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Abstract: Lack of national data on water-related ecosystems is a major challenge to achieving the
Sustainable Development Goal (SDG) 6 targets by 2030. Monitoring surface water extent, wetlands,
and water quality from space can be an important asset for many countries in support of SDG 6
reporting. We demonstrate the potential for Earth observation (EO) data to support country reporting
for SDG Indicator 6.6.1, ‘Change in the extent of water-related ecosystems over time’ and identify
important considerations for countries using these data for SDG reporting. The spatial extent of
water-related ecosystems, and the partial quality of water within these ecosystems is investigated
for seven countries. Data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and
Landsat 5, 7, and 8 with Shuttle Radar Topography Mission (SRTM) are used to measure surface water
extent at 250 m and 30 m spatial resolution, respectively, in Cambodia, Jamaica, Peru, the Philippines,
Senegal, Uganda, and Zambia. The extent of mangroves is mapped at 30 m spatial resolution using
Landsat 8 Operational Land Imager (OLI), Sentinel-1, and SRTM data for Jamaica, Peru, and Senegal.
Using Landsat 8 and Sentinel 2A imagery, total suspended solids and chlorophyll-a are mapped over
time for a select number of large surface water bodies in Peru, Senegal, and Zambia. All of the EO
datasets used are of global coverage and publicly available at no cost. The temporal consistency and
long time-series of many of the datasets enable replicability over time, making reporting of change
from baseline values consistent and systematic. We find that statistical comparisons between different
surface water data products can help provide some degree of confidence for countries during their
validation process and highlight the need for accuracy assessments when using EO-based land change
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data for SDG reporting. We also raise concern that EO data in the context of SDG Indicator 6.6.1
reporting may be more challenging for some countries, such as small island nations, than others to
use in assessing the extent of water-related ecosystems due to scale limitations and climate variability.
Country-driven validation of the EO data products remains a priority to ensure successful data
integration in support of SDG Indicator 6.6.1 reporting. Multi-country studies such as this one can
be valuable tools for helping to guide the evolution of SDG monitoring methodologies and provide
a useful resource for countries reporting on water-related ecosystems. The EO data analyses and
statistical methods used in this study can be easily replicated for country-driven validation of EO
data products in the future.

Keywords: water-related ecosystems; surface water extent; mangroves; water quality; Sustainable
Development Goal 6; Indicator 6.6.1

1. Introduction

According to the first Sustainable Development Goal (SDG) 6 Synthesis Report released in 2018,
the world is not on track to achieve the SDG 6 targets by 2030. Lack of available and reliable national
data for SDG 6 reporting is listed among the main reasons for this. Nearly 60% of the 193 member
states do not have adequate data available to meet the reporting requirements of a majority of the
SDG 6 indicators [1]. SDG Indicator 6.6.1, ‘Change in the extent of water-related ecosystems over
time’, is one of the most data limited. Only 20% of countries have submitted data on the spatial extent,
quantity, and quality of their water-related ecosystems [1]. As a cross-cutting indicator, SDG Indicator
6.6.1 is integral to assess the health and function of our global water resources and connects SDG 6, the
global goal on Clean Water and Sanitation, with the SDG’s on Climate Action (SDG 13), Life Below
Water (SDG 14), and Life on Land (SDG 15) [2]. Early assessments have highlighted the potential for
countries, where comprehensive ground-based information is lacking or limited, to use satellite-based
Earth observation (EO) data in support of Indicator 6.6.1 reporting [1–3].

SDG 6 uses the term “water-related ecosystems” to describe vegetated wetlands, rivers and
estuaries, lakes, aquifers, and artificial water bodies. These water-related ecosystems are increasingly
at risk of degradation, loss, and significant disturbance due to population growth, urbanization,
agricultural expansion, economic development, and climate change [4–8]. For example, over the past
century the world has lost 63% of its coastal and 75% of its inland natural wetlands [9], while an
estimated 30% to 50% of the world’s mangroves have been lost to coastal development in the last half
century [10]. At the same time, uncontrolled farming, deforestation, illegal discharges together with
increasingly extreme weather patterns (e.g., extended periods of warm, cold, flooding or drought)
are jeopardizing water quality in lakes, reservoirs, and water supplies [11]. The 2030 Agenda for
Sustainable Development provides an important mechanism for countries to report on the state of
water-related ecosystems at a globally relevant, national level. Yet more science and synthesized
analysis of existing global datasets is needed to meet the ambitious reporting goals set by SDG 6 [12,13].

In recent years, satellite-derived data have become more easily accessible and increasingly used
to track changes to surface water, wetlands, and water quality. Changes to surface water have
been successfully mapped using the National Aeronautics and Space Administration (NASA)-US
Geological Survey Landsat (Landsat) imagery [14–18] and NASA’s Moderate Resolution Imaging
Spectroradiometer (MODIS) [19–21], as well as other high-, medium-, and coarse-resolution EO
data [22]. The change in extent, structure, and unique characteristics (e.g., topography, vegetation)
of wetlands has been mapped using Landsat and the European Space Agency’s Copernicus Sentinel
(Sentinel) datasets [23–26]. While EO has long been utilized to track changes in phytoplankton biomass
in the upper-layer of open ocean waters [27], a growing body of research has demonstrated that inland
and coastal water quality can also be measured using moderate-resolution EO data, which provide
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information on near-surface concentrations of materials that affect the color of water. This includes
concentrations of total suspended solids (TSS) and chlorophyll-a (Chl) [28–33]. Although research in
these areas is active and ongoing, there are countless examples of EO data being used operationally to
support decision-making on water quality and quantity [34–38], and wetland management [39–42].
Landsat data, in particular, have been used extensively by many national organizations and land and
water management agencies due in part to the relatively long and continuous record of available
data as well as a policy change in 2008 that made analysis-ready Landsat imagery free and open
access [43,44]. With the history of satellite-EO data applications for decision-making, a growing body
of research, and development of more accessible computing tools such as Google Earth Engine [45],
there is a real opportunity for EO to help fill in the gaps when it comes to Indicator 6.6.1 reporting and
SDG reporting overall. However, the sheer volume of EO data tools, products, and approaches can
be overwhelming for end-users and Indicator 6.6.1 reporting will require a sieving of available EO
capabilities and tools as well as proof of concept studies that can test out the recommendations laid out
in the Indicator’s monitoring methodology.

