
system will save more money and time for the mining company than systems based on other proposed
anomaly detection methods, because they generally deal with time-series.

For the case studies presented in this paper, the anomalies are related to brown mud or
crude oil present as either potential contaminators or contaminators of large rivers. Our strategy
identifies incongruences to detect oil spills in some areas where there is water, or brown mud, and
where there are high levels of turbidity in the water. These findings are important because an
incongruence-based anomaly detection strategy can greatly increase the ability of surveillance systems
to detect environmental disasters and to perform mappings.
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5. Materials and Method

5.1. Materials

Landsat 8 images (scenes of environments) from the United States Geological Survey (USGS)
data sets and benchmarks [83] were used to evaluate the proposed strategy. The USGS consists
of Landsat images and many other important data set collections, which are all freely available
in [83] for non-commercial purposes. These data sets were chosen to perform the experiments in
this study because they provide diversity regarding the images and geographical features for many
different environments. Moreover, they have been frequently used to evaluate many recently-published
proposals, such as [2,31,32], which allows us to compare the present proposed strategy with other
studies. For this study, each scene was provided by the USGS through the Earth Explorer Platform.

All images used in this study are qualified with value “9,” which represents the best quality for
Landsat 8 images [26]. Moreover, all Landsat 8 data used in the present experiments were collected by
the operational land imager (OLI), which is an instrument onboard the Landsat 8 satellite. The size of
each image is approximately 170 km north-south by 183 km east-west, i.e., 106 mi by 114 mi. These
images are available in the tagged image file format (TIFF). The three most common types of TIFF
images are gray scale, indexed, and RGB.

For this study, each task of our strategy, including all classifications, was systematically performed
using the Qgis 2.18.19 (Las Palmas) software with the Orfeo tool box. The software and the tool box
are all freely available in [84] for non-commercial purposes. Qgis is a well-known and extensively
used software composed of many tool sets, which are useful for analyzing images, mainly from remote
sensing, for geosciences.

5.2. Study Areas

Figure 2 shows the scenes and the hydrographical maps of the six different areas studied in this
research. The information about the studied environments, including the identification of the Landsat
8 images (scenes) used in the experiments, is listed in Table 1. The geographical settings are listed
in Table 2. All data are related to areas of large river basins, except the area of the Arava Valley. The
image of the Arava Valley in southern Israel, acquired by the Landsat 8 satellite on 14 December 2014,
was chosen because its soil received an estimated 3–5 million liters of crude oil on 4 December 2014
(29◦40′29.28”N 35◦0′25.56”E) [85]. This image was used to contrast the experiments with the Marañon
River since there is absence of water in that part of the Arava Valley. This contrast is important because
only two classes were defined for all experiments: “water,” which categorizes any open water body,
and “no-water,” which categorizes anything different from open water bodies, for example land, trees,
cities (this approach is similar to the one found in [86]). The idea is to evaluate if the proposed strategy
would detect oil as if it were water. If oil were to be detected as water, then all experiments with images
of the Marañon River basin would be invalidated. The image of the Marañon River in Peru, acquired
by the Landsat 8 satellite on 27 August 2016, was chosen because its water received high quantity of
crude oil on 22 August 2016. This oil spill was the consequence of a Colombian environmental disaster
caused by a pipeline disruption (4◦48′45.6”S 75◦23′56.8”W) [87]. The crude oil is present around almost
all extensions of the same pipeline since it was the source of other similar environmental disasters in
the preceding three years.
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(a) (b) (c) 

(f) (e) (d) 

Figure 2. The band compositions (R(4)G(5)B(6)) and the hydrographical maps of the six different areas
studied in this research. (a) Athabasca River in Canada. (b) Elbe River in Germany. (c) Arava Valley in
Israel. (d) Marañon River in Peru. (e) Tietê River in Brazil. (f) Doce River in Brazil. A band composition
is an image composed of different bands of a satellite image.
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Table 2. Geographical settings.

Environment
and

Country

Basin
Size

Length
of the
River

Predominant
Features in the
Environment

Human
Activity in
the Region

Potential
Threat to the
Environment

Potential
Contaminators or

Contaminators

Doce River
Brazil

83,400 km2

(32,201 sq mi)
853 km
(530 mi)

Mountains and
Valleys Mining Ore Tailings

Reservoirs Brown Mud

Athabasca River
Canada

95,300 km2

(36,800 sq mi)
1231 km
(765 mi) Lakes Mining Ore Tailings

Reservoirs
Brown and Red

Mud

Elbe River
Germany

148,268 km2

(57,247 sq mi)
1094 km
(680 mi)

Close to the
Coastline Mining Ore Tailings

Reservoirs Red Mud

Marañon River
Peru

358,000 km2

(138,000 sq mi)
1737 km
(1079 mi) Forest Transport of

Crude Oil Oil Pipeline Crude Oil

Tietê River
Brazil

150,000 km2

(58,000 sq mi)
1150 km
(710 mi)

Densely
Populated Region

Sewage
Disposal Sewer Sewage

Arava Valley
Israel ______ ______ Arid Valley Transport of

Crude Oil Oil Pipeline Crude Oil

The image of the Doce River in Brazil, acquired by the Landsat 8 satellite on 12 November 2015,
was chosen because its water received around 55–62 million m3 of iron ore tailings (brown mud)
on 5 November 2015, as a result of Brazil’s worst environmental disaster caused by a dam breach
(20◦12′23.4”S 43◦28′01.6”W) [31]. The image of the Elbe River in Germany, acquired by the Landsat 8
satellite on 9 May 2018, was chosen because of the location of a dam close to its water (53◦38′20.4”N
9◦25′02.0”E). The river could receive many millions of m3 of bauxite tailings (red mud) in the case
of an environmental disaster similar to that which occurred in Brazil. The image of the Athabasca
River in Canada, acquired by the Landsat 8 satellite on 26 August 2017, was chosen because there is a
set of dams located close to its water (57◦03′06.3”N 111◦35′18.0”W), which could cause the river to
receive many millions of m3 of brown or red mud in the case of an environmental disaster similar to
that which occurred in Brazil. The image of the Tietê River in Brazil, acquired by the Landsat 8 satellite
on 27 August 2017, was chosen because its water receives significant quantities of sewage each year
(23◦23′24.3”S 46◦58′36.5”W).

For each Landsat 8 image used in this study, at least 100 samples were located and validated
based on the topographic maps of the environments, adopted as ground truth for the purpose of this
work. There are samples spread all over the scene. The numbers of samples used as training data to
model each environment according to this approach are shown in the sixth column of Table 1, being
50% constituted by open water bodies and 50% by other geographical features. Regarding samples of
open water bodies which are expected to be classified as “water” by the classifiers, the chosen areas
were carefully selected from lakes, small rivers, artificial reservoirs, waterways, ocean (if present),
etc., present in the image. Regarding samples of other geographical features which are expected to be
classified as “no-water” by the classifiers, the chosen areas were carefully selected from fields, forests,
clouds, cities, highways, mountains, plantations, shadows of clouds, etc., present in the image.

