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Abstract: The paper proposes a novel framework for registering and segmenting 3D point clouds
of large-scale natural terrain and complex environments coming from a multisensor heterogeneous
robotics system, consisting of unmanned aerial and ground vehicles. This framework involves data
acquisition and pre-processing, 3D heterogeneous registration and integrated multi-sensor based
segmentation modules. The first module provides robust and accurate homogeneous registrations
of 3D environmental models based on sensors’ measurements acquired from the ground (UGV)
and aerial (UAV) robots. For 3D UGV registration, we proposed a novel local minima escape
ICP (LME-ICP) method, which is based on the well known iterative closest point (ICP) algorithm
extending it by the introduction of our local minima estimation and local minima escape mechanisms.
It did not require any prior known pose estimation information acquired from sensing systems
like odometry, global positioning system (GPS), or inertial measurement units (IMU). The 3D
UAV registration has been performed using the Structure from Motion (SfM) approach. In order
to improve and speed up the process of outliers removal for large-scale outdoor environments,
we introduced the Fast Cluster Statistical Outlier Removal (FCSOR) method. This method was
used to filter out the noise and to downsample the input data, which will spare computational and
memory resources for further processing steps. Then, we co-registered a point cloud acquired
from a laser ranger (UGV) and a point cloud generated from images (UAV) generated by the
SfM method. The 3D heterogeneous module consists of a semi-automated 3D scan registration
system, developed with the aim to overcome the shortcomings of the existing fully automated
3D registration approaches. This semi-automated registration system is based on the novel
Scale Invariant Registration Method (SIRM). The SIRM provides the initial scaling between two
heterogenous point clouds and provides an adaptive mechanism for tuning the mean scale, based on
the difference between two consecutive estimated point clouds’ alignment error values. Once aligned,
the resulting homogeneous ground-aerial point cloud is further processed by a segmentation module.
For this purpose, we have proposed a system for integrated multi-sensor based segmentation
of 3D point clouds. This system followed a two steps sequence: ground-object segmentation
and color-based region-growing segmentation. The experimental validation of the proposed 3D
heterogeneous registration and integrated segmentation framework was performed on large-scale
datasets representing unstructured outdoor environments, demonstrating the potential and benefits
of the proposed semi-automated 3D registration system in real-world environments.
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1. Introduction

The registration of 3D point clouds of outdoor environments is an important aspect in field
robotics. In the past few years, many research efforts have been made to improve the performance
and capabilities of the existing registration methods. The main concern is to obtain a more accurate
and complete 3D model of the outdoor environment based on a fusion of data taken from different
sensors as well as from different heterogeneous multi-robot systems [1,2]. The high complexity of
outdoor environments poses a special challenge for the existing autonomous robotic technologies.
One of the main challenges of such a task is the optimal and timely fusion of 3D data in order to
improve the perception capabilities and the scene understanding. Particular attention is paid to exploit
the advantages of deploying ground and aerial robotic platforms equipped with different perceptual
sensor systems.

The potential of deploying heterogeneous multi-robot systems composed of UAVs and UGVs
could have an important benefit in various application scenarios, ranging from military to commercial
applications [3]. Aforementioned systems increasingly attract the focus of the research and robotics
community, especially because of the many advantages which could be achieved by merging the
capabilities of each vehicle into a singular collaborative system [4]. This can be especially true in
complex and difficult safety-critical applications like search and rescue missions. The value of such a
heterogeneous robot system in a disaster scenario has been presented in [5], where important tasks are
the exploration, perception, and mapping of an unknown environment in timely sensitive manner.
These tasks could also be accomplished also by deploying a single vehicle, either a ground or an aerial
system. However, each platform imposes its own limitations. The ground vehicles can sometimes
be incapable of traversing and perceiving the entire environment with limited or even unviewable
vantage points. On the other hand, the aerial systems typically have limited payload capacities and can
only operate during short time durations. Each of the robotic platforms also has its own advantages.
The ground robots can interact with the environment, support a higher weight and thus typically
more sophisticated sensor payloads, and they have the capability to execute longer-duration missions
(often for multiple hours) because of their larger battery capacity. The main advantages of the aerial
robots are that they can be used in order to traverse the environment more easily and provide a better
vantage point.

It is clear that complex operations such as search and rescue missions could be more efficiently
accomplished by combining these single robots into a heterogeneous team [6]. Such a configuration can
often achieve a complementary increase in the performance and may be better balanced to obtain higher
quality and more complete information while guaranteeing robustness to the challenges imposed by
the hard environmental conditions in the search and rescue context. Using an aerial robot, we can
obtain a dense 3D model of the area on a larger scale, the acquisition time is shorter, and data of the
larger environment can be acquired with more rich information like texture. The ground 3D model,
collected with the ground robot, allows us to generate more accurate 3D models of the environment,
but for a smaller-scale area [7,8]. A logical step would be to fuse these two point clouds into one
comprehensive environmental representation.

The problem of fusing data coming from different robotic platforms and sensors, with the
aim to generate consistent 3D models, is becoming increasingly widespread within the research
community [7,9,10]. In our paper, we will introduce the 3D heterogeneous registration and
integrated segmentation framework for co-registering and segmenting 3D maps data coming from a
heterogeneous UGV-UAV systems. The proposed framework is generic in the sense that it can accept
any kind of 3D data from aerial and ground based robotic systems. The most widespread purpose for
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the fusion of ground and aerial based data is to increase the accuracy and completeness of the generated
3D map, since the data are combined from a ground and aerial point of view. Once aligned, the global
map is used to perform more high-level processing tasks like ground object segmentation and color
segmentation. The process of fusing two heterogeneous 3D datasets is a challenging task. In order to
overcome the limitations of dealing with 3D data sets coming from different sensor systems (lasers,
cameras) and different perspectives of the environment (ground-UGV and air-UAV), we propose an
automated and robust 3D registration process based on the Scale Invariant Registration Method (SIRM)
with scale adaptation and fine point cloud alignment, allowing us to consistently align two or more
heterogeneous point clouds. The novelty of this method lies in its capability to cope with an arbitrary
scale difference between the point clouds, without any information about their initial position and
orientation. Furthermore, the SIRM method does not require having a good initial overlap between
two heterogeneous datasets. That is one of the advantage of the SIRM method over most pairwise
registration and groupwise registration algorithms [8,11,12] which require a rough pre-alignment of
the different point sets. Moreover, the proposed SIRM method is robust to errors in the process of
selecting the corresponding pairs of points in both point clouds.

In the case of 3D point cloud generation from the UGV, the matching and displacement estimation
of two consecutive point cloud measurements are solved in our paper by our novel method named
Local Minima Escape ICP (LME-ICP). It allows a fast and accurate registration of 3D models of
large-scale outdoor environments without any prior known pose estimation information acquired
from sensing systems. The main advantage of LME-ICP method over other existing ICP based
methods is its ability to estimate the local minima from the new environmental scan and escape
from them in case of unstructured large-scale outdoor environments. Due to the open loop and
iterative nature of the ICP algorithm, it is not possible to guarantee the avoidance of local minima [7].
Recently, there have been some efforts in solving the local minima problem, as presented in [13]
and [14]. These approaches produce an accurate 3D map of outdoor environments with detecting and
escaping from local minima situations. However, they are used for smaller environments. In contrast
to above-mentioned approaches, our proposed LME-ICP method provides a precise 3D model of
large-scale outdoor environments for sufficient larger number of points (over 31,000,000) with efficient
local minima detection and escape. The performance of this method was verified along a comparison
with several ICP based methods. In addition, we have validated our framework with reference ground
truth data calculated with high accuracy geodetic precision.

In order to improve 3D registration process, the effective algorithm for detecting and removing
outliers in 3D input scans is introduced in this paper. The presence of outliers represents a significant
problem for automated 3D laser scanning system [15]. The 3D model obtained from the point clouds
with outliers typically misses many details and/or reconstructs wrong geometry. It is very important
to provide a fast outliers detection in 3D input scans prior to the filtering of points in the point
cloud due to negative effects which outliers have on the output of filtering algorithms. The main
shortcomings of traditional methods are coping with a high dimensionality of the data in large 3D point
clouds and satisfying real-time requirements for the outliers removal in the large 3D point clouds [16].
Our proposed filtering algorithm includes the Voxel-subsampling and Fast Cluster Statistical Outlier
Removal (FCSOR) approaches. The introduced FCSOR represents an extension of the Statistical
Outliers Removal (SOR) method [17]. The FCSOR simultaneously provides improvement of the
accuracy and the computational tractability of the widely used SOR method. Therefore, it is time
efficient for outlier analysis and removal in arbitrary large datasets, including millions of points.
This filtering process eliminates the erroneous points provided by the scanner: points generated
at infinity (spread points), outliers (points outside the scene), and noise (due to reflections and
shiny surfaces).

The 3D registration process using the measurements of UAV sensors is based on the well known
Structure from Motion (SfM) approach. The SfM algorithm is designed to extract 3D relief information
and generate a point cloud of the environment based on the matched features from a set of acquired
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overlapping images [18]. Once aligned, the resulting homogeneous ground-aerial point cloud is
further processed by a segmentation module. For this purpose, we developed a system for integrated
multi-sensor based segmentation of 3D point clouds. This system follows a two-step sequence:
ground-object segmentation and color-based region-growing segmentation. It should be underlined
that our heterogeneous system is fully independent. While many of the existing approaches are
more focused on the collaboration between the aerial and ground robots [19–21], our focus is on the
data fusion of the cluttered 3D spaces. Experimental validation is performed within an unstructured
outdoor environment, demonstrating that the proposed 3D matching pipeline efficiently overcomes
the constraints of the different sensor systems and different vantage points of the environment and
thereby demonstrating its usefulness in large-scale real-world environments.

There are many areas of application where the proposed heterogeneous 3D registration system
can be exploited, such as agriculture, cultural heritage, safety-critical applications, civil protection,
military applications, etc. Our registration system can be used for damage detection in cultural heritage,
an inspection and diagnosis of heritage constructions, structural condition assessment, etc. In the case
of safety-critical and civil protection applications, it could be employed for different search and rescue
missions, e.g., rescue of persons from collapsed buildings, wildfire detection, detection and disposal of
mines, monitoring an area for intruders, etc. The potential military applications of our registration
system involve border surveillance, ground reconnaissance, and offensive missions.