Here, we discuss findings from a proof of concept study to demonstrate the potential for EO data
to support country reporting for SDG Indicator 6.6.1. Specifically, we explore to what degree and under
what considerations readily available or emerging EO data products could be used for Indicator 6.6.1
reporting, by stepping through the process of data collection and following the United Nations (UN)
Environment monitoring methodology. Surface water bodies (lakes, rivers, estuaries) and mangrove
wetlands are mapped using readily available data and methods, and time-series analysis of TSS and
Chl in select inland water bodies is demonstrated. Seven countries were selected for the study based
on input from the UN Environment and country agreements to participate in the study. Changes in
the spatial extent of surface water bodies from 2000 to 2015 are mapped using a MODIS-based data
product and two Landsat-based data products in Cambodia, Jamaica, Peru, the Philippines, Senegal,
Uganda, and Zambia. Changes in the spatial extent of mangroves in Jamaica, Peru, and Senegal are
mapped from 2000 to 2016 using Landsat and Sentinel-2 data. Time series of TSS and Chl are extracted
for four large lakes and one river in Peru, Senegal, and Zambia using Landsat and Sentinel-1 data
between 2013 and 2017. The objectives of the study were to demonstrate the application of readily
available EO-based data products for SDG reporting, identify the most important considerations when
using EO-based data for SDG Indicator 6.6.1, and provide a starting point for countries interested in
EO data integration for SDG reporting.

2. Overview of the Study

Global monitoring of SDG 6 was initiated in early 2017 following development, testing, and
evaluation of methodologies for monitoring the associated indicators. The UN Environment is the
custodian agency for SDG Indicator 6.6.1 and developed a step-by-step methodology that explains
how to monitor the sub-indicators (further broken down into categories and components), including
definitions, computational steps, and recommendations on spatial and temporal resolutions. Custodian
agencies are charged with producing methodologies for collecting data from national data sources and
tracking progress, as well as contributing to statistical capacity building, among other key activities.
The UN Environment, in collaboration with the Group on Earth Observations (GEO) and space and
research agencies including the National Aeronautics and Space Administration (NASA), the European
Space Agency (ESA), and the Joint Research Centre (JRC), are working to support the use of EO for
Indicator 6.6.1 data collection and reporting. To support this effort, we explored how and to what
extent readily available EO data products and emerging tools could help countries report on this
indicator. Seven pilot countries were included in the study based on input from the UN Environment
and formal agreement from the countries to participate in the pilot study based on their interest in
using EO data and conducting future ground-based validation studies. Figure 1 shows the location of
the seven countries considered in this study and the corresponding components that were investigated
for each country.
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Figure 1. Map of the countries in this study, indicating the SDG Indicator 6.6.1 components and
categories investigated for each country.

Table 1 provides a summary of the reporting requirements for this indicator based on the 2018
monitoring methodology for SDG Indicator 6.6.1 [46] and the components and categories considered
in this study. The UN Environment has adopted a progressive two-level monitoring approach for
Indicator 6.6.1. Level 1, which includes the spatial extent of water-related ecosystems and water quality
(only Chl and TSS) of lakes and artificial water bodies, is based on globally available data from EO
and is reviewed by countries every five years. During the review process, countries can either accept,
reject, modify, or replace the EO data provided by the UN Environment. Level 2, which includes the
quantity of water (discharge) in rivers and estuaries, water quality, and quantity of groundwater within
aquifers, is based on available national data from each country. In this study, we only considered
Level 1 monitoring, with one exception of only considering mangroves among the vegetated wetlands.
The water-related ecosystem category of vegetated wetlands in SDG Indicator 6.6.1 includes swamps,
fens, peatlands, marshes, paddies, and mangroves. Considering multiple types of wetlands would
have added complexity to the study and we believe detracted from the central goal of having a
multi-disciplinary proof of concept to guide future work on the use of EO data for Indicator 6.6.1
reporting. This decision was also made because mangroves are especially vulnerable and unique
ecosystems that exist at the boundary between freshwater and seawater and are globally not mapped
and monitored in a consistent and reproducible manner. Mangroves provide important ecosystem
services for many countries such as helping to remove pollutants from water, serving as a buffer
against storm surge, providing protection from coastal hazards [47,48], and providing economical blue
carbon benefits [49]. More so, the flat coastal topography and forested nature of these ecosystems allow
for remote sensing classification methods that can better separate mangroves from other herbaceous
wetland types.

It is noted that although this study extracts national statistics for the components investigated, we
present these numbers solely for demonstrative purposes and are in no way providing them so that
they are used as official country statistics. As is the case for all of the SDG indicators, SDG Indicator
6.6.1 reported values only come from countries themselves, following a robust validation process.
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Table 1. Water-related ecosystem components and categories required for country reporting in the
2018 monitoring methodology for Sustainable Development Goal (SDG) Indicator 6.6.1 [46] with an
indication of those considered in this study.

1 

 

 

* Only mangrove wetlands were considered in this study. ** Only total suspended solids and chlorophyll-a for
select large lakes and a large river were considered in this study, in line with Level 1 reporting requirements.

3. Methodology

In this study, we followed the UN Environment Indicator 6.6.1 methodology using only readily
available EO data based on two criteria. First, we limited the study to satellite-based EO data that are
available for free and easily accessed through existing data sharing platforms. Next, we focused on
data products and methodologies where there is a growing trend of more user-friendly data sharing
platforms stemming from end-user community demands. All of the surface water data products
and the water quality data can be accessed via a dedicated data sharing platform. A platform for
the mangroves data is currently under development. Table 2 provides a summary of the datasets
used for each of the water-related ecosystem categories and components considered in this study.
Sections 3.1–3.3 provide more detailed information about the datasets and methodologies used to
measure and/or evaluate the components.

Table 2. Summary of the components measured and datasets used in this study. Note: Copernicus
Sentinel data are processed by the European Space Agency and were retrieved in 2017 for this study.

Water-Related Ecosystem Category Extent Component Dataset(s) Spatial Resolution (m)

Rivers and estuaries, lakes Spatial extent MOD44W C6.0 250

Rivers and estuaries, lakes Spatial extent GLAD Surface Water, JRC
Global Surface Water Explorer 30

Wetlands (mangroves only) Spatial extent Landsat 8, Sentinel-1, SRTM 30

Lakes, rivers Quality (TSS and Chl only) Landsat 8, Sentinel-2A/B 20–30

Abbreviations: GLAD, Global Land Analysis and Discovery; JRC, Joint Research Centre; SRTM, Shuttle Radar
Topography Mission; TSS, total suspended solids; Chl, chlorophyll-a.

