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Abstract: The onus for monitoring crop growth from space is its ability to be applied anytime
and anywhere, to produce crop yield estimates that are consistent at both the subfield scale for
farming management strategies and the country level for national crop yield assessment. Historically,
the requirements for satellites to successfully monitor crop growth and yield differed depending
on the extent of the area being monitored. Diverging imaging capabilities can be reconciled by
blending images from high-temporal-frequency (HTF) and high-spatial-resolution (HSR) sensors to
produce images that possess both HTF and HSR characteristics across large areas. We evaluated
the relative performance of Moderate Resolution Imaging Spectroradiometer (MODIS), Landsat,
and blended imagery for crop yield estimates (2009–2015) using a carbon-turnover yield model
deployed across the Australian cropping area. Based on the fraction of missing Landsat observations,
we further developed a parsimonious framework to inform when and where blending is beneficial
for nationwide crop yield prediction at a finer scale (i.e., the 25-m pixel resolution). Landsat provided
the best yield predictions when no observations were missing, which occurred in 17% of the cropping
area of Australia. Blending was preferred when <42% of Landsat observations were missing, which
occurred in 33% of the cropping area of Australia. MODIS produced a lower prediction error when
≥42% of the Landsat images were missing (~50% of the cropping area). By identifying when and
where blending outperforms predictions from either Landsat or MODIS, the proposed framework
enables more accurate monitoring of biophysical processes and yields, while keeping computational
costs low.

Keywords: MODIS; Landsat; data blending; crop yield prediction; gap-filling

1. Introduction

The world’s human population is projected to increase by more than 35% by 2050 [1]. To contribute
to improved global food security, the next generation of crop models and agricultural decision support
tools needs to efficiently and consistently operate across various scales [2]. Accurate nationwide
crop yield forecasts may ensure food security to the citizens. More accurate crop yield prediction
at the subfield scale can provide farmers with more detailed information for guiding, within the
growing season, in-field variable rate applications of fertilizer, herbicides, and pesticides. An efficient

Remote Sens. 2020, 12, 1653; doi:10.3390/rs12101653 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-2343-7443
https://orcid.org/0000-0002-0877-8285
https://orcid.org/0000-0002-5599-7456
http://dx.doi.org/10.3390/rs12101653
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/10/1653?type=check_update&version=2


Remote Sens. 2020, 12, 1653 2 of 20

approach to monitor crop growth uses satellite observations providing repeated synoptic regional
assessments [3–6]. High-temporal-frequency (HTF) observations are required to accurately track crop
development [7] and predict yield [8], and high-spatial-resolution (HSR) observations are necessary to
capture within-field heterogeneity [9].

There is a trade-off between temporal frequency and spatial resolution [10–12] as no single sensor
can regularly image vast areas of the Earth used for nation-wide dryland cropping at a high spatial
resolution. Commercial options of products combine HTF and HSR images achieved by increasing
the number of satellites in orbit, such as PlanetScope; however, such commercial options are not
affordable for national-scale monitoring, especially in a country as large as Australia (7.7 million km2),
with the southern Australian cereal-based agricultural system notionally covering 530,000 km2 [13].
The Moderate Resolution Imaging Spectroradiometer (MODIS) provides complete coverage of the globe
every day at a 250-m spatial resolution from red and near-infrared bands. This resolution constrains
the capacity of describing cropping systems, crop growth, and field heterogeneities, especially when
fields are small-to-moderate sized and landscapes are fragmented [14,15]. Sensors with higher spatial
resolution, such as Sentinel-2 or Landsat, are more suitable for these smaller fields/management units,
but their lower temporal frequencies limit their ability to capture rapidly evolving crop processes,
especially when factoring in the potential clouds [16]. Lobell et al. [17] used valid Landsat observations
(cloud cover <10%) during the growing season to generate optical-based vegetation indices (Vis) and
then fitted a multilinear regression between these VIs and a large number of Agricultural Production
Systems Simulator (APSIM) simulations for yield prediction. In a country like Australia, most of the
arable non-irrigated land grows winter wheat, barley, oats, and canola, and their growth depends on
the in-season rainfall; therefore, totally cloud-free time-series observations for their entire growing
season are infrequent.