2. Related Work

In recent years, there have been significant achievements and contributions in the domain of
multi-robot systems. The interest in this field is motivated by several advantages that such systems
exploit in comparison to a single robot system, i.e., tasks can be executed more efficiently by a team than
by a single robot. Indeed, using multiple robots increases robustness through fault tolerance or taking
advantage of distributed perception and motion possibilities [4]. Therefore, this heterogeneous system
can achieve a promising performance and higher quality, acquiring more complete information of the
environment versus individual robot. The focus in our work will be on heterogenoeus system which
consist of aerial and ground-based robots. A lot of research has been performed in this field, aiming
to combine the strengths of the unmanned aerial vehicles and unmanned ground vehicles [22–24].
Cooperation approaches where the ground vehicle uses the data gathered by the aerial vehicle have
been proposed in [25]. In the research proposed by [25], the aerial platform is used as an eye in the sky
acquiring the data from above and providing a global view for the ground vehicle. With the aerial
data, the traversability analysis and path planning are computed for the ground vehicle. Besides
the perception tasks, heterogeneous aerial and ground vehicles have been deployed in a cooperative
manner manipulating objects in an industrial environment. This work has been presented in [26],
where a group of ground robots are guided by an aerial vehicle and a human operator, moving in a
coordinated way in a formation, while carrying objects within an industrial area. Although deploying
a group of heterogeneous aerial and ground vehicles has become an extensive topic within the research
community, very little research has addressed the problem of fusing the 3D data coming from different
types of robotics platforms as well as from different sensors.

The 3D map registration is a challenging problem when dealing with heterogeneous UGV-UAV
robots [1,27,28]. These robots are of different sizes, shapes, and with different sense-act capabilities.
The problems of registering ground and aerial 3D point clouds are related to the different vantage
perspectives of the ground and aerial robots. Another problem is the different spatial resolution
obtained by the heterogeneous perception systems [1,7,13]. In our case, two different sensor modalities
are used: a lidar rangefinder (UGV) and a digital camera (UAV). Having in mind the different
spatial resolution levels, it is not possible to have a single point to point registration; it is a one
to many registration approach. Nevertheless, efforts of combining 3D data from heterogeneous
robots is under research and not adequately addressed. An example of an indoor scenario has been
demonstrated in [5], showing the advantages of using a heterogeneous robotic system in a disaster



Remote Sens. 2020, 12, 1608 5 of 40

situation (earthquake-damaged building). A team of aerial and ground vehicles are performing a
collaborative 3D mapping of the building indoors. The task was successfully accomplished and the
team of robots was able to provide an insight in the degree of damage which affected the building.

Nevertheless, the problem gets more complex if the heterogeneous systems are deployed outdoors
in a large-scale unstructured environment, which is targeted as a validation environment for our
proposed work. In that context, some work has been proposed in [27], where the authors introduced
a method for localization of the unmanned aerial vehicle with respect to the ground vehicle in close
range. It provides a global alignment of the aerial and ground point clouds based on the Monte Carlo
localization. Their proposed method requires an overlap between the aerial and ground maps and a 3D
structure in the scene. Another limitation factor is that, for a completely flat environment, the method
does not converge. The validation of the proposed system is done for an outdoor environment without
information about its size and complexity, where the registration accuracy is not provided. Some of the
current rear algorithms that deal with a problem of 3D registration of outdoor environment based on
heterogeneous UGV and UAV point clouds are presented in [1,29]. In [1], authors address cooperative
UAV-UGV environment reconstruction problem in agricultural scenarios. The introduced approach
built upon a multimodal environment representation that uses the semantics and the geometry of
the target field, and a data association strategy solved as a LDOF problem. The framework for the
automated registration of heterogeneous point clouds using 2D local feature points in the images
taken from UAVs and UGVs was presented in [29]. These point clouds were initially scaled and
registered with a transformation matrix computed from the 3D points corresponding to the 2D feature
matching points. The initially aligned point clouds were subsequently adjusted by the ICP algorithm.
Our proposed framework successfully handles the limitations for an overlap between the aerial and
ground point clouds, and it is also not dependent on any environmental characteristics. It is capable of
dealing with a large-scale outdoor environments with high geometrical accuracy, as validated with
ground-truth data.

Therefore, for any type of the registration technique, when there is a weak overlap between the
two data scans, a probable convergence to the local minima is impossible to avoid. It is evident that, in a
local minimum situation, the registration of the data scans does not correspond to a good alignment.
A possible approach for solving the local minima would be an effective initial estimation (e.g., odometry
of the robot) of the transformation. However, it is not an easy task to guarantee that an initial estimation
is a good one, especially when we are dealing with unstructured outdoor environments. There are
some efforts of solving the local minima problem, as proposed in [13] with a global optima ICP
(Go-ICP) solution. However, due to the high computational requirements, this method is not useful
for large-scale outdoor environment data sets. Enhanced ICP registration system to achieve optimal
registration based on early warning mechanism to perceive the local minimum and a heuristic escape
scheme is introduced in [14]. The performance of this system was verified for outdoor environment
represented by at most 212,000 points.

Furthermore, the appearance of a noise and outliers in point clouds causes serious problems in
reconstruction of 3D environmental model, especially for the large-scale environments with rough
terrain. It is very important to detect outliers in 3D input scans prior to the filtering of points in the point
cloud due to negative effects which have outliers on the output of traditional filtering algorithms [30].
Wavelet transformations and AI based methods can be an alternatives to the traditional methods.
In order to identify outliers, the wavelet-based methods transform the space and find them in the
non-dense regions in transformed space [31]. In the field of AI, the following methods are mostly used:
neural networks [32], support vector machines [33] and fuzzy logic [34]. The main advantage of these
methods is requiring poor or no a priori assumption on the considered data in datasets.

In our approach, we have designed and implemented a registration pipeline for aligning 3D maps
coming from a heterogeneous robotics system (UGV and UAV). The aerial map is generated using a
photogrammetric structure from a motion approach, taking as an input a set two-dimensional digital
image sequences and as a final output a three-dimensional scene reconstruction. The ground vehicle
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provides a 3D-map using an on-board lidar rangefinder. The two heterogeneous maps are combined
into a consistent global map providing an extended view over the large-scale outdoor environment.

3. 3D Heterogeneous Registration and Integrated Segmentation

This section presents the overall proposed architecture for the 3D registration and segmentation
framework as shown in (Figure 1) enabling the alignment of the data coming from heterogeneous
robots and sensors. The proposed framework is briefly elaborated here, showing the pipeline of
the algorithm, whereas detailed descriptions of the framework parts will be given in Sections 4–6.
The proposed 3D registration framework involves the following three-step process:

• Data acquisition and pre-processing,
• Semi-automated UGV-UAV 3D registration,
• Integrated multi-sensor based segmentation.

Data acquisition and pre-processing

3D heterogeneous registration

Integrated multi-sensor based segmentation

LIDAR terrestrial UGV data UAV images

Registered UGV point
cloud using LME-ICP

Registered UAV point cloud
using Structure from motion

Nosie reduction / Fast cluster statistical outliers removal - FCSOR

SIRM based semi-automated registration

Color assignment

Ground-object segmentation

Color-based region growing segmentation

Resulting UAV
point cloud

Resulting UGV
point cloud

Registered UGV-UAV point cloud

Segmented point clouds

Figure 1. A flowchart of the proposed 3D heterogeneous registration and integrated segmentation framework.
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The first part in the data acquisition and pre-processing process involves a proposed novel 3D
model registration framework based on the lidar terrestrial UGV data. This 3D model registration
schema, named LME-ICP, introduces the following four-step process: data handling and preparation,
ICP fine alignment, local minima estimation, and local minima escape. The advantage of this approach
is the ability to deal with large-scale outdoor environment data sets, while providing a fast registration,
map building and a precise pose estimation. The second part provides 3D model building based
on UAV data using the structure from motion (SfM) approach. The generated 3D point clouds from
UGV and UAV are then filtered out due to negative effects which have outliers on the output of
filtering algorithms. In the paper [35], we have proposed the novel FCSOR method, which is time
efficient for outlier analysis and removal in arbitrary large datasets, including millions of points.
This method is based on a clusterization and dimensional reduction of the 3D space. It decreases a
computational complexity, provides faster computation, and saves memory resources for further steps
in 3D environment modelling. The detection and reduction of outliers is an important step to make
further processing in the 3D model reconstruction lighter computationally and more accurately.

Then, the generated 3D spatial data coming from the UAV will be fused with the precise laser
rangefinder based 3D data sets collected with the unmanned ground vehicle. For 3D registration
of outdoor environments combining heterogeneous datasets acquired from unmanned aerial (UAV)
and ground (UGV) vehicles, we introduced a novel Scale Invariant Registration Method (SIRM) for
semi-automated registration of 3D point clouds. This method is primarily used to align the UAV and
UGV point cloud datasets in order to obtain an accurate registration. It includes a scale adaptation and
consistent alignment of two heterogeneous point clouds.

The third module within the proposed framework is an integrated multi-sensor based
segmentation. The segmentation process proposed here can be presented as a two-step process:
ground-object segmentation and color based region growing segmentation. In the first step, we segment
the ground and non-ground points from the point cloud, and the resulting output represents the
ground-object segmentation. After that, we perform a color-based segmentation and interpret the
scene and assign a label to each 3D area. The idea is to highlight the ground infrastructure and
automatically identify landmarks like roads, grass areas, plains, etc. Each of these modules will be
described separately in more details in Sections 4–6.

4. Data Acquisition and Pre-Processing

In the first step, the data acquisition and pre-processing of the input 3D data is performed.
This step is done for both datasets coming from heterogeneous sensors. Terrestrial data acquired
by the laser rangefinder, mounted on a ground vehicle, are fused into a consistent terrestrial map.
This approach was based on our novel 3D mapping framework named LME-ICP which will be
described in the next subsection. The ground matching framework is based on an improved
ICP algorithm hierarchically organized into a multi-level processing schema allowing fast and
accurate registration of 3D environmental models. A crucial contribution of our framework is
the error evaluation process, allowing for overcoming the local minima problem and achieving
an optimal registration.

Aerial data acquired from a photogrammetric structure-from-motion approach with digital
images collected by an UAV are combined in a parallel and separated processing step, generating
a 3D environmental model. This step will be described in Section 4.2. After the two global maps
are reconstructed, data handling and preparation of the input 3D scans are performed. This process
includes noise reduction through filtering and downsampling for both datasets. This two-step process
is described in Sections 4.1.1 and 4.3 and includes the Voxe-subsampling and FCSOR subprocesses.
The data preparation step is necessary in order to filter out noisy measurements and to get more unified
dense datasets, thereby saving computational and memory resources in further processing steps.
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4.1. Registered UGV Point Cloud Using an LME-ICP Method

This section describes a novel 3D model registration framework based on our proposed LME-ICP
method. To explain the methodology, the framework is elaborated here, showing the pipeline of the
algorithm for each of the processing steps, as illustrated in Figure 2. The 3D model registration schema
introduces the following four-step process:

• Data handling and preparation.
• ICP fine alignment.
• Local minima estimation.
• Local minima escape.