3.1. Spatial Extent of Surface Water Bodies

Three readily available satellite-based global surface water data products were used in this study.
Data from MOD44W C6.0, Global Land Analysis and Discovery (GLAD) Surface Water, and JRC Global
Surface Water Explorer (GSWE) were used to map and measure surface water extent from 2000 to 2015
for the seven pilot countries. The total area of surface water extent for each country was nationally
aggregated using the United Nations Food and Agriculture Organization Global Administrative Unit
Layers (GAUL) for 2000 to 2015. A baseline period of 2001 to 2005 was used, over which the data
were averaged and compared, in alignment with the 2018 Indicator 6.6.1 monitoring methodology.
Comparisons were done by calculating the Pearson correlation coefficients between the different data
products; significance was determined with a p-value of ≤0.05 using the t-test. Yearly estimates of
surface water extent and five-year rolling averages were compared with the 2001 to 2005 baseline
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period average and standard deviation. The five-year rolling averages were considered for 2004 to 2015
because MOD44W C6.0 data were not available before 2000 and GLAD data were not available before
1999. Using the three different data products and the methodology described, we investigated (1) the
influence of water threshold definition on country aggregates of surface water extent (i.e., the number of
observations or months per year that were classified as water in each pixel), (2) interannual deviations
from the baseline period, and (3) considerations for countries when using any of the three data products.
Sections 3.1.1 and 3.1.2 provide an overview of each data product.

3.1.1. MODIS-based MOD44W C6.0

MOD44W C6.0 [50] is a collection of global water maps created on an annual basis from data
retrieved by the MODIS instrument onboard the Terra satellite; it was created as an extension of the
older MOD44W C5 water mask [51]. The MOD44W C6.0 data product has a spatial resolution of
250 m. MOD44W C6.0 is available for each year from 2000 through 2015 and for every major land
mass (excluding Antarctica).

MOD44W C6.0 uses the MOD44W C5 water mask as the base to create annual summaries of water
observations. All daily MODIS surface reflectance images for each year are classified into maps of
water/not water by a decision tree algorithm, originally described by Carroll et al. [51]. A series of
masks are applied to address known issues caused by terrain shadow, burn scars, cloudiness, or ice
cover in oceans. These daily maps are then composited together for each year to make a single annual
water map, using the definition that a pixel is considered persistent water for the year if it was water
in at least 50% of the valid observations for that year. This is done separately for each year of data,
from 2000 through 2015. The MOD44W algorithm was validated in the US with an existing water map
from the National Land Cover Dataset as described by Carroll et al. [51]. In addition, extensive but not
statistically comprehensive manual spot-checking and quality assurance was performed for revision
by Carroll et al. [50].

3.1.2. Landsat-based GLAD Surface Water

The GLAD surface water dataset [52] was created through automated process mining of the
entire 1999 to 2018 archive of the Landsat 5 Thematic Mapper (TM), the Landsat 7 Enhanced Thematic
Mapper-plus (ETM+), and the Landsat 8 Operational Land Imager (OLI) by the University of Maryland’s
GLAD Lab as part of a global study. The GLAD data product has a spatial resolution of 30 m. Water,
land, and bad data classification models developed for each Landsat sensor at the University of
Maryland and described by Potapov et al. [53] were applied to all 1999–2018 Landsat scenes using
Google Earth Engine. A total of 80,345 scenes was classified for the seven countries in this study from
2000 to 2015.

A brief description of the GLAD data product is provided. After conversion to top of atmosphere
(TOA) reflectance, the Landsat 5, 7, and 8 scenes were classified per pixel into land, water, cloud,
shadow, haze, and snow and ice via per-sensor, hierarchical, bagged classification trees utilizing all
of the available image bands, normalized difference ratios of each pair of spectral bands, and 3 × 3
pixel spatial averages of all bands and ratios. Elevation and derived slope, aspect, and hillshade data
were used as additional metrics and obtained from the Shuttle Radar Topography Mission (SRTM).
The classification trees were built using a global training set of 120 to 160 fully classified scenes per
sensor. The land and water observations for a given pixel were summed per month, measured by the
percent of clear observations flagged as water, and aggregated to annual water presence frequency. For
this study, the GLAD data were run using three different thresholds for persistent water, including the
presence of water in at least 50%, 75%, and 90% of the valid observations for a given year, respectively.
These thresholds were selected to explore the influence of the persistent water definition on national
level water accounting and to demonstrate the importance of this definition when using EO-based
surface water data. The monthly maps have users’ and producers’ accuracies of 93.7% (±1.5%) and
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96.0% (±1.2%) when thresholded at 50% and compared against 5 m reference data. Pickens et al. [52]
provide a full validation and description of the methodology of the GLAD surface water dataset.

3.1.3. Landsat-based Global Surface Water Explorer

Surface water estimates from the 30 m spatial resolution GSWE data [15] were also used in this
study. The UN Environment recently endorsed the use of GSWE data for country reporting and
the dataset is part of a special SDG 6.6.1 online data portal developed jointly by the JRC, Google,
and UN Environment. Similar to GLAD Surface Water, GSWE uses the entire archive of the Landsat
5 TM, the Landsat 7 ETM+, and the Landsat 8 OLI orthorectified, TOA reflectance, and brightness
temperature images acquired from 16 March 1984 to present. Pekel et al. [15] provide a full description
of the GSWE methodology. The GSWE yearly permanent and seasonal surface water and five-year
rolling average permanent surface water data were accessed for the seven countries via the SDG
Indicator 6.6.1 data portal. GSWE data define permanent water as surfaces that are under water for
all months of a year, and seasonal water as surfaces with water one to 11 months of a year, based on
available Landsat imagery. In this study, the term “seasonal” data is used to represent the combined
permanent plus seasonal GSWE data, which is in better alignment with the other two data products.

3.2. Spatial Extent of Mangroves

We used a combination of satellite imagery sources to develop a semiautomatic approach to
measure the extent and change of mangrove wetlands in Jamaica, Peru, and Senegal. The data
consisted of Landsat 8 OLI, Sentinel-1, and SRTM elevation data. Landsat data were pre-processed by
image resampling, conversion to TOA reflectance, cloud and shadow removal and quality assessment,
and image normalization. Landsat 8 OLI bands were used as inputs for the classification, as well as the
normalized band ratios Normalized Difference Vegetation Index (NDVI), Normalized Water Index
(NWI), Normalized Burn Ratio (NBR), and others outlined by Green et al. [54]. Additionally, annual
maximum ‘VV’ and ‘VH’ metrics from Sentinel-1 and elevation data from SRTM were resampled
and included in the classification. Areas where SRTM elevation was over 50 m and areas where the
annual maximum NDVI values were less than 0 were masked out prior to analysis to improve the
classification. By doing this, areas where the elevation was too high or areas of permanent water bodies
were removed, respectively. A K-means clustering algorithm was used to generate 60 land cover types
using 10,000 randomly sampled points within the area of analysis. Automatic detection of the land
cover types was then merged into mangrove and non-mangrove classes using visual interpretation
of the annual 2016 Landsat composite. Google Earth imagery was used extensively as an additional
reference for the 2016 classification.