To overcome these challenges, various methods for spatial filtering [18], temporal
gap-filling [19–21], and data fusion [22–24] were devised with a varying degree of success. As spatial
filtering and temporal gap-filling disregard the spatial and temporal correlation of a pixel, they are highly
sensitive to the choice of size/length of the spatial/temporal window [20,25]. Data fusion techniques,
on which this article focuses, were shown to improve the temporal resolution of fine-spatial-resolution
data by blending observations from sensors with different spatial and temporal characteristics.
Prominent examples are the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM;
Gao et al. [12]) and the Enhanced STARFM (ESTARFM; Zhu et al. [11]). However, blending is no
“silver bullet”, as it often introduces unforeseen spatial and temporal variances [10]. Therefore, it is
critical to systematically evaluate the benefits of blending and identify where and when blending helps
to improve monitoring.

Blending satellite data with complementary frequency and spatial resolution characteristics,
such as MODIS (herein considered as an HTF and low-spatial-resolution (LSR) sensor) and Landsat
(herein considered as a low-temporal-frequency (LTF) and HSR sensor), provides a solution of synthetic
imagery that is both HTF and HSR [26]. Current literature such as Dong et al. [27] found that using
Landsat images provides a higher crop yield prediction accuracy for field scales over MODIS images,
and a further improvement can be achieved by combining Landsat and MODIS (L–M) blended data
with the incomplete Landsat series. To date, the utility of blended output is not yet tested for regional
and national crop yield mapping [28–35] (Table 1); this study fills that niche.

This study quantifies and evaluates the benefits of blending satellite data of different temporal
frequencies and spatial resolutions for crop yield prediction. The specific objectives of this study
are to (i) estimate yields using MODIS, Landsat, and L–M blended data and then compare the yield
prediction at both pixel and field scales, (ii) identify the fraction of missing Landsat data during a
growing season considering the 16-day acquisition cycle to determine a threshold where the blended
data can improve the prediction, and (iii) quantify the improvements in the yield prediction accuracy
based on the threshold.
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Table 1. Review of studies that used data fusion approaches to estimate crop yields and other variables highly related to crop yield (e.g., growing season
evapotranspiration and crop phenology). Records are sorted chronologically then alphabetically. When more than one site is reported in a single paper, these are
identified with an (A) and (B) in the relevant columns as required. R2: the coefficient of determination; RMSE: root-mean-square error; MAE: mean absolute error;
RMAE: relative MAE; NR: not reported. In Australia, dryland agriculture is practiced across the region known colloquially as the “wheatbelt”. STARFM—Spatial and
Temporal Adaptive Reflectance Fusion Model; ESTARFM—enhanced STARFM; MODIS—Moderate Resolution Imaging Spectroradiometer; NIR—near infrared;
US—United States; NE—New England; NASA—National Aeronautics and Space Administration; L–M—Landsat/MODIS blend; HTF—high temporal frequency;
HSR—high spatial resolution.

Reference Blending Algorithm Remote Sensing (RS)
Data Crop Type

RS Variables (e.g., Vegetation
Index (VI))/Study

Period/Region/Study Area
(km2)

RS-Bases Model to
Estimate Crop Yields Key Results and Accuracy

[28]

Spatial and Temporal
Adaptive Vegetation
Index Fusion Model

(STAVIF)

MODIS and Huanjing
Satellite

Charge-Coupled
Device (HJ-CCD)

Winter wheat

Normalized difference
vegetation index

(NDVI)/2008–2009/Yucheng,
Shandong, China/NR

Empirical model
The estimated winter wheat biomass correlated

well with observed biomass (R2 = 0.88 and MAE
= 17.2 kg/ha) using the blended data.