Raw data inputs

Data handling

Fine alignment

Local minima escape

Local minimum estimation

3D map generator

Scan- point cloud
i − n

Scan- point cloud
i

FCSOR- filter Subsampling

ICP

Rotation
correction

Transformation
estimation

Error evaluation Threshold
check

3D aggregated map

if last scan

3D global map

Yes

No

Yes

No

Figure 2. Novel 3D model registration framework scheme.

4.1.1. Data Handling and Preparation

The data handling and preparation module includes noise reduction through filtering and
downsampling for input datasets (point clouds). The 3D point cloud is taken from laser scanner
mounted on the UGV platform. This module is necessary to filter out noisy measurements and to
get more unified dense datasets, thereby saving computational and memory resources in further
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processing steps. The output of this framework is the filtered point cloud. It is also input to the
post-processing module or 3D modelling process. In this subsection, only voxel-subsampling part is
explained, while the FCSOR subprocess will be described in Section 4.3.

The purpose of the downsampling data is to obtain a highly uniform point density between
different point clouds, which represent inputs to the proposed framework. This is required because the
scanning technique used for the terrestrial datasets tends to gather clouds whose density changes with
range measurement. The solution is based on the voxelized grid decomposition [36]. In our paper,
the 3D space of the input point cloud is decomposed into a set of voxels using a constant size of the
voxel. After the decomposition step, in each voxel, all points present will be approximated with their
centroid. The output of 3D voxel-subsampling algorithm is the uniformed point cloud with decreased
number of points. This approach is a bit slower than approximating them with the closest point to the
center of the voxel, but it represents the underlying 3D model more accurately. By changing the size of
the voxels, different densities of the input data can be achieved.

Algorithm 1 represents the pseudo code of the voxel-subsampling procedure [9].

Algorithm 1: 3D Voxel-subsampling algorithm

INPUT
:

Point cloud M = {mi}, i = 1, . . . , Mp, mi = (xi, yi, zi)

OUTPUT
:

Point cloud N = {nj}, j = 1, . . . , Np decreased, uniformed

for all point mi in parallel do
find bucketm
update table_o f _ f ound_buckets

end
in parallel sort table_o f _ f ound_buckets {radix sort}
in parallel count points in each bucket
in parallel compute centroids for all buckets
for all buckets do

for all point in current bucket do
find distance from centroid

end
mark point with minimal distance to the centroid

end
copy marked points as a result

4.1.2. ICP Fine Alignment

The ICP approach is one of the most popular registration methods for unorganized 3D data
sets [37]. The algorithm is based on an iterative gradient descent method which estimates the
optimal transformation between two adjacent 3D scans using a Euclidean distance error between
their overlapping areas. The Euclidian distance d between two 3D points p1 = {x1, y1, z1} and
p2 = {x2, y2, z2} can be represented as:

d(p1, p2) =
[
(x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2
] 1

2
(1)

In order to find correspondences between the nearest point pairs in two adjacent 3D scans,
it would be impossible to presume that every point in one scan has a known correspondence in
the second scan. Therefore, it becomes crucial to design techniques that can robustly estimate good
correspondence [17]. The ICP algorithm can be presented with a two step approach [38]:

• In the first step, it is necessary to compute the correspondences between the two data scans
(Nearest Neighbor Search).
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• The second step computes a transformation which minimizes distance between the
corresponding points.

Iteratively repeating the previous described two steps will typically result in convergence to the
desired transformation, minimizing an alignment error.

More formally, the standard ICP algorithm can be defined as follows [13]. Let two 3D data
scans Mmodel = {mi} , i = 1, . . . , Mp and Psource =

{
pj

}
, j = 1, . . . , Np, where mi, pj ∈ R3 are point

coordinates, be the model dataset and source dataset with Mp and Np points, respectively. Furthermore,
the model dataset Mmodel represents a set of previously scanned points which is kept fixed and it is
called the reference or target. The other dataset Psource is a dataset of new points from the current scan
called the source. The source dataset is transformed to best match the reference dataset. If Mp > Np,
the ICP algorithm should find the sub-point sets Msub ∈ Mmodel that are most similar to the reference
model Psource. The goal is to estimate the rigid motion with rotation R ∈ SO(3) and translation t ∈ R3

based on a minimum of the error function E. The error function E can be expressed as:

E = f (R, t, Mmodel , Psource) (2)

where R is the rotation component and t the translation component of the transformation matrix
presented in Equation (4). The error function E can be rewritten as:

E(R, t) =
Mp

∑
i=1

Np

∑
j=1

ei(R, t)2 =
Mp

∑
i=1

Np

∑
j=1

wij‖(Rpj + t)−mi‖2 (3)

where wij is assigned to one if the i-th point of Mmodel correspond to the j-th point in Psource in terms
of minimum distance, otherwise wij = 0.

Given initial transformation R and t can be represented with the transformation matrix

T =

[
R t
03 1

]

s.t. RT R = I3, det(R) = 1

(4)

where I3 is (3× 3) unit matrix and 03 is (1× 3) null vector. Combining Equations (3) and (4) gives the
following minimization criteria:

argmin

(Mp

∑
i

Np

∑
j
‖T · pj −mi‖2

)
(5)

The ICP algorithm iteratively solves the above minimization (5) by alternating between estimating
the transformation (4), and finding the closest-point matches pj ∈ Psource for each mi ∈ Mmodel . Due to
the iterative nature of ICP algorithm, it can only guarantee the convergence to a local minimum.

Instead of computing the correspondences between the two data scans for all pairs searched in
step 1, usually a robust technique could be exploited to discard certain number of pairs by analyzing
the statistics of the distances. In order to implement this, a maximum matching threshold dmax is set to
decide whether to accept a pair or not. Choosing the parameter dmax is not a trivial task, because it
represents a direct trade-off between the convergence and accuracy. Additional information which
should be taken into account while defining the dmax is the initial alignment of the data scans. Setting
the dmax to a lower value can lead to a slow convergence and poor alignments of the data scans. Similar
to that, setting the dmax to a higher value may result in the local minima situation. For example,
the initial value of dmax can be set as two times the average distance between consecutive data scans.
The pseudocode of the ICP registration process is given in [17].
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4.1.3. Local Minima Estimation

As we mentioned earlier, it is not possible to guarantee the avoidance of local minima using the
ICP algorithm. Additional drawbacks of the ICP approach are a small convergence domain and the
requirement for a high number of iteration steps until convergence is reached. If the ICP algorithm
gets trapped into a local minimum, this leads to erroneous estimations which can be far away from a
global optimal solution. Most usual cases where the ICP algorithm fails are poor initial alignment of
the data scans and additional noise coming from the unstructured outdoor environments. A possible
approach for solving the local minima in such a situation would be providing a good initial estimation
(e.g., via the odometry of the robot) of the transformation. However, it is not an easy task to guarantee
that the initial estimation is good, especially when dealing with harsh environments. Because of that,
our proposed 3D mapping framework doesn’t rely on any prior known pose estimation information
(like odometry, GPS, IMU). In order to overcome situations where the estimation transformation of the
3D registration method is far from a global optimal solution, we have introduced an error evaluation
mechanism to perceive the local minimum situation. Using this mechanism, we define a cost function
which in our case represents the mean sum of the squared Euclidean distances between corresponding
points of the source Psource = {pi}, and the reference Mmodel = {mi}, datasets, where i = 1, . . . , Np.

The mean square error e function is defined as:

e =

Nr
∑

i=1
‖ mi − pi ‖2

Nr
(6)

where mi and pi represent the nearest corresponding points between the reference and source dataset,
respectively. The corresponding pair points are found by utilizing the K - d tree nearest neighbor
search algorithm [17]. Using the distance measure between the corresponding pair points (mi, pi),
we can calculate the mean squared error between the scans. Nevertheless, this measure does not
accurately represent the error. Each new scan will incrementally increase the global map by adding
new environmental information. Some of the new points will not have corresponding overlapping
points in the global map and they introduce a large distance error. In order to get a better error
estimation, we calculate the pair of corresponding points (mi, pi) only in an overlapping area which is
defined within a certain radius r.

An example of such situation is shown in Figure 3. Two successive scans are presented with the
blue and red point clouds. The overlapping area contains a subsite of Nr points between the two scans.
In Figure 3, the overlapping area is represented by the green colored points, with a number of Nr = 24
points in total. In this case, the overlap radius is taken as a fixed value of r between two points and the
error estimation is computed. As already mentioned, defining a radius is necessary in order to avoid
error accumulation of points which represent new data of the global map.

By tracking the error, we can determine if the matching has achieved an accurate registration
result or if it has been trapped into a local minimum. Figure 4 shows a situation where the system
has detected a local minimum situation. In this figure, we can see a sudden change in the angle of
rotation of the position of the scan (90 degrees) which is indicated with the blue scan. In this case,
the error has significantly increased and the system is trapped into the local minima as shown in the
right part of Figure 4. Evaluating the error, we can usually anticipate that a higher value of the error
means that the registration processes has reached a local minimum situation, while a lower value
indicates that the registration is successful. However, due to sensor noise, a perfect registration is
usually not possible to obtain. Therefore, we need to define a threshold value thError in order evaluate
the computed error. If the evaluated error is below a given threshold (which is empirically evaluated
using scan evaluation and is usually between 0.5 and 0.7), the alignment is good and the new scan
can be merged into the global map. If not, the local minima avoidance mechanism will be activated
(described in the next subsection).
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Figure 3. Scan registration sequence, upper left and right illustrations are showing two successive
scans, the left lower figure is showing the overlapping area with the error estimation in certain radius r,
the right lower figure shows a registered scan where green points representing the overlapping points
and the black point are the new added point from the second scan (red).

Figure 4. Local minima situation caused by a significant change of the angle of rotation.

4.1.4. Local Minima Escape

If the new scan was trapped in a local minimum as shown in Figure 4, a new transformation
is computed which is going to move the scan out of the local minimum situation. First, we find all
the overlapping points between the global map and the new scan by utilizing the nearest neighbor
search [39]. In the second step, the surface normals [40] are computed on the new scan point cloud
and overlapping points from the global map as shown in Figure 5. This gives an additional robustness
to the transformation as we take in consideration the type of surfaces. For example, points from a wall
will be matched only to other points in a wall and so on. The surface normals are directly estimated
from the point cloud dataset. The general idea of estimating the normal to a point on the surface is
approximated by the normal estimation of a tangent plane to the surface. In general, this becomes
a least-square plane fitting estimation problem. This computation can be done by calculating the
covariance matrices of the points and then extracting the eigenvalues and eigenvectors. By analyzing
the eigenvalues and eigenvectors, we can define the surface normals of a point. Pseudocode of the
implemented surface normal estimation is presented in Algorithm 2.
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Figure 5. Local minima escape, computation of surface normals, and two-step local minima escape.