Each image presents different difficulty levels to locate and analyze geographical features, in the
environments. For example, in any of these environments it is possible to find parts of the image
with an easy to detect, large, and singular geographical feature that differs from other parts of the
image with hard to detect, small, numerous, and geographically spread features. By using diversified
environments, it was possible to verify the accuracy of the proposed strategy to identify incongruences
in order to detect anomalies, when it is applied to different scenes as well as to different types of
geographical features present in images.
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5.3. Method

5.3.1. Data Preprocessing

Each image was processed performing tasks to identify incongruences in accordance with Figure 1.
Initially, seven bands from a Landsat 8 scene were added as raster layers to a new project of Qgis:
Band 1—coastal aerosol (0.43–0.45 µm) 30 m; Band 2—blue (0.45–0.51 µm) 30 m; Band 3—green
(0.53–0.59 µm) 30 m; Band 4—red (0.64–0.67 µm) 30 m; Band 5—near infrared (NIR) (0.85–0.88 µm)
30 m; Band 6—SWIR 1 (1.57–1.65 µm) 30 m; and Band 7—SWIR 2 (2.11–2.29 µm) 30 m. This first task
was done in order to organize the seven aforementioned bands into a single multiband raster to allow
easy access.

Second, a band composition was built in order to allow the user of the system to analyze the scene
visually. A band composition is an image composed of different bands of a satellite image. The band
composition uses pixels of different color values in order to represent various properties of objects from
the real world. A band composition is represented by Equation (1), for which, considering each Landsat
8 band as a two-dimensional array of pixels, x and y are coordinates of the pixels. The composition
vr is a tridimensional array composed of three overlapped elements (bands), being b4(x, y) = Band 4,
b5(x, y) = Band 5, and b6(x, y) = Band 6. Figure 3 shows the band composition R(4)G(5)B(6) as
an example.

vr(x, y) =


b4(x, y)
b5(x, y)
b6(x, y)

 (1)
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Figure 3. Example of a band composition R(4)G(5)B(6) of a Landsat 8 scene related to the Marañon
River (in Peru). The Marañon River is the red thick winding line from left to right in the image. In the
coordinate grid, the universal transverse mercator (UTM) false northing (10,000 km) was not added to
the N coordinate.
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Next, we applied a histogram stretching to the composite R(4)G(5)B(6). The procedure was
performed by a Qgis tool from the menu properties (style). Because Qgis needs to create a color table
in order to render the band composite, the tool calculates the table based on the mean and standard
deviation for the three selected bands.

The mean and the standard deviation were calculated respectively according to Equations (2) [88]
and (3) [88], for which, x and y are coordinates of the pixels, gi(x, y) is an image, K is the total number
of images g(x, y), i is the identifier of each image g(x, y), and f(x, y) is the image formed averaging K
images g(x, y). In Equation (3), h(x, y) is the image formed calculating the standard deviation. Figure 4
shows an example of an enhanced image [89].

f (x, y) =
1
K

K∑
i=1

gi(x, y) (2)

h(x, y) =

√√√
1
K

K∑
i=1

(gi(x, y) − f (x, y))2 (3)
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Figure 4. Enhanced Landsat 8 scene (R(4)G(5)B(6)) related to the Marañon River (in Peru). The Marañon
River is the red thick winding line from left to right in the image.

Shortly after, we created a new project in Qgis to receive the Landsat 8 processed image. The
chosen coordinate reference system (CRS) was WGS84 and with the universal transverse mercator
(UTM) map projection (see the second column in Table 1). Another band from the Landsat 8 scene
was added as a raster layer to the project of Qgis: Band 8 panchromatic (PAN) (0.50–0.68 µm) 15 m.
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Next, a pan-sharpening step based on component substitution (CS) or projection substitution was
performed [89]. Equation (4) represents a general formulation of this CS method [90],

M̂Sk = M̃Sk + gk(P− IL), k = 1, 2, . . . , N (4)

in which MS is a multispectral image, M̂S is a pan-sharpened image, M̃S is a multispectral image
interpolated at the scale of the panchromatic image, the subscript k indicates the kth spectral band,
g = [g1, . . . , gk, . . . .,gN] is the vector of the injection gains, P is the histogram-matched panchromatic
image, and IL is defined by the Equation (5) [91],

IL =
N∑

i=1

wiM̃Si (5)

in which the weight vector w = [w1, . . . , wi, . . . , wN] is the first row of the forward transformation
matrix and may be chosen, whenever possible, to measure the degrees of spectral overlap among the
multispectral and panchromatic channels.

Figure 5 presents a flowchart summarizing how the pan-sharpening method based on this CS
method works. The flowchart has blocks responsible to interpolate the multi-scale image for matching
the scale of the panchromatic image, calculate the intensity component based on Equation (5), match
the histograms of the panchromatic image and the intensity component, and inject the extracted details
based on Equation (4).
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For the pan-sharpening method, interpolation must guarantee the overlap of multispectral
and panchromatic images at a finer scale. Depending on the acquisition geometry of the imaging
instruments, interpolation with conventional zero-phase linear finite-impulse response filters may
require a manual realignment, e.g., after a bi-cubic interpolation. Alternatively, linear nonzero-phase
filters, having even numbers of coefficients, may be profitably used, according to [91,92].

Although the 30-meter original spectral bands are enough for dealing with large rivers, the
pan-sharpening was necessary for dealing with lanes that support oil pipelines. Those lanes, although
long, are much narrower than large rivers. Working with 15-meter images made possible the detection
of the presence of oil on those narrow lanes. It is important because, for example, there is a very
long lane, built in the vicinity of the Marañon River in order to support oil pipelines, that has already
received high quantities of crude oil as a consequence of successive oil spills. Whereas those lanes
should normally present either dry or humid soil around the pipelines, a significant oil spill turns the
soil impermeable causing accumulation of water around the pipelines. The detection of water retained
in the lane, therefore, is indicative of the occurrence of an oil spill on the soil of that area.

Next, the pan-sharpening resulting image had its histogram stretched. This step was performed
exactly the way it was previously mentioned, including the calculation of Equations (2) [88] and (3) [88].

Then, the second-order image statistics were calculated using the Orfeo toolbox in order to compute
the global mean and standard deviation for each band from a set of images. Their applications are
related to geometric modeling, i.e., to create a model taking into consideration the spatial distribution
of the pixels in the image. The model was created in order to statistically represent the enhanced image,
and the statistics are not affected by the enhancing parameters. The second-order image statistics are
those for which the slope of the power spectrum tends to be close to negative two. The power spectrum
of an M by M image is represented by Equation (6) [93], for which, F is the Fourier transform of the
image, ϕ are directions, and u and v are two-dimensional frequencies represented in polar coordinates
in accordance with Equations (7) and (8) respectively.