[29] STARFM

Satellite for
Observation of Earth

(SPOT) 5 and HJ-1
CCD

Winter wheat

NDVI and ratio vegetation
index (RVI)

(NIR/Red)/2008–2009/(A)
Rugao county, Jiangsu, and (B)

Anyang county, Henan,
China/(A) 0.36 km2 and (B)

0.30 km2

Empirical model

(A) The accumulated NDVI derived from the
blended data gave a higher prediction accuracy

(R2 = 0.67 and RMSE = 0.36 t/ha) for wheat yield
at Rugao.

(B) The accumulated RVI derived from the
blended data produced a higher prediction

accuracy (R2 = 0.65 and RMSE = 0.36 t/ha) for
wheat yield at Anyang.

[31] STARFM MODIS and Landsat Corn and soybean

Evapotranspiration
(ET)/2013/Central Valley,

California, the US/(A) 0.34 km2

and (B) 0.21 km2

Empirical model

The daily ET derived from the blended data
produced the RMAE of 19% with the observed ET
(mm/day). The spatial pattern of cumulative ET

corresponded to the measured yield.

[27] ESTARFM MODIS and Landsat Winter wheat
Green leaf area index

(GLAI)/2013/Southwestern
Ontario, Canada/225 km2

Semi-empirical model

The Landsat GLAI (GLAIL) produced an R2 of
0.77 and RMSE of 2.31 t/ha; the blended GLAI
(GLAIF) resulted in an R2 of 0.71 and RMSE of

1.93 t/ha; the combination of GLAIL and GLAIF
led to further improvements (R2 = 0.76 and

RMSE = 1.76 t/ha).

[30] ESTARFM MODIS and Landsat Corn and soybean NDVI/2001–2014/Central Iowa,
the US/200 km2 Empirical model

A linear correlation (R2 = 0.83) between remotely
sensed green-up dates and the emergence dates

reported by NASA.

[32] STARFM MODIS and Landsat Maize
ET/2010–2014/Mead, NE, the

US/(A) 0.49 km2, (B) 0.52 km2,
and (C) 0.65 km2

Empirical model

The county-level correlation between observed
and predicted maize yields improved from 0.47 to
0.93 when aligning the ratio of actual-to-reference
ET by emergence date rather than calendar date.
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Table 1. Cont.

Reference Blending Algorithm Remote Sensing (RS)
Data Crop Type

RS Variables (e.g., Vegetation
Index (VI))/Study

Period/Region/Study Area
(km2)

RS-Bases Model to
Estimate Crop Yields Key Results and Accuracy

[33] STARFM MODIS and Landsat Corn and soybean
NDVI and enhanced vegetation
index (EVI2)/2001–2015/Central

Iowa, the US/200 km2
Empirical model

Maximum EVI2 derived from L–M blended data
produced the highest R2 (0.59 and 0.39) and the

lowest RMAE (6.1% and 9.1%) for corn and
soybeans, respectively, compared with using

single data source alone.

[34] A pixel-wise linear
regression model MODIS and Landsat

Alfalfa, barley, maize,
peas, durum wheat,
spring wheat, and

winter wheat

NDVI/2008–2015/Montana, the
US/4.13 million ha Semi-empirical model

A correlation of 0.96 (R2 = 0.92, relative RMSE =
37.0%, p < 0.05) resulted when comparing the

yield prediction using the blended data with the
reported crop production data on county level.

[26] ESTARFM MODIS and Landsat Cotton and winter
wheat

NDVI/2004–2014/Fergana
Valley, Uzbekistan/NR Semi-empirical model The R2 is 0.56 (RMSE = 0.63 t/ha) for wheat, and

0.631(RMSE = 0.48 t/ha) for cotton, respectively.

[35] STARFM MODIS and Landsat Corn and soybean GLAI/2015/Southwestern
Ontario, Canada/112 km2 Semi-empirical model

The RMSE of yield prediction is 1.46 t/ha (R2 =
0.56) for corn and 0.86 t/ha (R2 = 0.54) for soybean

using the blended data.