Algorithm 2: Pseudocode representation of the surface normals estimation process

INPUT : 3D data scan: p = {pi}
OUTPUT
:

Estimated surface normals N{ni} for the points P{pi}

while pi not last point in P do
Find the nearest neighbors of pi using a K-d tree nearest neighbor search;
Compute the centroid of neighboring points k within a certain radius r;
Compute the covariance matrix of the neighboring points k;
Compute the and eigenvalues λ of the covariance matrix Cm;
find the smallest eigenvalue λ0 and its corresponding eigenvector v0 represents the normal
vector ni;

if ni is not oriented towards viewpoint then
flip orientation of ni;

end
end
return N = {ni};

The results of the previously described process of surface normal analysis are shown in Figure 6.
The right side of the figure represents the raw data scan (around 137,115 points). The left side shows
the developed surface normal estimation method that performs normal vector computation (in parallel)
for each query point. The orientation of the normal vectors is shown with different colors—in that
way, vectors (x, y, z) are represented by the blue color (around 9805 points), green color (around
14,849 points), and red color (around 112,461 points), respectively. After the surface normal estimation,
we extract pairs of points from the new scan and overlapping points from the map that have similar
normals. After the pairs of points with similar normals have been extracted from the new scan and
global map, we calculate a rigid transformation between the pairs. With this transformation, we are
able to bring the new scan closer to the global map and avoid the local minima. An additional step has
been added to improve the transformation efficiency. Because most of the matched pairs come from
around the center of the new scan, the new transformation will be close to the local minima. Therefore,
we avoid using these points all together. As a result, the new transformation places the new scan
further away from the local minima. Algorithm 3 shows the local minima escape pseudocode.



Remote Sens. 2020, 12, 1608 14 of 40

(a) (b)
Figure 6. Surface normal estimation of an example dataset. (a) raw data scan; (b) vectors (x, y, z) are
represented by colors blue, green, and red, respectively (Dataset: Military-base Marche–en–Famenne).

Algorithm 3: Pseudocode representation of the Local minima escape process

INPUT : New 3D data scan and global map: Psource = {pj}, Mmodel = {mi}, Nearest points
in M → P

OUTPUT
:

The corecct transformation, T , which aligns Mmodel and Psource

if error > thrashError then
Find nearest points in M with points in P [excluding points near the center]→ K;
Calculate normals for point clouds P and K;
Find pairs of points from P and K with similar normals→ Ps and Ks;
Find rigid transformation between Ps and Ks → T ;

end

Our proposed LME-ICP was compared with three concurrent methods: Standard ICP, Generalized
ICP, Nonlinear ICP in [41]. For the first evaluation step, we have analyzed the convergence of our
proposed mapping framework and the three other ICP methods for a scan-byscan registration approach
using as an input two random successive scans. After the scan-by-scan evaluation, a global map
registration analysis was performed. The mentioned three ICP-based methods generate inconsistent
and poor global maps due to a lack of the local minima escape. On the contrary, the proposed LME-ICP
method produces a comprehensive map fulfilling the necessary requirements to accurately match all
the scans. Producing these good results was directly linked to the problem of the local minima escape
which was the main advantage of the LME-ICP method. Therefore, the G-ICP and NL-ICP methods
spent much more time in processing of data for map reconstruction from the scans than the ICP and
the proposed LME-ICP methods. The ICP method required less time in comparison to our method,
but it has no ability to generate a consistent 3D global map.

4.2. Registered UAV Point Cloud Using the SfM Method

The Structure from Motion (SfM) is the process of reconstructing (estimating) the 3D spatial
structure of an imaged scene from a set of 2D images [42,43]. It allows that the coordinates of 3D
points corresponding to the matched image feature points and estimating camera motion (poses
and orientation) as well as the intrinsic and extrinsic parameters for the camera to be computed
simultaneously using only corresponding points in each view [44]. The SfM has been one of the
most popular image-based 3D modeling algorithms rooted in the computer vision domain. It is
widely applicable in many areas including augmented and virtual reality, autonomous navigation
and guidance, motion capture, hand-eye calibration, image and video processing, image-based 3D
modeling, remote sensing and aerial photogrammetry, segmentation and recognition, and military
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applications [45]. Therefore, the SfM represents a fast, inexpensive and highly automated method,
able to produce 3D information from unstructured aerial images.

The 3D scene reconstruction of SfM approach contains two main steps: camera pose estimation
and 3D point cloud reconstruction (point cloud extraction). Key-points (points of interest) in multiple
images are matched using Random Sample Consensus (RANSAC) algorithm [46]. In the other words,
RANSAC is employed to calculate the homography between two images by using two sets of SIFT
points and to compute the transformation which minimizes the re-projection error. In addition, the one
of advantages of the RANSAC algorithm is its capability to eliminate any outliers which may still be
contained within matched points.

After detecting the point correspondences between different images (feature matching) through
the comparison of two sets of feature descriptors, we estimate the fundamental matrix and from
that obtain the essential matrix. These matrices completely describe the geometric relationship
between corresponding points of multiple images. Since we used uncalibrated camera, computation of
fundamental matrix is required. It is estimated using the eight-point algorithm [47]. This algorithm
uses eight correspondences in two views and compute parameters of fundamental matrix with them
using the least-square method. When the essential matrix is obtained, we know where each camera
is positioned in space, and where it is looking. In order to determine points in the 3D world frame,
the current projection matrix is computed from decomposition of the essential matrix (SVD). Based on
the obtained projection matrix, 3D points are determined by triangulation.

When the triangulation is done and the 3D model is reconstructed, the bundle adjustment module
is used to optimize and refine the 3D structure of the reconstructed scene and the estimated camera
poses. Since we are working with uncalibrated cameras, the bundle adjustment algorithm optimizes
over the camera intrinsics as well. The final outputs of processed UAV images by applying the SfM
approach are a dense point cloud, digital surface, and terrain models as well as high-accuracy digital
orthophotos. In the case of generating 3D UAV point cloud data, we have used existing software
solution (Agisoft PhotoScan (St. Petersburg, Russia)) based on a structure from motion approach,
allowing 3D reconstruction based on 2D images.

4.3. Fast Cluster Statistical Outlier Removal

Due to the massive amount of data generated by the 3D acquisition devices, there will be several
points which do not respect the homogeneity of the dense surrounding neighbors. Such points do
not provide a good representation of the underlying sampled environment. Thus, points which are
rather isolated are likely to be outliers. Removing these noisy measurements, e.g., outliers, from
a point cloud dataset leads to an overall faster computation, due to the reduced error. Therefore,
in this work, we propose an extension on the statistical outliers removal (SOR) method presented
in [17]. The motivation for extending the previously mentioned method is naturally related with the
heterogeneity of large datasets (several million points) we are dealing with. The datasets coming from
airborne and terrestrial point clouds, acquired by different type of sensor systems, imposes uneven
point density and measurement errors. Another motivation for the extension of the classical statistical
outliers’ removal method is the high computational time necessary to process such type of datasets
with the traditional SOR method.

Based on the previous mentioned limitations, our proposed solution relies on a clusterization and
dimensional reduction method of the 3D space that lowers the computational complexity. This section
proposes an original extension of the SOR method, which we are calling Fast Cluster Statistical Outlier
Removal (FCSOR), and the pseudocode is given in Algorithm 4.
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Algorithm 4: 3D data filtering—FCSOR method

INPUT
:

Point cloud M = {mi}, i = 1, . . . , Mp, mi = (xi, yi, zi)

OUTPUT
:

Filtered point cloud M = {o f }, f = 1, . . . , O f , oi = (x f , y f , z f )

for all points mi ∈ M in parallel do
find maxX = max{xi}, maxY = max{yi}, maxZ = max{zi}
and minX = min{xi}, minY = min{yi}, minZ = min{zi};

end

Defining cluster size
ClusterLenght = maxX−minX/NumberClusters(user_de f ined);
ClusterWidth = maxY−minY/NumberClusters(user_de f ined);
ClusterHeight = maxZ−minZ/NumberClusters(user_de f ined);
Subdividing point cloud space into clusters C;

for all points mi ∈ M in parallel do
add mi appropriate Cluster CL ∈ C;

di =
∑k

i k_nearestNeighborDistance(mi)

k
;

end

for all points mi ∈ M do

µ = ∑
Mp
i

di
Mp

;

ξ =

√
1

Mp

Mp

∑
i
(di − µ)2;

end
define Cu ∈ C where Cu, are used clusters, µu is the number of points in all used clusters, and
U the number of used clusters Cu;

µu = ∑
Mp
0

NumberPoints Cu

U
;

for all Ch ∈ Cu do
if NumberPoints Ch < µu then

O = {mi ∈ M | (µ− αξ) ≤ di ≤ (µ + αξ)}
end

end

The implementation allows for performing computations partially in parallel and in that way we
reduce the computational time. The 3D space of the input point cloud is divided into equal number of
clusters C. For each point pi ∈ P where P is the input dataset, the average squared Euclidean distance
di to its k-nearest neighbors is first computed and each pi is added to the appropriated cluster cL ∈ C.
The dimensional reduction of the 3D space is done by firstly computing the mean number of points
µu from all clusters cL. If the number of points in a particular cluster is higher than the average µu,
that cluster is rejected from the further computation. By reducing the number of clusters, we can
greatly speed up the computation as we have less points to search. The resulting filtered point cloud
P∗ is estimated from the remaining clusters as in the SOR method.

The resulting procedure of the outliers (noises) removal using the FCSOR method is shown in
Figure 7. A raw point cloud dataset with noisy measurements, e.g., outliers, is shown in Figure 7a,
where identified outliers are marked with red circles. The resulting 3D point cloud obtained by using
the proposed FCSOR filter is presented in Figure 7b, indicating the effect of removing the outliers (with
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number of points left: 8,891,294 out of 9,109,169, i.e., 97.60%). For the purpose of these experiments,
the value of α (threshold factor) was set to 2 and the number of k-neighbors to 25. The graph presented
in Figure 7c shows the relation between the filtered and non-filtered point cloud datasets. It can be
noted immediately from the figure that the mean distance to the k-nearest neighbors is drastically
reduced in the filtered version.

The execution time comparison between the classical SOR and our improved FCSOR method is
shown in Figure 7d. The figure clearly shows that the proposed FCSOR method is about twice faster
than the traditional SOR method and thereby proposes a viable alternative for the traditional method.
When handling larger datasets, the FCSOR is more efficient in terms of time complexity, since SOR
requires O(n2) running time per number of input points, whereas the FCSOR is O(n).