S(u, v) =

∣∣∣F(u, v)
∣∣∣2

M2 (6)

u = f cos∅ (7)

v = f sin∅ (8)

According to Reinhard et al. in [93]:

“(...) averaging over all directions ϕ and all images in the ensemble, it is found that on log-log scale
power as function of frequency f lies approximately on a straight line (...) This means that spectral
power as function of spatial frequency behaves according to a power law function. Moreover, fitting a
line through the data points yields a slope α of approximately negative two for natural images:

S( f ) ∝ A f 2 = A f−2−n (9)

Here, α ≈ −2 is the spectral slope, η is its deviation from −2, and constant A describes the overall
image contrast.”

Contrast can be obtained by image statistics, for example, calculating the standard deviation of all
pixel intensities divided by the mean intensity (σ/µ) in accordance with Equation (10).

σ2

µ2 =
∑
(u,v)

S(u, v) (10)

Afterward, in the image, at least 100 samples were selected and validated based on maps of
the environments (ground truth). The details regarding the chosen samples were described in the
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Section 5.2. The selection of samples is important because they are used as training data to model each
environment for contextual or non-contextual classifiers. Whenever users select samples for classifiers,
their classifications are named supervised or semi-automatic. A supervised classification allows the
user to collect samples from the image and to use a classifier trained with these samples to classify the
image [90].

The preprocessing is essential to prepare the data to be used for the learning and classification
approaches adequately. Our main contribution in the preprocessing is regarding the care for selecting
the samples. The samples were not located on the large rivers, ore tailings reservoirs, oil pipelines,
or lanes for oil pipelines, in order to avoid the experiments yielding biased results. In other words,
no areas located on the large rivers were selected to be samples because these samples could bias
the classifiers to classify the large rivers as “water.” No areas located on ore tailings reservoirs, oil
pipelines, or lanes for oil pipelines were selected to be samples because these samples could bias the
classifiers to classify those structures as “no-water.”

5.3.2. Learning and Classification Approaches

The training of classifiers step was performed based on the enhanced 15-meters image, the
statistical model, and the selected samples. The training is important in order to create the models
which will be used by the contextual or non-contextual classifiers. The classifiers use these models as
references based on the selected samples to classify features of interest present in the enhanced 15-meters
image [94]. Next, classifications were applied using various classifiers, such as Naïve Bayes [35], super
vector machine (SVM) [8,65], decision tree (DT) [29,30], k-nearest-neighbor (kNN) [27,28], and boost [9].
Among the tested classifiers, the best results were achieved by kNN and decision tree (non-contextual
classifiers), and boost (contextual classifier). Although the other tested classifiers were used the same
way as kNN, DT, and boost, they were excessively time-consuming. Moreover, their results did not
overcome those achieved by kNN, DT, and boost for the experiments of this study. Therefore, we
decided to consider only kNN, DT, and boost as the classifiers of the experiments in this study.

The kNN classifier is useful to perform discriminant analysis in situations for which it is hard to
determine parametric estimates of probabilities [27]. Let us consider that X = [x1,...,xN] is the training
data with N points of dimensionality D, Xi = [xi1,...,xik] is the k nearest neighbors of xi, Xt is the testing
data with Nt points, x0 is an arbitrary testing data point, X0 = [x01,...,x0k] contains its k nearest neighbors
from training data, for which the labels are [l1,...lk], and Ω = [Ω1, . . . , ΩC] is the set composed of C
classes present in the data. Additionally, the kNN considers that the k neighbors of a testing point have
equal weights [28].

The classification performed based on the kNN finds the nearest neighbors regarding a testing
point in the training data. Moreover, the classifier assigns the test point to the most frequently
occurring class of its k neighbors. The kNN classifies x0 based on the majority voting rule presented by
Equation (11) [28], for which δ is the Kronecker delta represented by Equation (12).

j∗ = arg
max

j = 1, . . . , C

 k∑
i=1

δ(li, j)

 (11)

δi j =

{
1, i f i = j
0, i f i , j

(12)

The decision tree classifier is useful to perform decision analysis by finding the most probable
decision for achieving an objective [29]. Many algorithms are able to build decision trees. Among
them, the Iterative Dichotomiser 3 (ID3) is a well-known algorithm used to generate decision trees
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from data sets. The ID3 is based on information entropy and information gain, which are represented
respectively by Equations (13) and (14) [30].

Ent(D) = −
k∑

d=1

pk log2 pk (13)

Gain(D, a) = Ent(D) −
V∑

v=1

|Dv|

|D|
Ent(Dv) (14)

These equations consider that the training sample set is represented by D = {(x1, y1), (x2, y2), . . . ,
(xm, ym)}, and |D| stands for the training sample number. The pk (k = 1, 2, . . . , |D|) is the ratio of every
type for every current sample set. A = {a1, a2 · · · ad} stands for the attribute set of D, e.g., color, shape,
texture, etc., for which d = {1, 2, . . . , k}. For each attribute ai, V is a set of features composed of v
different values and represented by V = {a1

i , a2
i , . . . , av

i }, e.g., a1
1 = green, a2

1 = blue, etc. Dv is the sample
subset related to the value av

i from ai in D, and |Dv| stands for the number of the current samples of
the subset. The entropy of D, Ent(D), characterizes the impurity of the collection of samples in D,
i.e., it measures the amount of uncertainty in the data set D. The gain of D, Gain(D,a), is the expected
reduction in the entropy of D related to the choice of the attribute a.

The Boost classifier combines iteratively weak classifiers by taking into consideration a weight
distribution on the training samples such that more weight is attributed to samples misclassified by
the previous iterations [9]. The final strong classifier is a weighted combination of weak classifiers
followed by a threshold. The steps performed by the Boost are described in detail as follows.
(1) Establish training sets.

Let us consider that xi and yi are respectively the samples and their labels. Moreover,
Dt(xi,yi) is the tth distribution over all these training samples. Let us also consider a training
set {(x1,y1),(x2,y2),...,(xn,yn)}, for which yi ∈ {-1,1}.
(2) Initialize weights.

The initialization of weights is performed according to Equation (15) [9].

D0(xi, yi) =
1
N

, i = 1, 2, . . . , N (15)

(3) Training loop.
For t = 1,2,...,T (T is the maximum training number):
(a) For each feature j, train a classifier hj which is a simple linear classifier, i.e., a classifier restricted

to use a single feature. Equation (16) expresses this type of classifier [9].

h(xi) =

{
1, i f p jxi, j < p jθi, j
−1, otherwise

(16)

In Equation (16), xi,j is the value of the jth feature of the sample xi, pj ∈ {−1,1} determines the
direction of the inequality sign, θi,j denotes the threshold value of the jth feature of the sample xi.
Equation (17) shows that the error εt is evaluated with respect to Dt(xi,yi) [9].