This study ESTARFM MODIS and Landsat Wheat, barley, and
canola

NDVI/2009–2015/Australian
wheatbelt/~53 million ha Semi-empirical model

Comparing HTF, HSR data against the blended
data for yield prediction at various scales.

Identifying a threshold to determine when and
where the blended data can improve in the

nationwide yield prediction at the 25-m pixel
resolution when using multiple spatio-temporal
resolution images. Quantifying and evaluating

the improvements in the yield prediction
accuracy at various scales based on the threshold.
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2. Study Area and Data

2.1. Study Area

The southern Australian agricultural system is dominated by dryland agriculture where
cereals (e.g., wheat, barley, and oats), oilseeds (e.g., canola), and legumes (e.g., lupins, chickpeas,
field peas, and soybeans) are planted, often in rotation with annual pastures and fallows. Australian
wheatbelt (Figure 1) spans an extremely variable agroecological environment with respect to the
climate across the continent, leading to the high spatial variability in Australian grain production.
The precipitation varies enormously across the country (Figure S1, Supplementary Materials); winter
(June–August) precipitations are dominant in Western Australia and South Australia, while summer
(December–February) precipitations are dominant in Queensland and northern New South Wales.
In southern New South Wales and Victoria, total precipitation is more uniformly distributed throughout
the seasons where summer precipitation is more intense indicating that winter precipitation is more
frequent [36]. Long-term average monthly accumulated precipitation records strongly correlate with
the average number of rainy days (Figure S1, Supplementary Materials).
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Figure 1. Study sites and the crop growing season (April–October) average accumulated precipitation
(mm for the years 2009–2015) across the Australian wheatbelt (~53 million ha) [13]. The precipitation
data are sourced from Jeffrey et al. [37].

2.2. Data

2.2.1. Satellite Images and L–M Blended Data

Time series of Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic Mapper (ETM)+,
and Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) standardized
surface reflectance data are sourced from Geoscience Australia (http://geoscienceaustralia.github.io/

digitalearthau/index.html), which contains 239 scenes covering the Australian wheatbelt across seven

http://geoscienceaustralia.github.io/digitalearthau/index.html
http://geoscienceaustralia.github.io/digitalearthau/index.html
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years (2009–2015). These images are nadir-corrected, adjusted for bidirectional reflectance distribution
function, and topographically corrected followed by Li et al.’s methods [38], resulting in a 25-m pixel
resolution. This is as, in Geoscience Australia’s processing stream, they oversample the Landsat
imagery to 25 m to allow easier integration with other remote sensing data sources. Time series of
normalized difference vegetation index (NDVI) are then computed using the red and near-infrared
bands [39]. The 16-day composite of MODIS NDVI (MOD13Q1 v006) data are used due to the low
clouds, low view angle, and the highest NDVI value at 250-m spatial resolution. The MODIS data are
sourced from United States Geological Survey for the corresponding periods and area (16 tiles) and are
then downscaled to 25 m by 25 m spatial resolution using nearest neighbor interpolation [40] for input
to the blending algorithm and for consistency to enable further analysis.

The inter-annual variability of precipitation (Figure 2b) illustrates that the probability of rain days
is higher during June–August (i.e., tillering to flowering phase), which is a critical period for crop yield
prediction [41,42]. Figure 2b also shows the value of 0.58 in July at the 75th quartile, which indicates
that the probability of cloud-free Landsat images could be lower than 42% in most areas. Here, 75% of
field-scale Landsat missing data occur during the growing season (i.e., 113–289 days of the year (DOY)),
and only 25% of the Landsat data are complete sequences (Figure 3).
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Figure 2. Box–whisker plots of 1901 to 2018 averaged (a) monthly accumulated precipitation
(mm/month) across the Australian wheatbelt (see Figure 1) and (b) monthly probability of rain
days (bottom). For both parts, the horizontal line represents the median of the data, the box spans from
25th to 75th quartiles of the data, and the circles past the end of the whiskers are outliers, while the rain
day threshold is 0 mm/day.
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Figure 3. The quantile of Landsat missing pixels in the fields for which observed yield data are available
(2009 to 2015).