(a) (b)

(c) (d)
Figure 7. (a) Raw input point cloud P; (b) FCSOR filtered point cloud P∗ (around 2.40% points
rejected); (c) relationship between the raw input and filtered output point cloud, (d) execution time
comparison between FCSOR and SOR methods for different density 3D input (Dataset: Military-base
Marche-en-Famenne, Belgium).

5. Semi-Automated Heterogeneous UGV-UAV 3D Registration

In order to overcome limitations of dealing with 3D data sets from different sensors and
different perspectives of the environment, we propose a semi-automated and robust 3D registration
approach based on the SIRM method. The proposed semi-automated 3D registration method is shown
in Figure 8.
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SIRM - Scale invariant registration method

Initial Scaling of point clouds

Point cloud scaling

Non-referent point cloud resized

Selected points

Initial mean scale s0

Fine aligment with adaptive scaling

Estimated transformation using SVD

Fine aligment with ICP

Error estimation using MSE

while
di > ξ

Scale adaptation

Output homogeneous point clouds (with same scale)

Point clouds with similar scale

Roughly aligned point clouds

Aligned point clouds

Current error estimation value (ei)

From data acquisition and pre-processing

Corresponding points selection

PCUAVPCUGV

Figure 8. Proposed architecture of the semi-automated 3D registration based on SIRM.

The SIRM method is primarily used to align the UAV and UGV point cloud datasets in order to
obtain an accurate registration. Its main parts are initial scaling of point clouds and fine alignment
with adaptive scaling. The SIRM method is used to solve the problems of displacement, orientation,
and scale difference between the point clouds. The proposed approach is based on manually marking
at least three corresponding point pairs in both point clouds. The transformation between the point
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clouds is computed, and the SIRM method is performed. Therefore, the SIRM is capable of coping
with an arbitrary scale difference between the point clouds, without any information about their
initial position and orientation. Before applying the SIRM, we manually select Kps of corresponding
points within the two heterogeneous point clouds, acquired by the UGV and UAV. Let R = {rk}
and B = {bk}, k = 1, . . . , Kp be sets of corresponding points in the UGV and the UAV point cloud,
respectively, where Kp is the number of points in each point cloud and Kps ≥ 3. The set R ∈ Mmodel and
B ∈ Psource, where Mmodel = {mi}, i = 1, . . . , Mp and Psource = {pj}, j = 1, . . . , Np are respectively the
UGV and UAV point clouds. The selection of the corresponding points is based on some recognized
landmarks, e.g., edge of a house, roof, etc. It is very important to note that the proposed SIRM method
overcomes the error between the selection of the corresponding points of heterogeneous point clouds
in a range of few meters. This is shown in Figure 9, where Kps = 5 preselected red points representing
the corresponding points within the UGV point cloud. The same number of points are selected within
the UAV point cloud, which are blue in color. It is obvious that the UAV point cloud has a larger scale
and a translational displacement.

1

2
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54
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3

Figure 9. Illustration of the corresponding point selection.

5.1. Initial Scaling of Point Clouds

After selecting corresponding points, the next step is to determine the initial scale. This step is
important because we want to achieve homogeneity of the two point clouds by firstly getting them
to a similar scale. The initial scale is computed using the mean distances of all possible connections
between the selected points as shown in Figure 10.
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Figure 10. Illustration of the initial scale estimation process.

We have introduced the following expression for the initial scale:

s0 =

∑
Kps
i=1 ∑

Kps
j=i+1

‖ ri − r j ‖
‖ bi − bj ‖

Nps
(7)
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where ‖ ri − r j ‖ and ‖ bi − bj ‖ are the Euclidean distances between two corresponding points
in the same point cloud and Nps is number of all possible connections of the preselected points,

Nps =
k(k− 1)

2
.

Once the first initial scale s0 is computed, we apply its value to resize the UAV (blue) point cloud
to be close to the similar scale as the UGV (red) point cloud. In our case, we rescale the UAV point
cloud and use the UGV point cloud as a reference model. Then, we obtain two point clouds with a
relative similar scale which allows us to proceed to the second module of the proposed 3D registration
approach, the fine alignment with adaptive scaling.

5.2. Fine Alignment and Adaptive Scaling

After obtaining the similar scale of the two heterogeneous point clouds, a transformation between
them is calculated using the singular value decomposition (SVD) [48]. An initial transformation
has registered two point clouds relatively close to each other. However, this kind of registration is
dependent on the precision of the pre-selected corresponding points and the initial scale computation.
Therefore, a good selection of the corresponding points in both point clouds can have a major impact
on the scale computation and the final registration results. In order to minimize the error, introduced
by the user while selecting the corresponding points, a fine alignment based on an ICP method [37] is
exploited. In every iteration, the ICP will improve the point clouds alignment. Further improvement is
obtained by fine-tuning the initial scale computation and transformation registration. For this purpose,
the proposed SIRM involves a mechanism for adaptive scale tuning of the mean scale s. It produces
the correcting scale factor sc which is related to the relative difference between two consecutive mean
square errors of the two heterogeneous point clouds. The computed value of sc is then added to the
previous mean scale s. After each iteration, the sc is adjusted and a new transformation between
the two points clouds is calculated. The performed transformation is illustrated with black lines
in Figure 11.
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Figure 11. Fine alignment tuning and registration.

In order to evaluate the registration quality, the displacement between the two point clouds in
every iteration is computed using a mean squared error (MSE). It is based on the Euclidean distance
between the nearest neighboring points from the Mmodel and Psource point cloud. The mean square
error e is expressed by the following equation:

e =

N
∑

i=1
‖ mi − pi ‖2

N
(8)

In addition, only point pairs with distances shorter than a predefined radius r are taken into
account. This radius based error computation is introduced because a significant error is generated
by points from the target point cloud which are not captured in the source point cloud, i.e., only the
points in the overlapping area with radius r are considered. In each iteration of the adaptive scaling
and fine alignment step, we estimated the current error value el in accordance with Equation (8).
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Then, the previous error value el−1 is subtracted from the current obtained error value el , where the
initial error is set to a large value. The difference between them is given by:

dl = el − el−1 (9)

The updated mean scale s is computed in each iteration by using the following relation:

sl = sl−1 + scl (10)

where scl is correcting scale factor and l is the number of the current iteration. This correcting factor is
updated in each iteration based on dl and error ratio el and el−1:

scl = dl · (el/el−1) (11)

This adaptive mechanism continues to operate until the error difference dl becomes larger than
the predefined threshold value ξ. The scl factor indicates the quality of point clouds alignment with
respect to ones in the previous iteration. The smaller values of scl mean the better quality of point
clouds alignment. This performance index has a smaller value in the case of a simultaneous smaller
value of the current el and larger value of dl .

The proposed semi-automated 3D registration obtains relatively accurate initial point clouds
alignment when the selected points are corresponding in both point clouds. In this case, the scale
adaptive mechanism will very quickly provide accurate point clouds matching with a small mean
square error in few iterations. The main power of the SIRM lies in the fast error convergence
in heterogeneous point clouds alignment when the selected points from both point clouds are
non-corresponding. The initial error alignment is larger than in the first case, but the scale adaptive
mechanism will reduce the error in several iterations and produce a very precise final point cloud.
It will be concluded that the scale adaptive mechanism ensures fast convergence of the alignment
error and provides very accurate final point cloud. The pseudocode of the proposed semi-automated
registration is presented in Algorithm 5.

Algorithm 5: Semi-automated 3D registration method
INPUT
:

PCUGV and PCUAV point clouds

OUTPUT
:

Final point cloud PCF

Select 3 or more corresponding points in point clouds
Calculation of initial mean scale s0 between selected points
Set initial estimation error e0

Resize non-reference point cloud using s0

do
Point clouds transformation using SVD
Fine alignment using ICP
Error estimation based on MSE scale adaptation

while (dl > ξ);
return [Final point cloud PCF]

5.3. Heterogeneous to Homogeneous Color Assignment

Combining heterogeneous data models into homogeneous ones requires the transfer of properties
from one data model to the other. In this work, we focus on the combination of heterogeneous
datasets acquired by a laser rangefinders (installed on UGVs) and a digital camera (installed on UAVs).
The UGV laser rangefinder is only capable of acquiring structural data about the environment and
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has no color-texture information, whereas the photogrammetric 3D reconstruction approach applied
on the UAV data enables the acquisition of structural and color data. In order to obtain a unified
homogeneous 3D model, we thus need to transfer the color data from the UAV point cloud to the UGV
point cloud. The transfer of the color is important because we have based the proposed segmentation
method on the color properties within the resulting point cloud.

The proposed color assignment algorithm is simple and very effective. It requires a good
alignment between the two point clouds. The main concept of the algorithm is to transfer the RGB
color value from one point cloud to another based on the nearest neighbor search problem. In that
case, the average RGB value of the Nn nearest neighbors from the UAV point cloud is computed and
assigned to the RGB value of a query point ui within the UGV pointcloud. The pseudocode of the
proposed color transformation algorithm is shown in Algorithm 6.

Algorithm 6: Pseudocode representation of the point cloud color assignment
INPUT
:

Aligned PUGV and PUAV point clouds

OUTPUT
:

Enhanced PUGV with color transferred from PUAV

for each point ui in PUGV do
With respect to ui find N nearest points in PUAV

Transfer mean RGB color value from N points in PUAV to ui ui.RGB =
Nn
∑
j

aj.RGB
Nn

end

After applying the color assignment as presented by Algorithm 6, a homogeneous and integrated
point cloud is obtained. This integrated homogeneous point cloud is now ready to be further exploited,
as discussed in the following section.

6. Integrated Multi-Sensor Based Segmentation

In this section, we introduce a method for color point-based segmentation of 3D point clouds.
The segmentation process of 3D point clouds can be defined as a grouping of points in regions
based on similarity criteria (object classification). The group of regions can be generated by using
different criteria parameters, such as color, slope, size, etc. [49]. Segmentation is a very important
step in processing the point clouds. Indeed, combining the point clouds from the aerial and ground
vehicles generates a very dense global map of the environment with many millions of points. In some
cases, processing the data on the dense global map itself can be sufficient for doing measurements
and volumetric calculations. However, in many cases, more advanced point cloud processing steps,
including automatic segmentation, are required in order to process additional information into planes
or more complex geometric regions. This step is certainly necessary if it is required to perform scene
interpretation and if semantic labels need to be added to each of the 3D point cloud segments such as
roads, ground, buildings, trees, etc. The segmentation process proposed here can be seen as a two-step
process: ground-object segmentation and color based region growing segmentation.