A NDVI anomaly was calculated for each study region using the Landsat image archives following
similar methods outlined by Lagomasino et al. [55]. The reference period covered Landsat 5 TM images
from January 1990 through December 1999. Images were pre-processed following a similar criterion as
the mangrove extent. A mean NDVI value was generated from the sum of individual pixels across
all images that were normalized by the number of images representing non-null values. The mean
NDVI for the reference period (1990 to 2000) was then subtracted from each of the images in the
observation period, which ranged from January 2000 to December 2016. The anomaly value from each
overlapping pixel was then summed across all of the images in the collection to determine an overall
cumulative anomaly. The cumulative anomaly values were also normalized for the total number of
images with non-null values for individual pixels. Anomalous NDVI values were considered those
which fell outside the 5th and 95th percentiles over the study region [55]. Values greater than the 95th
percentile were considered areas of forest gain, while those values less than the 5th percentile were
characterized as forested areas that were lost. Gains in mangrove area from 2000 to 2016 were assumed
to only occur within the 2016 extent as mapped for this study. Conversely, any loss during the 16-year
period was assumed to only occur within the mangrove extent in 2000 as mapped by Giri et al. [25].
The mangrove extent maps for 2000 and 2016 were used to mask regions of losses and gains, respectively,
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from the NDVI anomaly. Figure 2 provides a schematic of this methodology. National level statistics
were obtained for all three countries using the Food and Agriculture Organization (FAO) GAUL
administrative boundary dataset.
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mangrove land cover change from 2000 to 2016.

3.3. Water Quality of Surface Water Bodies

While EO provide a full suite of water quality products, including Chl, TSS, colored dissolved
organic matter (CDOM), turbidity, Secchi depth, and surface temperature, in this study, we focused on
Chl and TSS (following UN reporting requirements for Level 1) derived using best-practice empirical
algorithms in different lake systems in Zambia, Peru, and Senegal. The TSS algorithm uses information
in the red spectral bands [56], and the Chl retrieval is based on the heritage ocean color algorithm [57],
which uses the band ratio of green-blue bands. Relevant bands from the Landsat 8 and Sentinel-2A/B
images were processed using NASA’s SeaWiFS Data Analysis System (SeaDAS) whose performance
has been evaluated and well documented [58,59]. SeaDAS removes and/or minimizes the impacts of
interfering atmosphere using a heritage atmospheric correction algorithm [60] developed originally
for ocean color. The atmospherically corrected spectral reflectance just above the water surface is
then applied to derive Chl and TSS. The relative differences in the above-water reflectance products
as well as in the TSS products derived from Landsat and Sentinel-2 images processed via SeaDAS
have recently been identified and minimized to enable seamless analysis of global surface water
quality [61]. The utility of the combined products, however, have not been thoroughly assessed for
societal benefits (e.g., SDG reporting). To this end, five surface water bodies located in three different
countries were evaluated in this study: Lake Bangweulu in Zambia, Lake Titicaca and Lake Junin in
Peru, and Casamance River and Lake Guiers in Senegal. We report area-average Chl and TSS over
time, starting from April 2013 when Landsat-8 became operational. The analysis only focuses on the
relative variations in Landsat and Sentinel-2 derived products, thus an assessment of the precision and
accuracy of Chl and TSS was considered beyond the scope of this proof of concept study.

4. Results

4.1. Spatial Extent of Surface Water Bodies

Many of the differences between the surface water data products exist due to the threshold
definition for persistent, permanent, or seasonal water used by the particular EO-based surface water
data product. In this study, we used the set threshold definitions for MOD44W C6.0 and GSWE data
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products, as discussed in Section 3.1. However, with the GLAD data we were able to explore different
persistent water thresholds. To illustrate this concept, Figure 3 provides an example of the spatial
extent of surface water for the Tonle Sap Lake in Cambodia mapped with the three data products for
three of the years in the study period, with 2000 being exceptionally flooded due to a series of tropical
storms and heavy monsoon rains that occurred during that year, 2005 being relatively average, and
2015 being the driest year of the 16-year record considered in the study. Much of what was considered
seasonal water with GSWE in 2000 (thus not accounted for in the permanent water data) was considered
persistent water in the MOD44W C6.0 data product because the pixels were flooded in more than
half of the valid observations during that year. The surface water extent in 2000 for Cambodia was
14,753 km2 with MOD44W C6.0, 18,269 km2 with the GSWE seasonal data, and 11,834 km2 with the
GLAD 50% persistent water threshold. The slightly lower value with GLAD data can be explained by
the fewer number of observations with Landsat vs. MODIS due to cloud cover during the 2000 storms
and monsoons and the higher chance for MOD44W C6.0 to have valid observations during these times
due to the daily revisit time of MODIS. The slightly higher value with GSWE data can be explained by
the seasonal water threshold definition used, which includes any valid pixel that is classified as water
for one to 11 months in a year. In 2015, the driest year during the record, the yearly aggregate surface
water extent was 4645 km2 with MOD44W C6.0, 10,632 km2 with GSWE seasonal data (3355 km2 with
GSWE permanent data), and 5317 km2 with the GLAD 50% water threshold (3568 km2 with the GLAD
90% water threshold). Due to the higher spatial resolution of Landsat vs. MODIS, Landsat-based data
are able to capture smaller water bodies that may otherwise be missed by MODIS, thus during years
when cloud cover is not a significant issue, Landsat-based estimates of surface water will likely be
higher than MODIS-based estimates, as illustrated here.