ε j =
∑

i:yi,h j

Dt(xi, yi) (17)

(b) Choose the weak classifier ht, with the lowest error εt.
(c) If εt ≥ 1/2, then stop.
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(d) If εt < 1/2, calculate αt which is the weight assigned to the classifier ht, in accordance with
Equation (18).

αt =
1
2

In
(1− εt

εt

)
(18)

(e) Equation (19) shows how to update the weights [9],

Dt+1(xi, yi) =
Dt(xi, yi)e−αt ytht(xi)

Zt
(19)

for which Zt is a normalized constant computed to insure that Dt(xi,yi) represents a true distribution,
established by Equation (20) [9].

N∑
i=1

Dt(xi, y) = 1 (20)

(4) Output the final classifier in accordance with Equation (21) [9].

H(x) = sign
(∑

Tk
t=1αtht(x)

)
sign(x) =


−1, x < 0

0, x = 0
1, x > 0

(21)

The image classifications are important in order to group features of interest into classes according
to the similarities of their characteristics. In the images resulting from the classifications, each class
is represented by a different color. In the case of this research, because only two different classes
were used for grouping features of interest, “water” and “no-water,” the images resulting from the
classification processes are binary [94].

At the end, a subtraction of images resultant from non-contextual and contextual classifications
was performed, computing the difference of all pairs of corresponding pixels from both images [88].
The subtraction was calculated according to Equation (22) [88], for which, x and y are coordinates
of the pixels, and f(x, y) and h(x, y) are respectively the images resultant from non-contextual and
contextual classifications. Image g(x, y) results from the subtraction. This subtraction is important
because it allows the automatic identification of congruence, in which case the subtraction results
in zero, or automatic identification of incongruence, in which it results in at least one pixel equal to
one. Incongruences can reveal the presence of anomalies as explained in [16]. When anomalies were
identified, they were analyzed and categorized by type in accordance with [13].

g(x, y) = f (x, y) − h(x, y) (22)

The learning and classification approaches are essential to make feasible the application of the
taxonomy [13] to solve real-world problems. Our main contributions in the learning and classification
approaches are as follows: (1) The use of a single Landsat 8 image previously assessed as high-quality
sensory data. (2) The creation of statistical and classification models adequate enough to make PR
tools learn how to classify the features present in the environments. (3) The subtraction of the results
from contextual and non-contextual classifiers to indicate the occurrence of incongruence. (4) Finding
the combination of the three previous conditions to establish a relation between the occurrence of
anomalies of the type unexpected structure and structural components and the presence of brown mud in
large rivers.

Regarding methodological limitations, it is recognized that the higher the resolution of the images,
the longer the computational time to process the images. Therefore, long time of processing is inevitable
when large images are evaluated by anomaly detection strategy. This time depends on the computer
being used and nowadays can vary from dozens of minutes to many hours. However, this variation,
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in the computational time, spent by the proposed strategy to process the images is acceptable since
different computers have different computational resources.

6. Results

Three evaluation measure mechanisms (contextual and non-contextual classifiers; sensory
data quality assessment; incongruence indicator) were used to reliably qualify the anomaly, as
described in [13], because they are three successful mechanisms to qualify anomalies. According to
Kittler et al. [13], three conditions need to be satisfied to guarantee the occurrence of the anomaly of
the type unexpected structure and structural components. The three conditions are high sensory data
quality, contextual and non-contextual classification of the same image, and incongruence. If any of
the three conditions are not present, it is not possible to identify an anomaly of this type. In this study,
the high sensory data quality was confirmed because all images are qualified with value “9,” which
represents the best quality for Landsat 8 images. The contextual and non-contextual classifications
were confirmed by the results achieved applying respectively boost and kNN or DT classifiers. The
presence of incongruence results was confirmed performing the last step of the strategy.

All assessments were carefully performed taking into consideration the application of the proposed
strategy on Landsat 8 images. Since all those Landsat 8 images are large (170 km north-south by
183 km east-west, i.e., 106 mi by 114 mi, approximately), the image of each environment was precisely
cropped in order to create a set of smaller images tiles. This was fitting, as the majority of assessment
approaches found in the scientific literature are applied to smaller images. Table 3 shows how the
cropping was done for each Landsat 8 scene.

Table 3. Information about how cropping was done for each Landsat 8 scene.

Environment
Country

Landsat 8
Scene

Scene
Resolution

(Height and Width
in Pixels)

Image Tile
Resolution

(Height and Width
in Pixels)

Total
Number
of Tiles

Doce River
Brazil

LC08_L1TP_217074_
20151112_20170402_01_T1 15705 × 15440 151 × 193 8400

Athabasca River
Canada

LC08_L1TP_043020_
20170826_20170913_01_T1 16499 × 16277 146 × 155 11836

Elbe River
Germany

LC08_L1TP_196022_
20180509_20180517_01_T1 16099 × 15882 145 × 143 12544

Marañon River
Peru

LC08_L1TP_007063_
20160827_20170321_01_T1 15498 × 15185 126 × 146 12792

Tietê River
Brazil

LC08_L1TP_219076_
20170827_20170914_01_T1 15484 × 15250 139 × 162 14641

Arava Valley
Israel

LC08_L1TP_174039_
20141214_20170416_01_T1 15432 × 15067 129 × 127 10528

In order to quantitatively validate the proposed strategy, we used the metrics accuracy, precision,
recall [15], and F-measure [82] for which, TP are true positives, i.e., images in which incongruences
are truly detected; TN are true negatives, i.e., images in which congruences are truly detected; FN
are false negatives, i.e., images in which congruences are falsely detected; FP are false positives, i.e.,
images in which incongruences are falsely detected. Accuracy measures the efficiency of results and is
represented by Equation (23), for which M is the number of images. Precision measures the relevancy
of results and is represented by Equation (24). Recall measures the quantity of truly relevant results
and is represented by Equation (25). F-Measure measures the balance between precision and recall and
is represented by Equation (26).

Accuracy =
TP + TN

M
(23)

Precision =
TP

TP + FP
(24)



Remote Sens. 2020, 12, 43 21 of 36

Recall =
TP

TP + FN
(25)

F−Measure = 2×
Precision×Recall
Precision + Recall

(26)

6.1. Experimental Results

Tables 4–9, which are all contingency tables [95–97], present the quantitative evaluations of
incongruence detections on real images for, respectively: Doce River, Athabasca River, Elbe River,
Marañon River, Arava Valley, and Tietê River.

Table 4. Contingency table helping to detect incongruences in the Landsat 8 scene of Doce River
consisting of 8400 tiles (TP—true positive, FP—false positive, FN—false negative, TN—true negative).

Incongruent Event Congruent Event

Detection Incongruent TP = 68 FP = 20
Detection Congruent FN = 0 TN = 8312

Table 5. Contingency table helping to detect incongruences in the Landsat 8 scene of Athabasca River
consisting of 12,084 tiles (TP—true positive, FP—false positive, FN—false negative, TN—true negative).