To blend MODIS and Landsat NDVI data and create the 16-day time series of gap-filled Landsat-like
images, we applied ESTARFM [11], which is superior when the spatial variance is dominant [10].
We follow Jarihani et al.’s [22] recommendation to “index then blend”, as it yields more accurate
results and provides higher computational efficiency than the “blend then index” approach. Figure S2
(Supplementary Materials) illustrates the blending process and the resulting Landsat-like image. As a
result of data blending, each pixel is described by 22 observations across the calendar year. For more
details about ESTARFM see [11,43].

2.2.2. Yield Data

Australia’s major dryland crops are selected for yield estimates and validation, including 35 fields
of canola, 123 fields of wheat, and 52 fields of barley (Table S1, Supplementary Materials). The average
area of these fields is ~112 ha with a standard deviation of ~69 ha. Using various yield monitoring
systems mounted on grain harvesters operated by farmers, these observed data were collected at these
sites across the country from 2009 to 2015 (Figure 1). The data obtained by these commercially available
yield monitors were used to construct a yield data image at 5-m resolution [44], which was upscaled to
25 m and 250 m to match the Landsat and MODIS resolutions, respectively.

2.2.3. Climate Data

Climate data were sourced from Science Information for Land Owners (SILO) which provides
nationwide meteorological variables (e.g., maximum and minimum air temperature, and precipitation)
at daily temporal frequencies by interpolating observations made by the Australian Bureau of
Meteorology onto a 0.05◦ by 0.05◦ grid [37].

3. Methods

3.1. Yield Prediction

We use a semi-empirical model [C-Crop; 6]) because of its low data requirements for calibration
across large areas. C-Crop correlates actual grain weight (t/ha) to end-of-season above-ground plant
carbon mass (C), and the estimation of C is based on biophysical principles of plant photosynthesis [6].
Ci is estimated using the carbon mass (Ci−1) from the previous time step and the current period’s
allocated net assimilation flux Ni (gCm−2) minus the dead biomass that enters the litter store, and i
(1–22) is the model time step (every 16 days in a calendar year).

Ci = (1− ρ)(Ci−1 + Ni) (1)

where ρ (periods−1) is the reciprocal of carbon longevity (i.e., the turn-over rate of plant live carbon
into senesced tissue per time step i).
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3.1.1. Net Primary Productivity

Net primary productivity (NPP) is the rate of carbon assimilation from atmospheric CO2 to
organic material (biomass) for a given area while accounting for the energy loss due to autotrophic
respiration [6,45].

Ni = 0.75
(
Gi

f PARi

0.95
− 16r10

Ci−1

cn
σi

)
(2)

where
fPARi
0.95 is the fraction of total assimilation flux Gi allocated to the above-ground plant biomass

(gCm−2) at time step i. The plant maintenance respiration is calculated as a function of leaf nitrogen,
air temperature, and previous biomass Ci−1. r10 is the plant tissue respiration rate at 10 ◦C; cn stands
for plant carbon-to-nitrogen ratio; σi is a scalar that modifies the respiration rate according to the daily
air temperature [46].

3.1.2. Gross Primary Productivity

The total assimilation flux Gi, = also known as the gross primary productivity (GPP) (gCm−2
·day−1),

can be calculated using the remote sensing-based plant light use efficiency (LUE) approach.
The chloroplasts use incoming solar radiation with a spectral range between 400 nm and 700 nm in
photosynthesis [47].