Figure 4 shows the yearly and five-year rolling average variability in surface water extent,
compared to the baseline average and standard deviation of the baseline average. For brevity, only
the GLAD surface water 75% threshold and GSWE permanent surface water data are displayed.
The greatest number of years where the yearly data were outside the baseline average and standard
deviation occurred in Uganda, where there was a distinct downward trend beginning from 2006 to
2010/2011. However, with the exception of the GLAD data, all deviations were within less than 2%
of the baseline. Deviations for the last three years of record from the GLAD data were between 6%
to 7%. Even after the five-year moving average smoothing, more than half of the years during this
period were outside of the baseline standard deviation with all three datasets. This decline in surface
water extent aligned with a decline in East African rains attributed to multi-decadal variability in
the Indian Ocean sea surface temperatures, resulting in a prolonged period of drought in the region
and culminating in the worst drought experienced in decades during 2010/2011 [62,63]. Several other
countries, the Philippines in particular, had five or more years where the annual spatial water extent
exceeded the baseline period variance. The GSWE permanent baseline value was in all cases lower
than all other data products, which was to be expected.

The coefficient of variation, which is a standardized measure of dispersion, was calculated to
explore interannual variability in surface water extent (Figure 5). Generally, all of the datasets had
a similar coefficient of variation. The countries with the highest coefficient of variation—Cambodia,
Jamaica, and Senegal—also exhibited the greatest differences in the coefficient of variation between the
datasets. This finding was as expected. One finding that was unexpected, however, was that besides
Cambodia, MOD44W C6.0 and the GSWE permanent data exhibited similar coefficients of variation
despite countries such as Jamaica, the Philippines, and Senegal exhibiting greater variability with more
seasonal datasets. This is either due to the ability of the MOD44W C6.0 data to classify persistent water
based on more MODIS scenes per year or due to the lower spatial resolution of these data, which may
not account for seasonal variability of smaller water bodies.

The GLAD and GSWE permanent water data were generally strongly correlated, particularly
when comparing the GLAD 75% and 90% persistent water data with the GSWE permanent water
data (Figure 6). Since both data products are Landsat-based, this was an expected result. Given the
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threshold used to define permanent water by GSWE, we expected that the higher persistent water
thresholds for the GLAD data would result in greater agreement. The opposite relationship was
expected for the GSWE seasonal data. For Cambodia, Peru, Uganda, and Zambia this was the case—
there were statistically significant correlations between the GLAD 50% persistent water data and the
GSWE seasonal water data but not with the other two GLAD persistent water thresholds (the exception
was a statistically significant, although relatively low, correlation between the GLAD 75% persistent
water data and the GSWE seasonal water data in Zambia). With the exception of Jamaica and the
Philippines, there was generally good agreement between GLAD 50% and 75% and MOD44W C6.0
and GSWE permanent and MOD44W C6.0.Remote Sens. 2019, 11, x FOR PEER REVIEW 10 of 27 
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Figure 3. Annual persistent surface water extent for the Tonle Sap Lake and Lower Mekong River
in Cambodia from MOD44W C6.0 (data overlain in dark blue) for (a) 2000, (b) 2005, and (c) 2015.
Annual persistent water using a threshold definition between 1% to 100% surface water extent for
Tonle Sap Lake and Lower Mekong River in Cambodia from GLAD for (d) 2000, (e) 2005, and (f) 2015.
Annual permanent (dark blue) and seasonal (light blue) surface water extent for Tonle Sap Lake and
Lower Mekong River in Cambodia from Global Surface Water Explorer (GSWE) for (g) 2000, (h) 2005,
and (i) 2015.
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Figure 4. Spatial extent of surface water in the seven countries calculated using MOD44W C6.0
persistent water, GLAD surface water using a 75% threshold for persistent water, and GSWE permanent
water for 2000 to 2015. The baseline period average and standard deviation from the baseline period
average from 2001 to 2005 are shown in an orange line and light orange shaded area, respectively.
Yearly aggregate of surface water extent (solid blue line) and the five-year running average (dashed
blue line) are overlain.
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Figure 6. Correlations of yearly surface water extent in the seven countries calculated between
MOD44W C6.0, GSWE permanent water and seasonal water, and GLAD surface water using three
different persistent water thresholds (50%, 75%, and 90%). Correlation values between datasets are
displayed in each box and statistically significant correlations are circled. Statistical significance was
determined at a p-value ≤0.05 using the t-test.

Uganda, Cambodia, and Zambia had the highest number of statistically significant correlations
between the six datasets. The highest level of agreement was in Uganda, where the average correlation
was 0.6 overall and 0.75 among the GSWE permanent water and the three GLAD persistent water
datasets (Figure 6). The majority of these correlations were statically significant. Jamaica was the only
country to have a significant negative correlation when comparing the GSWE seasonal data with the
other datasets considered, although non-significant negative correlations were also notable for the
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Philippines. As the only two island nations in the study, the negative correlations for Jamaica and the
Philippines were attributed to the nature of seasonal surface water classification along the coasts. Since
the GSWE seasonal data account for persistent water anywhere from one to 11 months, these yearly
estimates included short-term seasonal flooding that the other datasets did not.

4.2. Spatial Extent of Mangroves

Table 3 provides the area corrected change in mangrove extent for the three study countries and
associated uncertainties based on reference data and the accuracy assessment error matrix [64]. These
area corrections and uncertainties take into consideration the errors associated with the classification to
provide a more realistic estimate of mangrove cover and change over just “pixel-counting”. From 2000
to 2016, Senegal and Peru had a net gain in mangrove extent while Jamaica had a net loss. Jamaica
also experienced the greatest uncertainties in estimated extents, with uncertainty for mangrove gain
during this period being as high as ±32% and uncertainty for mangrove loss being as high as ±21%.
On average, uncertainty was higher when estimating mangrove gains vs. mangrove losses, partially
because these areas were higher overall. However, Jamaica was the exception to this, where the
mangrove gain area was less than the loss, yet the associated uncertainty was still relatively higher.

Table 3. Mangrove land cover change from 2000 to 2016 for the countries of Senegal, Peru, and Jamaica
extracted using Landsat, Sentinel, and SRTM data. Area values are corrected based on reference data
with the reported area uncertainties at a 95% confidence level.