Incongruent Event Congruent Event

Detection Incongruent TP = 87 FP = 38
Detection Congruent FN = 0 TN = 11,959

Table 6. Contingency table helping to detect incongruences in the Landsat 8 scene of Elbe River
consisting of 12,544 tiles (TP—true positive, FP—false positive, FN—false negative, TN—true negative).

Incongruent Event Congruent Event

Detection Incongruent TP = 0 FP = 18
Detection Congruent FN = 0 TN = 12,526

Table 7. Contingency table helping to detect incongruences in the Landsat 8 scene of Marañon River
consisting of 12,915 tiles (TP—true positive, FP—false positive, FN—false negative, TN—true negative).

Incongruent Event Congruent Event

Detection Incongruent TP = 39 FP = 13
Detection Congruent FN = 0 TN = 12,863

Table 8. Contingency table helping to detect incongruences in the Landsat 8 scene of Arava Valley
consisting of 10,528 tiles (TP—true positive, FP—false positive, FN—false negative, TN—true negative).

Incongruent Event Congruent Event

Detection Incongruent TP = 0 FP = 25
Detection Congruent FN = 0 TN = 10,503

Table 9. Contingency table helping to detect incongruences in the Landsat 8 scene of Tietê River
consisting of 14,641 tiles (TP—true positive, FP—false positive, FN—false negative, TN—true negative).

Incongruent Event Congruent Event

Detection Incongruent TP = 0 FP = 0
Detection Congruent FN = 0 TN = 14,641
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6.2. Interpretation of the Results

Tables 4–9 present encouraging results. As can be seen, there is a significant quantity of true
positives associated with the image sets that present brown mud, whereas this quantity is slightly
lower for images presenting crude oil and considerably lower for images presenting red mud and
sewage. False positives are present in almost all image sets, but their number are of little significance
for this study.

The results regarding the accuracy, precision, recall, and F-measure of our strategy are shown in
Table 10.

Table 10. Accuracy, precision, recall, and F-measure of the proposed strategy for different environments
(Landsat 8 scenes).

Landsat 8 Scene Environment Accuracy Precision Recall F-Measure

LC08_L1TP_217074_20151112_20170402_01_T1 Doce River Basin ~99.76% ~77.27% 100% 87.18%
LC08_L1TP_043020_20170826_20170913_01_T1 Athabasca River Basin ~99.69% ~69.6% 100% 82.08%
LC08_L1TP_007063_20160827_20170321_01_T1 Marañon River Basin ~99.90% 75% 100% 85.71%

Table 11 shows the comparison of the accuracy, precision, recall, and F-measure of this study,
presented in the first row, with results achieved by other studies. It seems that the results are
quantitatively consistent with those found in the scientific literature. On average, our strategy achieved
the highest values of accuracy and recall among the presented studies. Although our strategy did
not achieve the highest values of precision and F-measure compared to the other studies, it is of little
significance because the achieved precision and F-measure are high.

Table 11. Comparison of the accuracy, precision, recall, and F-measure of this study with others.

Study Accuracy Precision Recall F-Measure

Ours ~99.78% ~73.96% 100.00% 85.04%
[98] 99.59% ———- ———- ———-
[81] 99.20% 91.85% 53.55% 67.66%
[99] 99.14% ———- ———- ———-
[76] 98.49% 83.84% 83.66% 83.76%
[80] 98.00% ———- ———- ———-
[25] ~91.20% 98.10% 95.7% 96.88%
[77] 88.68% 90.62% 79.62% 84.76%
[66] 84.00% 63.00% 81.00% 70.88%

[100] 81.18% ———- ———- ———-
[78] 78.00% 82.00% 75.00% 78.34%
[82] ———- 96.50% 94.8% 95.64%

Our strategy achieved the highest value of F-measure among the presented studies, except
for [25] and [82]. However, [25] and [82] are very specific case studies. Whereas in this paper and
in [66,76–78,80–82,98–100] the areas of study are heterogeneous, in [25], results were presented only
related to an ice shelf in the Antarctic region, which is a homogeneous area of study. According to [100],
results tend to be higher for homogeneous areas of study compared to heterogeneous ones. Whereas
in this paper and in [66,76–78,80–82,98,99] the altitude of the remote sensing is high; in [82], the sensor
was very close to the investigated outliers when the images were captured. The unmanned aerial
vehicle (UAV) which performed the remote sensing flew in a short distance over the area of study.
The higher the proximity of the area of study, the higher tend to be the precision and recall of the
detection, consequently making the F-measure higher. Therefore, our strategy achieved the highest
value of F-measure among the presented studies, for which the characteristic of the studied area is
heterogeneous and the altitude of the remote sensing is high.

Figures 6–8 show the examples of the application of the proposed strategy on three different
images (tiles) taken respectively from the Doce River, the Athabasca River, and the Marañon River
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scenes: (a) enhanced image, (b) result overlay on the real image, (c) contextual classifier output, and
(d) non-contextual classifier output. The incongruences can be recognized comparing the differences
between the outputs (c) and (d) of each image.

In the first case, apart from other geographical features, Figure 6a shows the non-polluted water
of a narrow and long lake, in black, in the bottom right corner and the water of part of the Doce River
polluted with ore tailing waste (brown mud), also in black, starting on the left, making a sharp turn,
and ending on the top. Figure 6c shows the capability of the contextual classifier (Boost) for recognizing
both polluted and non-polluted water, whereas Figure 6d shows the capability of the non-contextual
classifier (decision tree) for recognizing only non-polluted water.

In the second case, apart from other geographical features, Figure 7a shows part of a large reservoir
polluted with ore tailing waste (brown mud), in black, in the top right corner and the non-polluted
water of part of the Athabasca River, also in black, starting on the bottom left, making a sharp turn, and
ending on the top. Figure 7c shows the capability of the contextual classifier (boost) for recognizing
both polluted and non-polluted water, whereas Figure 7d shows the capability of the non-contextual
classifier (decision tree) for recognizing only non-polluted water.Remote Sens. 2019, 11, x FOR PEER REVIEW 23 of 36 
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Figure 6. An example of the application of the proposed strategy on an image tile taken from the
Doce River scene of Landsat 8: (a) Enhanced image, in which black pixels represent two water bodies,
(b) result overlay (white) on the real image, (c) contextual classifier (boost) output, (d) non-contextual
classifier (decision tree) output. In (b), white represents pixels detected as water polluted by brown
mud. In (c,d), black and white represent pixels classified as water and no-water respectively.



Remote Sens. 2020, 12, 43 24 of 36

In the third case, apart from other geographical features, Figure 8a shows part of a very long lane
built in the vicinity of the Marañon River in order to support oil pipelines, in black and orange, starting
on the top left and ending on the top right. Figure 8c shows the capability of the contextual classifier
(Boost) for recognizing the polluted water concentrated on the impermeable soil in the lane, whereas
Figure 8d shows that the non-contextual classifier (kNN) is not so much capable of recognizing the
polluted water in the lane.