Gi = PARi × f PARi ×RUEi (3)

PAR = 2.3(RO × τ∂)ρsw (4)

where (RO × τ∂)ρsw represents the shortwave irradiance (Rs), RO is daily top-of-atmosphere shortwave
irradiance (J/m2/day) [48,49], τ∂ is atmospheric transmissivity calculated using the Bristow–Campbell
relationship [50,51] calibrated for Australia, and ρsw is the ratio of shortwave irradiance at a sloping
surface to that at a horizontal surface [52].

fPAR is the portion of PAR that is absorbed by a photosynthetic organism, and it is estimated using
a linear relation between fPAR and rescaled NDVI by thresholds (i.e., local minimum and crop-specific
maximum NDVIs) [53,54]. LUE is highly linearly related to a diffuse fraction (fD) and photosynthetic
carbon flux [55].

LUEi = 0.024× fDi + 0.00061Ax (5)

where Ax is the maximum photosynthetic capacity (µmolCm−2
·s−1), which is a crop-specific parameter;

is 23, 40, and 45 for barley [56], canola [57], and wheat [57], respectively; fD is the ratio of diffused to
total solar irradiance varying from 0.2 (under clear skies) to 1.0 (under overcast skies) [48]. For a full
description of C-Crop, see Donohue et al. [6].

3.2. Validation

Two sets of data are used for validation and further analysis, depending on the pixel-level
completeness of time-series Landsat NDVIs at 25-m pixel resolution across the growing season (i: 8–19)
between April (DOY 113) and October (DOY 304) (Figure S3, Supplementary Materials). Firstly,
the coordinates of complete time-series Landsat pixels are used to obtain the resampled MODIS, L–M
blended, and observed yield data for validation at the 25-m resolution as the first dataset. Secondly,
these complete time-series Landsat pixels are upscaled at 250 m pixel size to extract the MODIS and
the L–M blended data with the same pixel size for the validation at the moderate resolution. Thirdly,
the pixel-level yield predictions are aggregated for each respective field by averaging the yield values
of the pixels within, for field-level validation. Fourthly, and finally, the predicted yields are evaluated
using the model coefficient of determination (R2), the root-mean-square error (RMSE), and the mean
bias error (MBE). The R2 describes the proportion of the response variable that can be explained by the
model. RMSE gives more weight to the largest errors, and the MBE indicates the systematic error of
the model to under or overestimate. These procedures are then repeated for the second dataset created
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according to the coordinates of incomplete time-series Landsat NDVIs at the 25-m pixel resolution.
As C-Crop requires a time series of NDVI, the results are assessed without the incomplete time-series
pixels of Landsat.

3.3. Identification of Threshold for When to Blend

The incomplete time-series pixels of Landsat are gap-filled with the L–M blended pixels (LLM).
The threshold to indicate when blending is beneficial is identified by quantifying the impact of the
fraction of missing data on the prediction accuracy at 25 m. Firstly, we group MODIS and LLM time
series in eight groups, based on the fraction of Landsat missing data (<10%, 10–20%, 20–30%, 30–40%,
40–50%, 50–60%, 60–70%, and 70–80%). Then, the accuracy of each group is analyzed by calculating
the R2 and the RMSE. The performance of C-Crop using MODIS and LLM is compared by the fraction
of missing data in Landsat across time. The threshold can be identified, when the model provides the
same R2 and RMSE using LLM as with MODIS (Figure S3, Supplementary Materials). This threshold
determines when, where, or how much L–M blended data improves crop yield prediction when the
fraction of missing data in Landsat is lower than the identified threshold.

3.4. Evaluation of the Improvement in Yield Prediction Accuracy

The improvement in prediction accuracy using the identified threshold for multiple spatio-temporal
data selection is statistically quantified. More specifically, the threshold is applied to the Landsat
observations (2000–2018). Firstly, we compute the temporal probability of optimally using MODIS,
Landsat, and LLM images for nationwide crop yield predictions during the past two decades, and then
map the results to illustrate the spatial variability of multi-sensor data selection for 25-m pixel-level
yield prediction across the wheatbelt. We then evaluate the area percentage of the data sources on
a yearly basis and analyze their potential correlation to the annual precipitation (mm/year). Finally,
the improvement in the accuracy of predicted yields is evaluated on the field level using MODIS and
LLM for Western and eastern Australia, against the reported data [58]. The growing season of 2015
is selected due to the availability of a larger quantity of observed yield data. The incomplete 2015
Landsat series are gap-filled with the blended values corresponding to the threshold value.