Spatial Extent of Mangrove Wetlands (km2)

Country Loss(2000–2016) Gains(2000–2016) Extent 2016 %∆(2016–2000)

Senegal 15.2 ± 2 56.2 ± 16 1602.1 ± 67.8 2.6%

Peru 2.4 ± 0.5 4.5 ± 0.8 49.2 ± 2.7 4.5%

Jamaica 5.3 ± 1.1 2.8 ± 0.9 74.1 ± 4.2 −3.3%

It was beyond the scope of this study to investigate the reasons behind the changes presented
in Table 3, as the monitoring methodology for SDG Indicator 6.6.1 currently does not require this
information to be reported. However, the land cover change data allowed us to look more closely
at the estimated changes. In Figures 7 and 8 we show example maps for a mangrove region in Peru
and Senegal, respectively. These figures provide a sub-national look at the type of mangrove forest
gain experienced by the countries. For example, most of the additional mangrove area increase
between 2000 and 2016 in the Tumbes District of Peru was due to mangrove gain, defined as the
expansion of mangrove to previously uninhabited areas (e.g., open water to mangrove or bare soil to
mangrove, see Figure 7). This took place in localized hotspots along the coast. Conversely, most of the
additional mangrove area increase between 2000 and 2016 in the Kaolack Region of Senegal was due
to the expansion of mangroves into mudflats (Figure 8). Though not explicitly detailed in Indicator
6.6.1, we were also able to monitor areas of regeneration, here defined as the increase in vegetation
signal in areas that were previously identified as mangroves [25], which represent varying degrees of
regrowth. This expansion and regeneration are reflective of large mangrove reforestation projects in
the Senegambia region, where between 2006 and 2013 it was estimated that 14,000 ha of mangrove
forest were replanted [65]; with 79 million mangroves replanted it, is considered the world’s largest
mangrove reforestation project [66].
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Figure 8. (a) The near-infrared, short-wave infrared, and red bands from Landsat 8 OLI were used to
make this 2016 false-color composite of the Kaolack Region of Senegal. (b) Changes in mangrove cover
in the Kaolack Region of Senegal between 2000 and 2016.

4.3. Water Quality of Surface Water Bodies

The time-series (2013–2017) of water quality indicators for select large water bodies is shown in
Figures 9–13. The temporal analyses begin in 2013 (earliest) and are shown alongside an example
distribution of TSS and Chl products (left). The datapoints in the temporal plots indicate area-average
Landsat 8 or Sentinel-2A/B-derived TSS and Chl products given in units of g/m3 and mg/m3, respectively.
Although the frequency of observations is limited both by satellite revisit times and cloud cover,
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the variability in average water quality in different water bodies can be inferred. It is noted that these
plots were only produced to support the proof of concept for how satellite-derived TSS and Chl may
be used to inform countries in their Indicator 6.6.1 reporting. The aim of this effort was not to explain
the mechanisms (also not required for Indicator 6.6.1 reporting) that may have led to certain anomalies
or trends, and any future application of the methods described would require robust validation and
characterization of the uncertainties.Remote Sens. 2019, 11, x FOR PEER REVIEW 17 of 27 
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the 2013–2017 period. Data gaps in 2015 are due to clouds. In 2017, Sentinel-2 increased the observation
rate at this site.

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 27 

 

Figure 11. Time-series of lake-wide average TSS (g/m3) and Chl (mg/m3) in Lake Guiers in Senegal for 
the 2013–2017 period. Data gaps in 2015 are due to clouds. In 2017, Sentinel-2 increased the 
observation rate at this site. 

Figure 12. Time-series of average TSS (g/m3) and Chl (mg/m3) for a segment of the Casamance River 
in Senegal for 2013–2017 period. The data points correspond to the area-average products (i.e., 
averaging all values within the sample products shown on the left panel). Spatial variability is 
apparent in the maps on the left. 

Figure 12. Time-series of average TSS (g/m3) and Chl (mg/m3) for a segment of the Casamance River in
Senegal for 2013–2017 period. The data points correspond to the area-average products (i.e., averaging
all values within the sample products shown on the left panel). Spatial variability is apparent in the
maps on the left.

In Lake Junin (Figure 9) Chl anomalies were identified in July 2015 and 2017, although lake-wide
TSS values varied only slightly in time with no distinct peaks. Lake Titicaca (Figure 10) displayed more
distinct peaks in TSS, with anomalies in TSS most noticeable in November 2015 and 2016. Sentinel-2
data also captured a major peak in August 2017 where Chl was nearly 25 times higher than the
time-averaged concentration (2013–2017). High concentrations of TSS and Chl were revealed by
Landsat data in April and May of 2014 in Lake Guiers (Figure 11). Data gaps due to cloud coverage
during several months in 2015 inhibited us from having valid observations during those times, however,
the addition of Sentinel-2 data beginning in 2017 considerably increased our observation rate at this
site. TSS and Chl variability in the Casamance River were relatively consistent during the study period
(Figure 12). For Lake Bagweulu (Figure 13), clear seasonal patterns in TSS with different peaks in
September and October timeframes were inferred, while high-frequency variations in Chl during May
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to September were identified and a major peak in Chl was captured with the Sentinel-2 data during
late March 2016.Remote Sens. 2019, 11, x FOR PEER REVIEW 19 of 27 
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Figure 13. Time-series of lake-wide average TSS (g/m3) and Chl (mg/m3) products shown for Lake
Bagweulu in the 2014–2017 period. TSS has a seasonal pattern with peaks in September/October. A peak
in Chl is captured by Sentinel-2 data during late March 2016 and in April and July 2017.

5. Discussion

Although we considered three different data products and six datasets for surface water, including
GSWE permanent and seasonal data which are already endorsed by the UN Environment, it is difficult
to draw conclusions on the best product for all countries to use in their reporting without in-country
validation. Overall, we found there to be greater agreement between the six datasets for the landlocked
countries than for the non-landlocked countries, and we found the least agreement for the two island
nations. Further investigation using a greater number of countries than were considered in this study
is needed to verify this trend. Where there was poor agreement between datasets, we attributed the
majority of the differences to three things: (1) each uses a slightly different threshold definition and
methodology for calculating persistent, or in the case of GSWE, permanent water; (2) MOD44W C6.0
maps, with the daily repeat coverage of MODIS, have a higher likelihood of accurately measuring
surface water extent in areas with limited Landsat observations due to cloud cover (together Landsat 7
and 8 image the globe once every eight days); and (3) the two Landsat-based data products were able
to resolve much smaller features than the MODIS-based MOD44W C6.0 dataset given their higher
spatial resolution. There are also some additional nuances when it comes to threshold definitions for
EO-based surface water extent that would be important for countries to note when using these types of
data to support SDG reporting. MOD44W C6.0 and GLAD both define surface water based on the
percentage of valid observations during each year where persistent water is detected. GSWE defines
surface water based on the number of months per year where persistent water is detected from valid
observations. In some cases, valid observations may not be available due to gaps in the Landsat record
or omitted observations (considered invalid) due to cloud cover and/or other obstructions (e.g., trees or
shrublands). These nuances can result in discrepancies between data products for certain geographical
regions during certain years, stressing the need for countries to conduct rigorous in-country validation
of the EO-based data as part of reporting for SDG Indicator 6.6.1.