In the last step of our method, the image of the Figures 6d, 7d and 8d were subtracted respectively
from the images of the Figures 6c, 7c and 8c. Figures 6b, 7b and 8b show the respective results of
these subtractions highlighted in white and overlapped on the real images. The small white points
spread on Figures 6b and 7b can be easily removed applying a morphological opening filter in the
image. However, the same filter would remove the result present in Figure 8b. Therefore, we have
decided to not apply the filter.

Remote Sens. 2019, 11, x FOR PEER REVIEW 24 of 36 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. An example of the application of the proposed strategy on an image tile taken from the 
Athabasca River scene of Landsat 8: (a) Enhanced image, in which black pixels represent two water 
bodies, (b) result overlay (white) on the real image, (c) contextual classifier (boost) output, (d) non-
contextual classifier (decision tree) output. In (b), white represents pixels detected as water polluted 
by brown mud. In (c) and (d), black and white represent pixels classified as water and no-water 
respectively. 
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Figure 7. An example of the application of the proposed strategy on an image tile taken from
the Athabasca River scene of Landsat 8: (a) Enhanced image, in which black pixels represent two
water bodies, (b) result overlay (white) on the real image, (c) contextual classifier (boost) output,
(d) non-contextual classifier (decision tree) output. In (b), white represents pixels detected as
water polluted by brown mud. In (c,d), black and white represent pixels classified as water and
no-water respectively.
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Figure 8. An example of the application of the proposed strategy on an image tile taken from the 
Marañon River scene of Landsat 8: (a) Enhanced image, (b) result overlay (white) on the real image, 
(c) contextual classifier (Boost) output, (d) non-contextual classifier (kNN) output. In (b), white 
represents pixels detected as water polluted by crude oil. In (c) and (d), black and white represent 
pixels classified as water and no-water respectively. 
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the classifiers return correct results and the majority of all positive results, then precision and recall 
present high values. We achieved high values of accuracy, precision, and recall with the application 
of the incongruence based anomaly detection strategy in this study. Therefore, a significant quantity 
of truly relevant results showed that the anomalies of the type unexpected structure and structural 
components were detected with efficiency by our strategy. The values of precision would be even 
higher if we had limited the studied areas to the vicinity of the locations with pollutants instead of 
studying the whole Landsat 8 scene, since many false positives were located far from these locations. 
Moreover, the achieved results demonstrate that the application of the proposed strategy to detect 
water pollution is consistent with other studies, although this study has introduced an approach to 
reach results that is unlike the approaches commonly used. 

The results presented in the first row of Table 10 are aligned with the results reached by [31], 
which reveal high concentration of brown mud in the Doce River. Moreover, the results presented in 
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Figure 8. An example of the application of the proposed strategy on an image tile taken from the
Marañon River scene of Landsat 8: (a) Enhanced image, (b) result overlay (white) on the real image,
(c) contextual classifier (Boost) output, (d) non-contextual classifier (kNN) output. In (b), white
represents pixels detected as water polluted by crude oil. In (c,d), black and white represent pixels
classified as water and no-water respectively.

7. Discussion

When the classes are very imbalanced, precision and recall measure the success of prediction. If
the classifiers return correct results and the majority of all positive results, then precision and recall
present high values. We achieved high values of accuracy, precision, and recall with the application
of the incongruence based anomaly detection strategy in this study. Therefore, a significant quantity
of truly relevant results showed that the anomalies of the type unexpected structure and structural
components were detected with efficiency by our strategy. The values of precision would be even higher
if we had limited the studied areas to the vicinity of the locations with pollutants instead of studying
the whole Landsat 8 scene, since many false positives were located far from these locations. Moreover,
the achieved results demonstrate that the application of the proposed strategy to detect water pollution
is consistent with other studies, although this study has introduced an approach to reach results that is
unlike the approaches commonly used.

The results presented in the first row of Table 10 are aligned with the results reached by [31],
which reveal high concentration of brown mud in the Doce River. Moreover, the results presented in
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the second row of Table 10 compare well with the results reached by [32], which highlight the ability to
discriminate mineral mine waste surfaces. Therefore, the present achieved results suggest that the
incongruence occurs because, contrary to the non-contextual classifier (decision tree), the contextual
one (boost) is able to detect the water, even for cases in which there is high turbidity in the water of the
studied river or reservoirs, because of the high concentration of brown mud.

The results presented in the third row of Table 10 are parallel to the results reached by [87], which
also correspond to detection of oil spills in optical satellite images. In the case of our study, instead of
detecting oil spills on the surface of the water such as in [87], the detection was performed in lanes
built in the vicinity of the Marañon River in order to support oil pipelines. A significant oil spill
turns the soil impermeable causing accumulation of water around the pipelines, whereas those lanes
should normally present either dry or just humid soil around the pipelines. Therefore, the present
achieved results suggest that the incongruence occurs because, contrary to the non-contextual classifier
(kNN), the contextual one (Boost) presents high sensibility to detect the water around the pipelines (see
Figure 9), revealing the presence of oil spill on the soil of that area. Additionally, the results presented
in Table 8, which are related to the Arava Valley, have demonstrated that neither the non-contextual
nor the contextual classifier classify crude oil as water in a dry environment, which corroborates the
causes of the incongruence previously mentioned.
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Figure 9. Section of an image of a lane built in the vicinity of the Marañon River in order to support
an oil pipeline. The pipeline, in the middle-bottom of the image, suffered a severe disruption on 22
August 2016. As a consequence, the lane and the Marañon River received high quantity of crude oil
causing an environmental disaster (4◦48′45.6”S 75◦23′56.8”W) [87]. The image shows the crude oil
around the pipeline. Source: http://geoportal.regionloreto.gob.pe/mapa-de-derrame-de-petroleo-en-el-
tramo-i-del-oleoducto-norperuano/ (accessed on 9 July 2018).

Outcomes from this study align with those presented by Kittler et al. in [13] and
Weinshall et al. in [15], because they perform research involving the use of incongruences and recognize
their potential to be applied to anomaly detection. Additionally, the current findings expand these
prior studies to real-world images from remote sensing, instead of only synthetic data, and apply
to real-world applications, such as the detection of water pollution. For example, after detecting
anomalies, decision-making systems can guide computers to give adequate and fast responses to
prevent water pollution as an environmental disaster or to analyze the extent to which they occur.
Furthermore, the proposed strategy broadens a list of studies, such as [55–60,101], engaged to analyze
images from remote sensing to offer possible solutions to detect and monitor water pollution.

The results achieved by this study demonstrate higher accuracy and recall than previous studies’
results, such as [25,66,76–78,80–82,98–100]. Therefore, the results suggest that our strategy provides
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more efficient results and a higher quantity of truly relevant results than the referred studies. The
smallest difference regarding accuracy in comparison to our study was reported by Che et al. in [98].
The high level of accuracy was achieved by applying a method based on machine learning. However,
Che et al. did not report values in regard to recall.