4. Results

4.1. Yield Prediction

Exactly 66% of the observed fields have a complete time series of Landsat NDVIs at the pixel level
across the growing season. For this dataset, C-Crop performs the best with Landsat images at field
(R2 = 0.68; Figure 4a), 250-m (R2 = 0.85; Figure 4d), and 25-m (R2 = 0.48; Figure 4g) pixel resolutions
for yield prediction pooled for wheat, barley, and canola. MODIS-based model yields were at least 10%
less in terms of the R2 than when using complete time-series Landsat data. The model performs almost
identically when using MODIS and L–M blended data for the predictions at both field and pixel scales.
However, it produces the lowest bias for field (MBE = −0.32 t/ha; Figure 4c), 250-m (MBE = −0.23;
Figure 4f), and 25-m (MBE = −0.21; Figure 4i) pixels when using the L–M blended data.
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Figure 4. Validation of C-Crop-predicted yield pooled for wheat, barley, and canola using Landsat,
MODIS, and L–M blended data where the complete Landsat time series are observed (the fraction
of missing Landsat series = 0). From top to bottom, the first (a–c), second (d–f), and third (g–i) rows
show the comparison between observed (x-axis) and model-predicted yields (y-axis) on the field scale
(n = 139), 250-m pixel level (n = 2367), and 25-m pixel level (n = 113,329), respectively, where n is the
sample size. From left to right, the first (a,d,g), second (b,e,h), and third (c,f,i) columns delineate the
validation using Landsat, MODIS, and L–M blended data, respectively. The solid black line is the line
of best fit, the purple and the yellow lines represent the upper and lower bounds of the prediction
confidence intervals (i.e., p = 0.01 and p = 0.05), and the black dashed line is the 1:1 line.

Figure 5 shows that 210 fields have incomplete time-series Landsat pixels during the growing
season. These series are incomplete due to clouds in some of the Landsat images acquired in
the specific growing season when the yield data are observed. Using this set of data, the L–M
blended data-based model performs the same as the MODIS-based model when aggregating to 250-m
(R2 = 0.86, RMSE = 0.52 t/ha, MBE = −0.40 t/ha; Figure 5c,d) and field (R2 = 0.66, RMSE = 0.82 t/ha,
MBE = −0.49 t/ha; Figure 5a,b) scales. The L–M blended data-based model shows its advantages at the
25-m pixel level, which explains an extra 7% of the variability in the observed yields when the Landsat
time-series pixels are incomplete (Figure 5e,f).
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Figure 5. Validation of C-Crop-predicted yield pooled for wheat, barley, and canola using MODIS and
L–M blended data when the complete Landsat time series are not available (the fraction of missing
Landsat series ≥0.083). From top to bottom, the first (a,b), second (c,d), and third (e,f) rows show the
comparison between observed (x-axis) and model-predicted yields (y-axis) on the field scale (n = 210),
250-m pixel level (n = 3978), and 25-m pixel level (n = 231,667), respectively, where n is the sample size.
From left to right, the first (a,c,e) and second (b,d,f) columns delineate the validation using MODIS and
L–M blended data, respectively. The solid black line is the line of best fit, the purple and the yellow
lines represent the upper and lower bounds of the prediction confidence intervals (i.e., p = 0.01 and
p = 0.05), and the black dashed line is the 1:1 line.