In the first step, we segment the ground and non-ground points from the point cloud, and the
resulting output represents the ground-object segmentation. The progressive morphological filtering
(PMF) algorithm [50] is able to segment different sized non-ground points such as objects, trees,
buildings, etc. and keep only the ground points. This process is done by gradually increasing the
window size and elevation difference thresholds. The use of the progressive morphological filtering
algorithm is described in Section 6.1. After the progressive morphological filter is applied and the
ground and non-ground points are segmented, the ground data can be further used in order to add an
additional level of processing. We perform a color-based segmentation and interpret the scene and
assign a label to each 3D area. The idea is to highlight the ground infrastructure and automatically
identify landmarks like roads, grass areas, plains, etc.
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6.1. Ground-Object Segmentation

In the first step of the segmentation, we separate the point cloud between ground and non-ground
points. A lot of different ground segmentations methods have been introduced in [51]. Choosing
an appropriate segmentation method depends on the type of features which are dominant in the
point cloud datasets. One example of a segmentation method is the slope based filtering algorithm
proposed in [50]. In that approach, the author is suggesting to use slope differences between nearby
points where the segmentation of ground and non-ground points is estimated solely by comparing
height differences between a point and its neighbors. A point is segmented as ground point if the
highest value of the slopes between that point and its neighbors is smaller than a predefined threshold.
The smaller the value of the threshold that is set, the more objects will be segmented as non-ground.

In our case, we decided to use the progressive morphological filter (PMF) [52] and implement it
into our proposed the semi-automated 3D registration system. The motivation of choosing the PMF
method is that the segmentation process is working well in cases where the point cloud datasets have
abrupt changes in the geometric continuity of the scene (e.g., if there is a need to segment buildings
and other objects like trees and bridges from the ground points). The progressive morphological filter
belongs to the group of slope based segmentation methods, and it depends on the dilation and erosion
operations, which are used in mathematical morphology. The dilation and erosion operations are
applied in order to increase or decrease the size of the objects. Combinations of these operations lead to
opening and closing operations [52]. In order to achieve the segmentation, the PMF works on a gridded
surface, which is created from the point cloud. The grid cell sizes correspond to the minimum height
value of the point cloud within the grid cell. Then, a morphological opening operation is applied
iteratively in order to segment the grid surface. For each segmentation step, only the objects with a
size larger than each window size are preserved. This operation is iteratively repeated by gradually
increasing the window size and using a difference elevation threshold. With the gradual growth of
the window sizes and the elevation difference threshold which also changes accordingly, the points
belonging to the ground will be segmented gradually by applying the morphological criteria. The final
output of the progressive morphological filter is a point cloud with points segmented into two class
sets representing ground and non-ground points. The implementation of the PMF was based on an
open source Point Cloud Library (PCL) [36].

6.2. Color Based Region Growing Segmentation

After performing the segmentation between ground and objects from the point cloud, the ground
data can be further used to highlight infrastructure. The purpose of doing this is to help the user
identify landmarks like roads, plains, etc. Here, we propose a segmentation method based on the color
information for each segment. The main concept is to iteratively traverse through the point cloud
and assign each point based on its color to an appropriate segment or create a new segment. This is
shown in Figure 12a, where the algorithm iteratively checks each point and its neighbors if they are
belonging to an already existing segment, denoted with a blue color. The algorithm will grow through
the segment until no more similar point colors are detected like shown in Figure 12b. The previous
steps will be repeated until no more points are left in the complete point cloud shown in Figure 12c.

The inputs to the algorithms are:

• search_number is the number for neighboring points used for the region growing.
• color_factor, which defines the allowed deviation from the initial color for each region.
• segment_factor, deviation from new points and existing segments.
• blur_number, used for blurring the image before and after the segmentation.

The blurring of the image is executed in parallel. Furthermore, for each new point located outside
of the existing region, the algorithm checks its color similarity with points in the neighborhood for
the possible assignment to an existing segment. If this is positive, then we use this segment color and
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grow the region. If there are no segments with a similar color, then a new segment is created and the
region is grown until there are no more similar points in the neighborhood.

(a) (b) (c)
Figure 12. Illustration of the color based region growing segmentation. (a) initial segment detection
and growing; (b) similar point colors detection; (c) complete point cloud.

The pseudocode of the proposed color based region growing segmentation algorithm is shown
in Algorithm 7.

Algorithm 7: Pseudocode representation of the color region growing
INPUT
:

Combined UGV and UAV point cloud PC

Parameters [search_number, color_ f actor, segment_ f actor, blur_number]
OUTPUT
:

Color segmented point cloud PC (roads, objects, grass)

In parallel: Blur color based on [blur_number]

for each point ui in PC do
if point ui is not already processed then

if point ui color is not in any segment then
Create new segment Sj+1
Iteratively search [search_number] nearby points with similar color [color_factor]
Grow segment Sj+1 until no more similar points

else
Find segment color Sj from all segments in S
Iteratively search [search_number] nearby points with similar color [color_factor]
Grow segment Sj until no more similar points

end
end

end
Optional: In parallel: Blur after segmentation done

7. Experimental Results

The effectiveness of the proposed framework will be verified in this section for three large scale
outdoor environments, entitled Village, Rubble, and Dovo. Dimensions of the mapped environments
are significantly large (Rubble and Village: 600 m× 200 m; Dovo: 300 m× 250 m). We have performed
a qualitative and quantitative evaluation by randomly introducing additional scale, translational,
and rotational errors. The performance of the proposed method was assessed by two different
experiments considering the difference between the selected corresponding points in the heterogeneous
point clouds. In addition, performance analysis is done by using an additional set of parameters:
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number of selected points, computation time, and required computer resources (CPU load) for
the completion of the specified task. Therefore, for the final evaluation, we used an accurate
ground truth reference model created by a terrestrial geodetic laser system. We have compared
the registered UGV-UAV data with the proposed SIRM method with respect to the ground truth
using the least square method (LSM). Furthermore, the experimental validation of the proposed 3D
heterogeneous registration and integrated segmentation framework was performed on large-scale
datasets representing unstructured outdoor environments, demonstrating the potential and benefits of
the proposed semi-automated 3D registration system in real-world environments.

7.1. Experimental Setup

In this section, we will describe the used experimental setup which consists of a UGV robot
equipped with a 3D mapping system and UAV platform with a 3D mapping system.

7.1.1. UGV Platform and 3D Mapping System

In order to provide required perceptual data input for environmental perception and navigation
assistance, a depth sensing system was integrated on the UGV (RMA tEODor UGV) [39].
This exteroceptive 3D mapping system is dedicated to gathering 3D data of the mission environment.
The RMA tEODor UGV (Figure 13) has excellent maneuverability over the rough terrains and good
off-road performance through its tracked system. During the mapping process the RMA tEODor UGV
usually traverses 4–5 m between each scan. The distance between scans is one of the key parameters
in the mapping framework because this allows a good overlap between the scans. For each scan of
the environment, the laser scanner needs to perform a full revolution which usually takes around
10 sec. It means that the traverse speed of the tEODor UGV is about 0.5 m/s in our experiment.
During the experiments, all the 3D environmental data were gathered online on an embedded PC,
directly integrated on the RMA tEODor UGV platform (Intel i7-2650 4 Core @2.4 GHz CPU (Santa
Clara, CA, United States) with 16 GB of RAM). The software framework was developed using the C++
programming language, and it was based on the Robot Operating System (ROS) [53] and Point Cloud
Library (PCL) [36]. In addition, all the data are backed up via the ROS-bag mechanism. The size of the
mapped area we worked on during our experiments is approximately 600 m × 200 m. Afterwards,
the iterative 3D mapping framework is applied performing point cloud registration, where the latest
scan is localized and matched to previous scans increasing the overall 3D map of the environment.
The process is repeated until a complete 3D map is constructed.

Figure 13. RMA tEODor UGV with the 3D mapping hardware.
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In order to assess the proposed 3D mapping framework, we have used an accurate geodetic
reference model of the scanned area created by a terrestrial geodetic laser system Z+F IMAGER 5010
(Wangen im Allgäu, Germany) and registered with geodetic precision. Due to the high precision and
accuracy (1 mm) of the geodetic reference model, we were able to use it as ground truth in order to
compare it with the generated model by our 3D mapping framework.

7.1.2. UAV Platform and 3D Mapping System

The experimental UAV system used in this work is a small vertical take-off aerial system md4-1000
from Microdrones (Siegen, Germany) (Figure 14). This UAV is a quadrotor-based aerial system, with
1030 mm diameter and complete carbon body with a maximum payload of around 2 kg. The four
gearless brushless electric motors are powered by lithium batteries. Depending on the weight of
the payload, state of the batteries, environmental, and flight conditions, the UAS can fly for about
35–40 min (the technical specification is claiming more than 70 min). The autopilot is built on a small
micro-processor collecting aerodynamics information through a set of tightly coupled sensors (GPS
module, 3D-magnetometer, three-axis gyroscope, three-axis accelerometer and a barometric pressure
sensor), allowing to fly autonomously waypoint based flights. The UAV system is equipped with a
Sony NEX-7 24.3 megapixel digital camera (Minato City, Tokyo, Japan) with an 18mm lens. The camera
is mounted below the UAV on a 2-axis gimbal with high precision tilt and roll stabilization (because
of the strong and multidirection wind) in real time to provide better images for aero triangulation
and mapping.

Figure 14. UAV used for the data gathering.

7.2. Validation Protocol

In this section, we have used the UGV and UAV point clouds produced in Sections 4.1 and 4.2.
Here, we validate how these heterogeneous point clouds are integrated into a homogeneous one,
by using the proposed 3D heterogeneous registration and integrated segmentation framework shown
in Figure 1. The effectiveness and robustness of the proposed framework will be verified through
real-world experiments for three large scale environments: Village, Rubble, and Dovo. It is very
important to note that the dimensions of the mapped environments used in these experiments are
significantly large (Rubble and Village: approximately about 600 m× 200 m; Dovo: about 300 m×
250 m), which additionally validates the effectiveness and robustness of the proposed semi-automated
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3D registration system on large-scale environments. Moreover, we have performed a qualitative
and quantitative evaluation of our proposed framework by randomly introducing additional scale,
translational, and rotational errors. In addition, we used a geodetic high precision and high accuracy
(1 mm) reference model as ground truth in order to compare the homogeneous point cloud produced
by our framework with the ground truth. Therefore, the computation time and CPU occupancy for the
reconstruction of the 3D global map from acquired scans were analyzed.

7.3. Obtained Results with the Proposed Semi-Automated 3D Registration System

In order to evaluate the effectiveness and robustness of our proposed semi-automated registration
process of the ground and aerial datasets, comprehensive experiments including ten different scenarios
are conducted. In this subsection, only the robustness of the proposed framework is validated,
while its accuracy will be verified in Section 7.4 with respect to the ground-truth model. In general,
the registration is depending on the precision of the pre-selected corresponding points by the user in
the heterogeneous point clouds. However, our proposed 3D registration system has the intention to
overcome the dependence of the 3D registration quality based on the selection of the corresponding
points between the heterogeneous point clouds. The introduced SIRM method with the scale adaptive
mechanism tries to solve that problem.