Another small difference regarding accuracy in comparison to our study was reported by
Bormann et al. in [81]. In that study, a method based on detection index allowed them to achieve a high
level of accuracy. In contrast, [81] reported the largest difference regarding recall in comparison to our
study. Therefore, our method provides much more truly relevant results than the one proposed by them.

Three other studies [76,80,99] reported accuracies, whose values are lower than the one achieved
by our study, although they are still close. In [76], a method based on median absolute deviation
provided high level of accuracy. However, our method provides more truly relevant results than
the one proposed in [76]. Similarly to our study, SVM was a method applied for classification by
Bhaduri et al. in [80]. In contrast, we achieved the best results by applying other classifiers in our
study compared to the use of SVM. A significant result was provided by a deep-learning method based
on convolutional neural network (CNN) in [99]. Although [80,99] achieved high levels of accuracy
applying their methods, they did not report results in regard to recall.

Other studies, such as [66,77,78,100], have more significant differences regarding both accuracy
and recall in comparison to our study. In these studies, the levels of accuracy and recall were achieved
after applying a method based on: (1) seasonal autoregressive integrated moving average (SARIMA)
model for autocorrelation analysis in [77]. (2) Gaussian process (GP) based non-parametric time-series
prediction in [78]. (3) Maximum likelihood classification in [100]. (4) Joint fully convolutional
auto-encoders (FC AE) model in [66]. The results suggest that our method provides significant higher
levels of both accuracy and recall in comparison to the methods based on SARIMA, GP, and AE.
Unfortunately, [100] did not report values in regard to recall.

Focusing the discussion specifically on the study presented by Sublime and Kalinicheva in [66],
they proposed a deep-learning method for change detection (FC AE). Their method is useful for
post-disaster damage mapping. Although they also deal with real-world problems, their study differs
from ours because their method detects outliers rather than apply the taxonomy [13] (i.e., detecting
anomalies) to solve real-world problems. According to Sublime and Kalinicheva, their outlier detection
method achieved the best results when it was compared against other machine-learning methods. The
levels of accuracy and recall achieved by our strategy are significantly higher than the ones achieved
by the deep-learning method proposed in [66]. Additionally, the level of precision achieved by the
deep-learning method proposed in [66] is lower than the one achieved by our strategy. Therefore,
the results suggest that our method provide results that are more efficient and relevant, and a higher
quantity of truly relevant results compared to machine-learning methods applied for post-disaster
damage mapping, for example.

As previously mentioned, to the knowledge of the authors this is the first endeavor of a series
of studies dedicated to investigating the detection of anomalies in accordance with the taxonomy
published in [13] and their potential applications to remote sensing. This study proposed a strategy
taking into consideration the multifaceted nature of anomalies [13], whereas other detection methods
have been dealing with different types of anomalies as if all of them were outliers. Since the present
strategy is based on this taxonomy [13] which presents ten different domain anomalies, this study
overcomes the number of categories studied in previous investigations, e.g., [25] which presented four
different anomalies. The smallest differences regarding the recall in comparison to our study were
reported by Qi Liu et al. in [25] and Chen et al. in [82]. However, Chen et al. did not report their
achieved accuracy. Overall, our study provides relevant improvements over other studies and also
important support and guidelines for future studies.

Regarding limitations, it should be noted that the accuracy of the proposed strategy varies
depending on the environment of application. It is inevitable when many different geographical
features are evaluated by some anomaly detection strategy. However, the differences in levels of
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accuracy of the proposed strategy are of little significance. Further work is planned to examine the
effects of applying filters on the images before applying them to the proposed strategy to determine if
the different levels of accuracy can be minimized among different environments. The results indicate
that the proposed strategy accurately detects anomalies related to brown mud and crude oil in the
majority of evaluated images from remote sensing.

Regarding negative results, it should also be noted that the detection of incongruence, when
the water pollution is caused by either red mud or sewage (Tables 6 and 9), was not obtained by the
proposed strategy. This limitation is probably caused by the use of seven bands as a pattern for all
experiments of this study. However, it is of little significance, since the ability of the proposed strategy
detecting incongruence was demonstrated when the water pollution is caused by either brown mud or
crude oil. All in all, the achieved results indicate that the proposed strategy detects the presence of
anomalies of the type unexpected structure and structural components, in accordance with [13].

8. Conclusions

This paper presented an incongruence-based anomaly detection strategy for analyzing images
from remote sensing, with the aim of describing its practical application in detecting water pollution.
Therefore, the practical application of incongruence was introduced as a strategy for detecting anomalies
in real-world applications, i.e., non-synthetic data present in images from remote sensing.

The proposed strategy detected anomalies of the type unexpected structure and structural components,
distinguishing them from outliers. All processing was performed on just a single Landsat 8 image,
whereas other methods use time-series for each environment to be able to detect outliers. This means
that systems dedicated to observing or monitoring occurrences of anomalies of this type will save time
and use few computational resources because they will process a single image. Therefore, systems
based on the application of our strategy will help by saving more money than systems based on other
proposed detection methods.

This study has established a relationship between the occurrence of anomalies of this type and the
presence of brown mud or crude oil as either potential contaminators or contaminators of large rivers.
Our strategy identified incongruences to detect oil spills in some areas where there is the presence
of water, or brown mud where there are high levels of turbidity in the water. These findings are
relevant since an incongruence-based anomaly detection strategy can significantly increase the ability
of surveillance systems for detecting environmental disasters and for performing mappings.

Although the achieved results are encouraging, future studies should investigate: (1) The effects
of using Gaussian process-based filters on the images before applying them to the proposed strategy in
order to know if it would be useful to minimize differences between the levels of the accuracy among
different environments. (2) The effects of applying feature extractors on the images as a preprocessing
stage before applying the proposed strategy in order to determine if the classification process can be
improved for all environments. (3) Whether our strategy will be able to detect other pollutants not
using pan-sharpening.

Future work will investigate: (1) Practical applications of other types of anomalies individually,
such as unknown object, measurement model drift, unknown structure, unexpected structural component,
and component model drift. (2) A single system to deal with the practical application of all types of
anomalies together.

It is expected that this study will open up an entirely new range of applications for computational
tools on images from remote sensing in order to model and analyze environments. Moreover, this anomaly
detection strategy can be applied to a wide range of studies in geosciences and other scientific areas.
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Appendix A

Appendix A.1. Sampling

Figure A1 shows the locations of samples created on an image taken from the Doce River scene of
Landsat 8 and highlights two examples of samples: from water and no-water land cover.
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Appendix A.2. Rendering

We used the default parameters of Qgis 2.18.19 for rendering, which means: multiband color to
Render type, Band 4 to Red Band, Band 5 to Green Band and Band 6 to Blue Band. The other parameters
used were stretched to MinMax to Contrast enhancement, 2%–98% to Cumulative count cut, 2 to mean
+/- standard deviation, normal to blending mode, and off to Greyscale. More detailed descriptions of
this tool as well as of each parameter used here can be found in [89].