We identify the most important consideration in the practical application of EO-based surface
water data for SDG reporting as the threshold definition for persistent or permanent water. This value
is what ultimately accounts for surface water extent in each country, and as shown here it can vary
greatly. In countries that experienced relatively little inter-annual and seasonal variability such as
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Uganda, Zambia, and Peru, we found relatively little difference in the coefficient of variation between
the different datasets (Figure 5), although this did not necessarily lead to high correlations between
the datasets (Figure 6). This provides some indication that in these countries any of the different
datasets could provide a good basis for assessing relative change in surface water extent. However, in
countries with a high degree of inter-annual and seasonal variability, such as Cambodia, Jamaica, the
Philippines, and Senegal, deciding between datasets (e.g., permanent vs. seasonal) is more challenging.
Since seasonal and inter-annual variability is an important part of the hydrological cycle in these
countries, simply considering changes to permanent surface water extent may not be sufficiently
capturing changes to their water-related ecosystems. We argue that these countries may benefit from
selecting a seasonal threshold for persistent water based on national and regional hydrological regimes
and ground-based validation, rather than using a consistent definition.

The inter-comparison and determination of some degree of statistical agreement between different
datasets, as illustrated in this study, can be used to provide confidence levels for the surface water
extent Level 1 data, which would be helpful for national-level decision-making during the Level
1 country validation process (i.e., deciding whether to accept, reject, modify, or replace the data
provided). Additionally, while any EO-based data product would require rigorous validation before
being used for SDG reporting, the inter-comparison between similar data products can also supplement
ground-based validation studies where resources are otherwise limited. In such cases, since all of
the datasets considered in this study are geospatially mapped, countries could target ground-based
validation efforts where the greatest spatial differences between datasets exist.

Another important consideration for the use of EO-based surface water extent data for SDG
Indicator 6.6.1 reporting is the baseline period. For some of the countries in this study, the baseline
period from 2001 to 2005 seemed sufficient in capturing the inter-annual variability, especially when
using the five-year rolling average annual data. However, in the case of countries such as Cambodia,
Jamaica, the Philippines, and Uganda, where several years within the study period appeared to be
anomalously wet or anomalously dry years (in comparison to the baseline period), the baseline period
and variance may need to be modified. For example, although Uganda had the highest correlation
among the data products, it also had the highest number of years that were outside of the baseline
standard deviation (Figure 4). In most cases the deviation from the baseline amounted to less than 2%,
however, this number was higher during the last years of record with the GLAD data.

Lastly, Landsat and MODIS surface water data products should only be used to study surface
water bodies that are at minimum the length of several pixels in each dimension. While Landsat data
can resolve much smaller water bodies than MODIS data, we note that even with a higher resolution
Landsat-based data product, smaller water bodies such as rivers and streams and water bodies in
forested areas may be missed, making supplemental data collection necessary. Regarding the use of
different data products, it is also important that the same data product be used to track change from
baseline values over time since baseline values can vary greatly between datasets as shown in this study.
Even if several data products are used for inter-comparison, as suggested here, final reported values
must be repeatable over time. Data and methodology consistency is needed to achieve this. If datasets
are updated or changed, then the baseline and all other values would need to be recalculated.

In this study, we also combined different EO data (from different satellites and sensors) to estimate
net changes in mangrove extent. Our results consider the challenges of directly comparing different
spatial datasets, even with similar resolution, given the relatively high level of uncertainty with the
mangrove change estimates (Table 3). We note that the data shared represent an average extent for
each year and do not capture the highly dynamic nature of mangroves which at different times of
the day or year can be submerged under water. We found the highest uncertainties with Jamaica
which, along with findings from the surface water extent analysis, indicate that there may be more
uncertainty when using EO data for small island nations that have smaller hydro-ecological surface
features and where hydro-climatology can vary greatly over relatively small areas [67]. Supplemental
land cover change data (as illustrated in our study) can provide information on the long-term trends
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in mangrove change, which would be important for informing management, investment, and policy
change decisions. Trends of excessive gain or excessive loss can be useful in determining key locations
for future restoration projects, such as those related to coastal resilience, in addition to helping countries
meet their SDG reporting requirements for Indicator 6.6.1. It would be important for countries to
account for the location of mangroves, the location where changes have occurred, the transitional state
of change (e.g., open water to mangrove or bare soil to mangrove), as well as aggregate changes (gain
vs. regeneration vs. loss). We argue that identifying the type of mangrove gain (or loss) is an especially
critical piece of information for country reporting on SDG Indicator 6.6.1, and one that can easily be
obtained via EO.

A key strength of using EO for SDGs is that the data are spatially exhaustive and provide global or
near global coverage. However, there are also uncertainties involved with mapping land changes, such
as for mangroves or other types of wetlands, using EO data. Errors can result from the change mapping
process, the data used, and analyst biases [68]. Although change detection and mapping approaches
using EO data are increasingly robust, any map made from satellite data can be assumed to contain
some error, with the areas calculated from the map also potentially subject to bias. As illustrated in
this study, an accuracy assessment is needed to identify the errors of the classification and the sample
data in order to estimate both the accuracy and the uncertainty of the estimates. In this study, we used
the good practices approach laid out by Olofsson et al. [64] to account for uncertainty in the estimates
of mangrove area change over the study period. Land change accuracy assessment is separated into
three major components: the response design, sampling design, and analysis. The response design
encompasses all aspects of the protocol that lead to determining whether the map and reference
classifications are in agreement. The sampling design is the protocol for selecting a subset of data
within a region of interest. The analysis includes protocols for defining how to quantify accuracy
along with the formulas and inference framework for estimating accuracy and area and quantifying
uncertainty of these estimates. Conducting an accuracy assessment of a land change map serves
multiple purposes and without one there is no way to communicate map quality in a quantitative and
meaningful fashion. If EO data are used for national wetland reporting on Indicator 6.6.1, an accuracy
assessment should also be done. Future guidance should include accuracy assessments as a criterion
for country reporting using EO data.