The performance of the proposed 3D registration system was assessed by two different
experiments considering the difference between the selected corresponding points in the heterogeneous
point clouds. In the first experimental study, the user has visually selected the good matching points
in both point clouds. A good corresponding point represents the paired points from both point
clouds which are selected from the set of recognized landmarks, e.g., edge of a house, roof, etc.,
with satisfactory small displacement between them (usually in a cm range). The second study considers
the situation where the user failed in the selection of the corresponding points between the two
point clouds in a range of several meters, which is a significant translation error for the scale and
registration procedures.

Each of the considered scenarios in these experimental studies has been evaluated on the Dovo
dataset, introducing a randomly generated scale and transformation displacement error on the
non-referent point cloud, in our case the UAV point cloud. The scale error coefficient kse which
represents the scale differences between the two point clouds, was generated up to ten times and it took
respectively the following values kse = [1, 10]. The transformation displacement error etd = [et, er]T

represents the displacement error between the two heterogeneous point clouds, as a vector with two
components, translational and rotational errors. The range for the translational error was introduced
with values of et ∈ [−50 m, +50 m] for the all Cartesian coordinates (x, y, z). For the rotational error
the φ, θ, andψ (roll, pitch, yaw) angles were randomly assigned within the range of er ∈ [−75◦, +75◦]
for each axis, respectively.

The quality and computational efficiency of the proposed 3D framework in both experimental
studies were evaluated, and the performance analysis is presented. For the qualitative analysis,
the following evaluation indicators are used for translation, rotation, and scale:

• Average error µ for Cartesian coordinates x, y and z and φ, θ, ψ angles.
• Average Euclidian error ρ for average coordinate errors and angles.
• Minimal and maximal error min and max.
• Standard deviation and variance of the error σ and σ2.

The qualitative analysis was performed for the Dovo dataset in both experimental studies for ten
different scenarios.

The performance analysis was performed considering all three datasets (Dovo, Rubble,
and Village) and measured by the following indicators:

• Computation time.
• Required computer resources (CPU load) for the completion of the specified task.
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In the next subsections, we will present the results of the previously described experimental
studies. Firstly, we will analyze the case when the user has selected good corresponding points
(Section 7.3.1), while, in the second study (Section 7.3.2), the user failed in the selection of the
corresponding points between two the point clouds.

7.3.1. Experimental Study with Good Pre-Selected Corresponding Points

In this study, for the Dovo dataset, we have analyzed the case when the user has pre-selected four
good corresponding points in both point clouds, of the Dovo dataset. The translation error between
the pairs of theses points is approximately around 10 cm. The experiment was repeated ten times with
different range of error values etd and scale error coefficient kse, as defined earlier (Section 7.3). The
obtained results are shown in Table 1.

Table 1. Analytical representation of the results with good pre-selected corresponding points
(Dataset Dovo).

Dataset Dovo

Parameters x [m] y [m] z [m] φ [deg] θ [deg] ψ [deg] Scale

µ 0.61 0.59 0.65 0.30 0.48 0.28 0.04
min 0.30 0.01 0.10 0.05 0.00 0.09 0.01
max 1.00 1.42 1.57 0.86 0.89 0.47 0.10

σ 0.24 0.55 0.42 0.26 0.27 0.13 0.03
σ2 0.06 0.30 0.17 0.07 0.07 0.02 0.00

Translational Error [m] Rotation Error [deg]

ρ 1.07 0.63

As can be noticed from the results presented in Table 1, the proposed semi-automated 3D
registration system provides satisfactory matching between the heterogeneous point clouds, regardless
of the introduction of large displacement errors for scale, translation, and rotation.

In the considered Dovo scenario, the average translational errors for the Cartesian coordinates are
respectively 0.61 m, 0.59 m, and 0.65 m, while the average angular errors are 0.30, 0.48, and 0.28 degrees
and while the average scale value is 0.04. The computed average Euclidean translational and rotational
errors (1.07 m and 0.63 degrees) are relatively low, having in mind that the introduced translation error
was in a range of [−50 m, +50 m] and the rotational error [−75◦, +75◦] for all Cartesian coordinate
axes with a scale difference of up to 10 times.

The obtained results for the average Euclidean translational and rotational errors can be treated as
a very good outcome of the proposed 3D semi-automated 3D registration framework. This statement
will be confirmed in the Section 7.3, where we will perform a quantitative evaluation of our proposed
3D registration system with respect to a geodetic high precision reference model, including all three
datasets (Dovo, Rubble, Village). In summary, the proposed semi-automated 3D registration system
with good pre-selected corresponding points exhibits a promising robustness against large introduced
displacement errors for translation and rotation as well as a large scale differences. All the qualitative
indicators have noticeable small values which guarantees a good matching accuracy of the considered
heterogeneous point clouds.

7.3.2. Experimental Study with Uncertainty in Selection of Corresponding Points

This experimental study is related to the uncertainty in the process of the manual selection of the
corresponding points in both point clouds. It uses the same ten scenarios with the same conditions,
as in the previous study, but the error of the pre-selected corresponding points is between 2–3 m. This
is a remarkable large displacement error in the pre-selected points, and it has a significant impact on
an accuracy of the heterogeneous point cloud scale and alignment.
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The obtained values of the considered quantitative indicators by using the proposed
semi-automated 3D registration framework are listed in Table 2.

Table 2. Analytical representation of the results with uncertainty in selection of corresponding points
(Dataset Dovo)—the error of selected corresponding points is approximately between 2–3 m.

Dataset Dovo

Parameters x [m] y [m] z [m] φ [deg] θ [deg] ψ [deg] Scale

µ 0.92 0.98 0.69 0.59 0.67 0.54 0.15
min 0.51 0.81 0.13 0.15 0.54 0.13 0.13
max 1.15 1.25 1.25 1.38 1.29 1.01 0.21

σ 0.29 0.19 0.60 0.58 0.34 0.40 0.04
σ2 0.08 0.04 0.36 0.34 0.11 0.16 0.00

Translational Error [m] Rotation Error [deg]

ρ 1.52 1.04

The obtained quantitative indicators values validate the robustness of the proposed 3D registration
system against an uncertainty due to an error in the manual selection of the corresponding points in
both heterogeneous point clouds.

The error values of the considered indicators are logically a bit larger than in the previous
experimental study (Table 1) with good pre-selected corresponding points. However, taking into
account the significantly large error value in the selection of the corresponding points between
point clouds, the obtained results are very satisfactory. The main reason for obtaining the good 3D
registration results is the proposed SIRM method, which includes the scale adaptive mechanism for
tuning the optimal scale and the error evaluation including the ICP method for the fine alignment of
the heterogeneous point clouds. These SIRM modules are executed iteratively until a satisfactory scale
and alignment between considered point clouds is produced. The algorithm runs until a predefined
small difference between two consecutive alignment errors is found, which is a powerful mechanism
in our proposed 3D registration system. The SIRM method provides well-aligned point clouds, even in
the case of large errors in the selection of corresponding points and with large introduced displacement
errors for scale, translation, and rotation.

7.3.3. Performance Analysis

Apart from the analytic validation procedures on ten considered scenarios, presented above,
we have also applied our proposed semi-automated 3D registration system based on SIRM on all three
data sets, Dovo, Rubble, and Village. For each scenario dataset, we have used a different number of
selected corresponding points. The minimum number of points used in the rubble field scenario is
four, while the maximum number of points used for the Village scenario was six. In addition, we have
introduced the range for the translational error with values of et ∈ [50 m, 250 m] for all the Cartesian
coordinates (x, y, z) and the rotational error the φ, θ, ψ (roll, pitch, yaw) angles were assigned within
the range of er ∈ [−25◦, +25◦] for each axis, respectively. The scale error coefficient was set to kse = 2.
All these errors were introduced for each dataset (Dovo, Rubble, and Village) on of the UAV point
clouds. Each of the UGV point clouds was set as the reference model while the UAV point clouds were
registered on it.

To evaluate the performance of the proposed framework, we use an additional set of parameters:

• Number of selected points.
• Computation time (CT).
• Required computer resources (CPU load) for the completion of the specified task.

The computational time is the time needed for the registration of the UAV and UGV datasets into
a comprehensive global map.
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The obtained values of these parameters for our proposed method are listed in Table 3.
The obtained results indicate that the proposed semi-automated 3D registration system requires
between three and half and ten minutes of time to register the datasets in both experimental studies,
with and without uncertainty in the pre-selected corresponding points. It is important to note that
our 3D registration system requires this amount of time because of two reasons. The first one is that
our datasets have a high density with millions of points in both point clouds. The second reason is
that we used the proposed scale adaptive mechanism for fine-tuning of the scale and transformation.
Therefore, the proposed adaptive mechanism is running through the iteration in order to minimize
the alignment error between the UGV and UAV data set. The CPU load needed for the global map
registration is between 27–35%. The hardware we used was an PC with an Intel i7- 4650 4 Core @
1.7 GHZ CPU and 16 GB of RAM.

Table 3. Performance analysis for the semi-automated registered global UAV-UGV maps.

Good PSCPs USCPs
Dataset Number of SP CT (s) CPU Load (%) CT (s) CPU Load (%)

Dovo 5 223.57 35.05 229.12 36.34
Rubble 4 606.78 26.95 628.23 31.12
Village 6 301.52 32.35 312.41 34.51

The abbreviations in Table 3 are: SP—selected points, PSCPs—pre-selected corresponding points,
UCCPs—uncertainty in selection of corresponding points, and CT—computation time.

The resulting semi-automated registered global UAV-UGV maps using the proposed
semi-automated 3D registration system based on the SIRM method are shown in Figure 15. The total
number of the points in the final homogeneous point cloud are shown in Table 4.

Figure 15a,c,e present the non-registered UGV and UAV point clouds. The obtained maps in
these figures show the visual representation of all three considered datasets with good pre-selected
corresponding points in both point clouds. Every similar visual representation is obtained in the case
of an introduced error about 3 m while selecting the corresponding points. This is a remarkably large
displacement error in the pre-selected points, and it has a significant impact on an accuracy of the
heterogeneous point cloud scale and alignment. The reason for this is the small deviation of the scale
and alignment errors between the point clouds. Therefore, the visual representation of the resulting
maps is not shown.

In Figure 15, the UGV point cloud is represented with the elevation (height) map colored with blue
and green, while the UAV point cloud is the colorized map. The red dots are the selected corresponding
points in the UGV dataset and the blue dots the pre-selected corresponding points in the UAV point
cloud. Each selected point in one point cloud should have a complementary pair point in the other
point cloud. Figure 15b,d,f show the resulting output as a registered UGV-UAV global map. It can be
noticed that the UAV dataset is scaled and transformed and a good initial alignment is achieved. It can
be concluded that the proposed semi-automated 3D registration system produces a comprehensive
global map fulfilling the necessary requirements to accurately register the UAV and UGV datasets.
However, producing good results also depends on the user’s ability to select corresponding points
from both datasets.