Appendix A.3. UTM Projection

In the UTM projection the terrestrial surface is mapped into 60 zones. Each zone spans 6◦ in
longitude and ranges from 84◦N to 80◦S. The origin of the UTM coordinates (E, for east-west direction
and N, for north-south direction) is where the equator crosses the zone center meridian. In order to
avoid working with negative values, a false easting of 500,000 m is added to the coordinate E, both
east and west of the central meridian. As for N, when in the south hemisphere, a false northing of
10,000,000 m is adopted [102].

Appendix A.4. Pan-Sharpening

First CS provides a sensor modelling to zooming and register [90] the multi-spectral image on
the panchromatic image, i.e., to perform the projection of an image into the geometry of another
one. Second, CS fuses the co-registered pixels [90] of the multispectral image with the pixels of the
panchromatic one by the application of a pixel-by-pixel fusion operator. This pan-sharpening method
operates in the same way on the whole image.

The advantages of this pan-sharpening method are the high fidelity in rendering the spatial details
in the final product and the fast, easy implementation. The limitation of this pan-sharpening method is
the inability to account for local dissimilarities between the panchromatic and multispectral images
originated by the spectral mismatch between the panchromatic and multispectral channels of the
instruments, which may produce significant spectral distortions. Another formalization of the CS
method can solve this limitation [91]. It takes into consideration that the fusion process can be obtained
through a proper injection scheme without the explicit calculation of the forward and backward
transformations, if the substitution of a single component and the hypothesis of a linear transformation
are considered. This CS method fuses the multispectral image with the panchromatic one allowing the
resultant image to show a combination of the high spectral resolution of the multispectral image with
the high spatial resolution of the panchromatic one.

The steps used to perform the pan-sharpening method based on this CS method are described
in detail as follows. At the start, the method projects the multispectral image into another space.
It is assumed that this transformation separates the spatial structure from the spectral information
in different components. Then, it replaces the component containing the spatial structure with
the panchromatic image to enhance the transformed multispectral image. Meanwhile, it performs
histogram matching of the panchromatic image to the selected component. The histogram matching
is performed before substitution, because greater correlation between the panchromatic image and
the replaced component corresponds to lower levels of distortion introduced by the pan-sharpening
method. At the end, the data is brought back to the original space through the inverse transformation.

In Qgis, two tools from the Orfeo tool box, superimpose sensor and pansharpening (RCS), were
used to perform respectively the projection and the fusion. Default values were chosen as parameters
for performing the projection, i.e., the superimpose sensor tool used the values zero for default
elevation, four for spacing of the deformation field, and two for radius for bi-cubic interpolation, and
Nearest Neighbor interpolation. The projection was necessary in order to prepare the image for the
pan-sharpening. Pan-sharpening was then performed in accordance with the algorithm of component
substitution (RCS) in order to increase the spatial resolution of the image based on the Band 8. More
detailed descriptions of these tools as well as of each parameter used here can be easily found in [92].
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Appendix A.5. Learning and Classification Approaches

This step was performed by an Orfeo tool named TrainImagesClassifiers, which is itself completely
responsible for performing automatically the training, validation, and testing of each classifier. Because
the samples set is statistically significant to represent the whole scene, the tool uses hold-out validation
for which the tool defines separately the percentage of each data set: training data set, validation data
set, and test data set.

Some default parameters were used for training all classifiers: zero for default elevation, 1000
for maximum training sample size per class, 1000 for maximum validation sample size per class, one
for bound sample number by minimum, 0.5 for training and validation sample ratio, class for the
name of the discrimination field, and zero for set user defined seed. Other default parameters, which
were used for training a specific classifier, are discriminated as follows. For the kNN classifier: 32 for
number of neighbors, knn for classifier to use for training, and set off edge pixel inclusion. For the DT
classifier: 65535 for maximum depth of the tree, 10 for minimum number of samples in each node, 0.01
for termination criteria for regression tree, 10 for cluster possible values of a categorical variable into
K ≤ cat clusters to find a suboptimal split, 10 for K-fold cross-validations, set use 1seRule flag to false,
set TruncatePrunedTree flag to false, dt for classifier to use for training, and set off edge pixel inclusion.
For the Boost classifier: one for maximum depth of the tree, 100 for weak count, 0.95 for weight trim
rate, real for boost type, boost for classifier to use for training, and set off edge pixel inclusion. More
detailed description of the TrainImagesClassifiers tool as well as of each parameter used here can be
easily found in [94].

The advantage of the kNN is the fast and easy implementation. The limitation of the kNN
is that the commonly employed Euclidian distance metric, which considers the data as isotropic
or homogeneous, is generally not suitable for many real-world data sets. Nevertheless, learning a
new distance metric can solve this problem. Therefore, it is possible to improve this classification
if the kNN learns a distance metric derived from the training data, such as the one represented by
Equation (27) [28], for which T represents a linear transformation.

dis
(
xi, x j

)
= ‖T

(
xi − x j

)
‖

2
(27)

The ID3 can be used to build the block diagram of the decision tree model presented in
Figure A2a [30], starting from the root node, after generating internal nodes, and finishing each
branch with a leaf node. For the ID3, the maximum information gain is used as a heuristic approach to
choose the optimal decision attribute ai from A that will be assigned to the next internal node. The root
and internal nodes correspond to the different test attributes, i.e., the root or each internal node tests
the assigned attribute ai, as shown in Figure A2b. A branch for node is generated for every value av

i of
ai. Sample sets Dv included in every node are classified to respective child node based on the heuristic
approach. In the extreme of each branch, each leaf node shows a decision result that designates a
classification regarding the class ct, for which t = {1, 2, . . . , n}. The class ct, ct ∈ C = {c1, c2, . . . , cn}, is
determined by a specific combination of features attributed to ct, e.g., ct = {green, square, rough}, that
will be assigned to objects during the training and test procedures. The root node includes the whole
sample set D. The path which goes from the root node to every leaf node represents a test rule.

The advantages of the ID3 are its obvious intuitive characteristic and its easy decomposability.
The limitations of the ID3 are the difficult to control tree sizes, the time lost to calculate the information
entropy expression by using the logarithmic algorithm, and the tendency to select the attribute which
has more values in the procedure to get the optimal attribute. Because these limitations can reduce
performance, the use of this version of the ID3 is not appropriate for real-time systems. Real-time
systems are not addressed in our study. Using an improved version of the ID3 algorithm based on
the simplification of the information entropy can solve these limitations, such as in [30]. However,
the description of this other version is of little significance here, because this improvement causes no
impact on the quality or quantity of the results of this study.
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The advantages of the boost are the ability to integrate different classifiers that focus on different
aspects of a problem and assign more weight on features that can train more accurate weak classifiers.
The limitation of the boost is the slower and harder implementation compared to weak classifiers. This
limitation was addressed by using the Boost as coded to run in our tests.
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