Guidance for monitoring vegetated wetlands using EO data in support of SDG 6.6.1 reporting is
still being developed and streamlined through global EO community efforts such as the GEO-Wetlands
initiative, which aims to strengthen the cross-cutting coordination of global wetland observations by
involving key stakeholders on different levels, from different regions, and from all sectors in a user-needs
driven framework. Contributions to existing mangroves monitoring and partnership initiatives such
as the Global Mangrove Watch [69], Global Mangrove Alliance, and further development of emerging
platforms such as the EcoMap Mangrove Vulnerability Monitoring Tool [70] are also part of this effort.

In addition to being able to map the spatial extent of select water-related ecosystems with EO data
products, we demonstrate that trends in the water quality parameters of TSS and Chl in dry and wet
seasons, and in winter and summer, can successfully be tracked using readily available satellite-based
EO data products. We note that the limitation with using EO data to assess and report on water quality
is that these data only provide information on concentrations of in-water materials that affect the color
of water, such as TSS and Chl. However, Chl and TSS concentrations may be correlated with other
important water quality parameters such as oxygen levels, pH, nutrients, or chemicals that are listed
as targets under SDG sub-Indicator 6.3.2. For instance, high TSS in a water body can often mean
higher concentrations of bacteria, nutrients, pesticides, and metals in the water that may indicate
illegal discharges.

In this study, we showed that Landsat 8 and Sentinel-2 complement one another for TSS and Chl
monitoring with several examples of Sentinel-2 data providing information, where cloud cover resulted
in data gaps with the Landsat 8 instrument. While the uncertainties in the satellite products used are
not quantified here, there are ongoing efforts with the UN Environment to develop close collaborations
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and engagements with a number of pilot countries in order to investigate the extent to which these
products could be used to support country reporting on SDG 6, based on field validation. This proof
of concept study has fostered strong partnerships with a handful of countries (e.g., Peru) such that
the corresponding water authorities have initiated coordinated field sampling and/or monitoring
activities under satellite overpasses to enable a thorough evaluation of uncertainties in Chl and TSS
products. These collaborations will further aid in advancing new science algorithms and methodologies
for enhanced retrieval of Chl and TSS products. Moreover, we are investigating how EO data can
help guide ground-based monitoring programs, thus enabling a more cost-effective means for the
monitoring of water quality and helping to fill in some of the data gaps. In the future, NASA is planning
to develop a satellite-based water quality warning system, which will also be used to support national
water quality monitoring efforts and serve as a decision-support tool, helping countries identify the
most critical water quality problems, while also reporting on relevant SDG indicators. During the
development process, the system will be evaluated and tested for several bodies of water in various
countries and contribute to the progressive monitoring of Indicator 6.6.1.

Regarding gaps for practical water quality monitoring with EO, space agencies and the aquatic
remote sensing community should further explore innovative algorithms (e.g., algorithms based
on optical water types [71] or machine learning) to enhance water quality products at regional and
global scales and to seamlessly merge products obtained from various sources including in situ data.
Combining various satellite assets will help overcome data scarcity over areas with frequent cloud
cover, however, care must be taken to ensure consistency across all satellite observations and products.
For example, blending products from Landsat, Sentinel-2, Sentinel-3, and Joint Polar Satellite System
series will guarantee near-daily observations over larger bodies of waters (such as Lake Bangweulu);
but it is still vital to ensure that all of these products are in agreement in order to enable consistent
monitoring of SDG Indicator 6.6.1. We note that although our article focuses primarily on SDG Indicator
6.6.1, this proof of concept study and subsequent in-country validation efforts to quantify water quality
parameters from space are also relevant for SDG Indicator 6.3.2, ‘Ambient water quality’, for which
the UN Environment is also the custodian agency. Following this collaborative approach and future
validation exercises, EO-based observables (such as Chl and TSS) can potentially be added to the list of
SDG Indicator 6.3.2 parameters to allow for an operational use of EO products combined with in situ
data in the future.

6. Conclusions and Recommendations

Based on findings from this study, we make the following conclusions and recommendations:

• Statistically based comparisons between multiple EO surface water data products could be used
to provide some degree of confidence for the Level 1 surface water extent data, which would help
countries during the Level 1 validation process. Comparisons can also help target ground-based
monitoring efforts, making validation efforts more cost-effective.

• The ability to vary the threshold for persistent or permanent water would be beneficial for
countries that experience a high degree of seasonality, as it is important to capture changes to
seasonal water dynamics as well as permanent water.

• Comparing annual or five-year average surface water extent to the baseline period of 2001 to 2005
may not correctly capture actual change in conditions for some countries that experience a high
level of interannual variability as well as small islands such as Jamaica that have highly variable,
yet relatively small, water and wetland features.

• Mangroves are highly dynamic systems, thus it is important to account for the location of persistent
mangroves, the location where changes have occurred, the transitional state of change (e.g., open
water to mangrove or bare soil to mangrove), as well as aggregate changes (gain vs. regeneration
vs. loss). All of these parameters can easily be quantified with EO data, as illustrated.
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• Identifying the type of aggregate mangrove change (gain vs. regeneration vs. loss) is an especially
critical piece of information that can easily be obtained via EO data that we recommend is added
to the monitoring methodology for SDG Indicator 6.6.1 in the future.

• An accuracy assessment should be conducted and included with country reporting for Indicator
6.6.1 when using EO data to track changes to wetland extent.

• Landsat 8 and Sentinel-2 satellite data can capture the spatial extent and seasonal changes of SDG
water quality indicators of TSS and Chl in ways that ground-based monitoring cannot, which can
make these EO products a great complement to existing ground-based monitoring campaigns.
In other words, EO products should not replace ground-based monitoring activities.

• TSS and Chl measurements via EO present a potentially significant opportunity for SDG 6
reporting, however, application of space-based water quality information will only be an asset if it
is done in close collaboration with countries that can combine it with ground-based monitoring
efforts and local information.

• Data and methodology consistency is needed to achieve replicability over time, even if several
different datasets are used. If datasets are updated or changed, then the baseline and all other
values should be recalculated and resubmitted.

Space agencies and science institutions, in collaboration with the UN Environment, can help
encourage the use of EO for water-related ecosystems monitoring in countries with currently limited
data for reporting. Development and sustainable operation of open access web portals that enable easy
data access, essential visualizations, basic statistical evaluations, integration with other data sources,
capacity building through training, and clear communications on what can and cannot realistically
be delivered with the use of EO data will be key aspects. Country-driven validation of the EO data
products remains a priority to ensure successful EO data integration in support of SDG Indicator 6.6.1
reporting, yet it is important for users to understand the special nuances around EO data. The EO
data analysis and statistical methods used in this study can be easily replicated for country-driven
validation of EO data products in the future.
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