Remote Sens. 2020, 12, 1608 31 of 40

(a) (b)

(c) (d)

(e) (f)
Figure 15. Semi-automated 3D registration with preselected points and registered UAV-UGV global
maps, where (a,c,e) show the manually selected points, the red points represent the UGV dataset,
where the blue points represents the UAV dataset, while (b,d,f) show the final output where the
semi-automated 3D registration system is applied and the two datasets are registred.

Table 4. Homogeneous point cloud properties.

Dataset Number of Points Resolution (m)

Dovo 31,124,101 0.04
Rubble 17,160,288 0.03
Village 19,204,987 0.03

7.4. Ground Truth Data Evaluation of the Combined UGV-UAV Registration

In order to assess the effectiveness of the semi-automated and fully automated 3D registration
systems of the UGV-UAV datasets, an accurate geodetic reference model of the scanned area is used.
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The ground truth reference model was created by a terrestrial geodetic laser system and registered
with geodetic precision. The same approach was applied for separate evaluation of the UGV and UAV
datasets in Section 4. The geodetic approach allows for an accurate benchmark process for registration
methods by providing ground truth data as a basis for our quantitative evaluation. We compared the
registered UGV-UAV data sets for both registration methods with respect to the ground truth using
the least square method (LSM). The obtained maps on basis available UGV-UAV datasets using a
proposed semi-automated method for rubble field and village scenarios, and the ground truth data are
shown in Figure 16.

(a) (b)

(c) (d)
Figure 16. Comparison of the reference ground truth model (multi-colored) and resulting UGV-UAV
datasets. (a,b) rubble field scenario and (c,d) village scenario. Dataset: Military-base Marche en
Famenne, Belgium.

The results of the different registration systems used are presented in Table 5. In this case, we have
calculated the distances between points from the ground truth reference model and the co-registered
UGV-UAV datasets generated by our proposed semi-automated 3D registration system, as well as
with the fully automated approach [36]. For the fully automated, we have used two scenarios with
non-optimal alignment parameters and optimal estimated alignment parameters. The ground truth
validation is performed for both datasets, the rubble and village. It is shown that the proposed
semi-automated 3D registration system yielded good results, where 90% of the points are within the
distance of 0.51 m and 0.59 m, for the rubble and village scenarios, respectively. The average error for
the rubble scenario is 0.23 m and for the village scenario 0.25 m as shown in Table 5.

The fully automated 3D registration system with the non-optimal alignment parameters has failed
to register the point clouds. Non-optimal alignment parameters are parameters obtained in one of
the intermediate phases during the process of their manual adjustment estimation. Consequently,
with those parameters, we exhibit a failure in the alignment of the point clouds. This is because the
fully automated 3D registration requires accurate alignment parameters for each individual dataset
registration. After repeating the procedure of tuning those parameters many times, we obtained
optimal values of these parameters, which provides satisfactory registration results. Tuning those
parameters was done by a trial and error method and took us sometimes multiple hours. Because
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of that, in terms of computational time analysis, our proposed semi-automated registration system
is superior in comparison with fully-automated system with optimal alignment parameters. It is
worth noting that the real-time requirement imposed on our system in case of co-registration UGV and
UAV 3D point clouds being between 3 and 11 min depending on dataset size. From obtained results
shown in Table 3, it is obvious that our system successfully generates an accurate 3D model within the
required time. For the fully automated 3D registration system with the optimal alignment parameters,
the results show that 90% of the points are within the distance of 0.72 m and 0.60 m, for the rubble and
village scenarios, respectively, while the average error for the rubble scenario is 0.34 m and for the
village scenario 0.24 m. Besides these satisfactory registration results obtained by the fully automated
3D registration system using the optimal alignment parameters, the proposed semi-automated 3D
registration system exhibited the better accuracy results, which is obvious from Table 5.

Table 5. Quantitative representation of the point to point evaluation for the semi-automated 3D
registration and the fully automated 3D registration systems (both scenarios Rubble, Village).

90% of the Points Are within

Type of Registration Rubble
(m)

Village
(m)

Rubble
Average (m)

Village
Average (m)

UGV LME-ICP 0.53 0.58 0.23 0.22

UAV-SfM 0.59 0.60 0.29 0.29

UGV-UAV proposed semi-automated reg.
based on SIRM 0.51 0.59 0.23 0.25

UGV-UAV fully-automated registration
with non-optimal alignment parameters / / / /

UGV-UAV fully-automated registration
with with optimal alignment parameters 0.72 0.60 0.34 0.24

Table 5 clearly indicates that the proposed UGV-UAV data combination methodology succeeds in
leveraging the advantage of the high-accuracy input UGV data. Indeed, for all datasets, the accuracy
of the UGV-UAV combined model was more or less identical to the model produced using UGV data
only (see Section 4.1). As can be noted in the final column of Table 5, the UGV-UAV approach succeeds
in maintaining this accuracy, while augmenting the dataset in average by 35%, as compared to the
input reference UGV model. Moreover, the combination of UGV and UAV 3D information opens the
door for interesting post-processing modalities, as will be presented in the next section.

7.5. Heterogeneous to Homogeneous Color Assignment

Figure 17a,c,e show two point clouds as a consistently registered UGV-UAV map. It can be noted
that the UAV dataset contains a fully colored point cloud, whereas the UGV point cloud is a height
colored dataset. After applying the proposed color transformation algorithm presented in Section 5.3,
the resulting color transfer from the aligned UAV to the UGV point clouds is shown in Figure 17b,d,f.
As it can be noted in Figure 17d,f, the color could not be transferred in some regions of the UGV point
cloud. This is because in this region there were no overlapping points of the UAV point cloud from
which the color could be computed and transferred.
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(a) (b)

(c) (d)

(e) (f)
Figure 17. Color transformation from the UAV point cloud to the UGV point cloud. The different
scenarios are represented as follows: Dovo (a,b), Rubble (c,d) and Village (e,f).

7.6. Integrated Multi-Sensor Based Segmentation

In this subsection, we will present the obtained results for both ground-object segmentation and
color based region growing segmentation.

7.6.1. Ground-Object Segmentation

In order to verify the quality of the ground-object segmentation method, presented in
Section 6.1, we exploit it on the three different large-scale datasets. Figure 18a,c,e are showing the
co-registered UGV-UAV datasets serving as an input for the ground-object segmentation method,
while Figure 18b,d,f are showing the resulting output of the applied method on the three datasets.
It is obvious from the outputs of all considered datasets that the method has successfully detected
most of the non-ground points which are colored with the red color with respect to the ground points
colored in green color. Table 6 shows for each of the three scenarios the number of points detected as
objects-obstacles as well as the number of points which are detected as ground (traversable area).
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(a) (b)

(c) (d)

(e) (f)
Figure 18. Ground-object segmentation, the red points represent the segmented objects, while the
green points represent the ground area. The different scenarios are represented as follows: Dovo (a,b),
Rubble (c,d) and Village (e,f).

Table 6. Number of estimated object and ground points for each scenario with its percentage with the
respect to the total number of points in datasets.

Number of Points Detected
as Object/Obstacle

Number of Points Detected
as Ground

Dovo 12,866,703 (41.34%) 18,241,835 (58.66%)
Rubble 11,399,579 (66.43%) 5,760,708 (33.57%)
Village 2,669,493 (13.90%) 16,535,493 (86.10%)
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7.6.2. Color Based Region Growing Segmentation

Figure 19a,c,e present the co-registered UGV-UAV datasets serving as an input for the color based
region growing segmentation algorithm, while Figure 19b,d,f illustrate the resulting output of the
region growing segmentation algorithm applied on the three datasets. The outputs of the color based
region growing segmentation algorithm, as presented in Section 6.2, are multiple regions which are
represented by different colors. Blue points represent the roads while the green points represent the
grass and field area. The red points are the objects–obstacles obtained by the algorithm described in
Section 6.1.

From the results, presented by Figure 19b,d,f, it is clear that the proposed color-based region
growing segmentation approach succeeds in labeling the different areas within the 3D point cloud
in a meaningful way, which opens the door for semantic interpretation and reasoning using the
extracted data.

(a) (b)

(c) (d)

(e) (f)
Figure 19. Outputs of the color based region growing segmentation algorithm, blue points represent
the roads while the green points represent the grass and field area. The red points are the obstacles.
The different scenarios are represented as follows: Dovo (a,b), Rubble (c,d), and Village (e,f).
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8. Conclusions

In this paper, we have presented a novel heterogeneous 3D registration and integrated
segmentation framework for large-scale outdoor environments, which combines datasets from
unmanned aerial and ground vehicles (UAV and UGV). This framework involves three modules:
a data acquisition and pre-processing module, a semi-automated 3D registration system and an
integrated multi-sensor segmentation system. The first module generates both 3D point clouds from
UGV and UAV robots for large-scale natural terrain and complex environments. For UGV registration,
we have proposed the LME-ICP method that is also capable of estimating local minima and escape
from them. In case of UAV registration, a well known SfM method is used. Both 3D point clouds
are filtered using a novel FCSOR method which provides a fast and effective outlier (noise) detection
and removal. The second module involves the 3D heterogeneous registration framework based on
our SIRM method. It combines a scale invariant method and the ICP algorithm and performs initial
scaling of point clouds and iterative fine alignment with a scale adaptive mechanism. The proposed
adaptive mechanism optimizes the scale based on the relative difference between two consecutive
mean square errors of the heterogeneous point clouds. The SIRM is capable of coping with an
arbitrary scale difference between the point clouds, without any information about their initial
position and orientation. Furthermore, it does not require having a good initial overlap between
two heterogeneous UGV and UAV point clouds. Once registered, the resulting ground-aerial point
cloud is then further processed by the proposed integrated multi-sensor based segmentation system
following a two-step procedure: ground-object segmentation and our color based region growing
segmentation. The algorithm iteratively traverses through the point cloud and assigns each point based
on its color to an appropriate segment or creates a new segment. The proposed 3D heterogeneous
registration and integrated segmentation framework are validated using large scale datasets, acquired
in an unstructured outdoor environments using the UGV equipped with a lidar sensor and the UAV
equipped with a visual camera. Moreover, a quantitative validation of the reconstruction result was
performed by using a reference ground truth data model obtained using the high accuracy geodetic
precision measurement system. The presented results and analyses show an effective performance
of the proposed 3D registration and segmentation framework, demonstrating its potential in real
world environments.
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