4.2. Identification of the Threshold

Figure 6a shows that the 25-m pixel-level yield prediction accuracy fluctuates between 0.35
and 0.75 using MODIS and LLM data in time and space, where time-series Landsat observations are
incomplete. The R2 derived from MODIS is steady (between 0.4 and 0.5) where the fraction of missing
Landsat data ranged between 0.05 and 0.42, which is lower than the R2 (0.62–0.5) derived from LLM
data. The RMSE derived from both data sources remains approximately 0.9 t/ha for the same fraction
of missing Landsat data (Figure 6b). When more incomplete time-series Landsat data are observed
(from 0.42 to 0.75 on both Figure 6a,b), the R2 based on MODIS increases to around 0.7 and the RMSE
decreases to 0.4 t/ha (as MODIS is not as cloud-affected as Landsat due to imagery being acquired
on more days), whereas the R2 derived from the LLM fluctuates between 0.6 and 0.4 and the RMSE
changes between 1.3 and 0.8 t/ha (Figure 6). Given this, up to 42% of missing Landsat data in the
growing season is defined as the threshold for when L–M blending is optimal to implement. That is,
the 25-m pixel-level yield prediction accuracy can be improved using LLM when the fraction of missing
Landsat data at the coordinates is below this threshold. For instance, the LLM-based model increases
R2 by up to 20% when the fraction of the missing Landsat data is below 42% (Figure 6a).
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Figure 6. The statistical analysis of missing data in Landsat for 25-m pixel-level yield prediction,
by evaluating (a) R2 and (b) RMSE against the fraction of Landsat missing data during the growing
season. L–M blended data were used to fill the gaps (LLM) in the incomplete Landsat series.

4.3. Evaluation of the Improvement in Yield Prediction Accuracy

Given the availability of cloud-free Landsat and MODIS data across the wheatbelt (2000–2018),
in concert with the previously determined threshold (Figure 6) and finding (Figure 5), we can
demonstrate which imagery (i.e., either MODIS, Landsat, and LLM) is best suitable for 25-m pixel-level
crop yield prediction (Figure 7). Figure 7 shows the selection when using multiple satellite products
for crop yield estimates across the wheatbelt over the past two decades. For the wheatbelt north of 35◦

south (S), there is a higher probability of obtaining complete cloud-free Landsat observations over
the growing season in the east–west overlapping areas of adjacent Landsat Path-Rows, whilst LLM is
optimal elsewhere north of 35◦ S. South of 35◦ S, MODIS is optimal, with LLM being optimal in the
east–west overlapping areas of adjacent Landsat Path-Rows (in Figure 7).
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Figure 7. Multi-sensor optimal data selection across the wheatbelt (2000–2018) for 25-m pixel-level
crop yield prediction, using the probability of MODIS, Landsat, and LLM images. Blue denotes regions
where incomplete Landsat series have a fraction of missing data exceeding 42%, thus indicating where
MODIS should be used for yield estimates because it provides more frequent observations than Landsat.
Green areas show where adjacent Landsat orbits overlap and, thus, where a complete once every 16-day
Landsat series over the whole growing season is available. Areas colored red are those where the
fraction of Landsat missing data is below the 0.42 threshold identified previously in Figure 6 when
L–M blended data improve the yield prediction accuracy.
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For 25-m pixel-level yield prediction, blended data should be preferred on average for 33% of the
Australian wheatbelt area (Figure 8a). MODIS and Landsat data remain the preferred data sources in
50% and 17% of cases, respectively. Figure 8b shows that the area percentage is positively correlated
with annual precipitation for MODIS and negatively correlated for Landsat and the L-M blended data.
MODIS has a larger scatter when annual precipitation is greater than 400 mm/year.
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Figure 8. Yearly analysis of multi-sensor data selection for 25-m pixel-level crop yield prediction
(2000–2018) by evaluating (a) the area percentage and (b) its correlation with the annual precipitation
(mm/year). The white dashed line shows that the area percentage is 50. µ: mean of population values;
σ: standard deviation; r: correlation coefficient. The symbols in (b) are labeled with the last two digits
of the year.

Of the 53-million-ha Australia wheatbelt, complete Landsat time series were suitable for 28.6% of
that area, MODIS for 31.5%, and LLM for 39.9% during the 2015 growing season (Figure 8a). In this
season, there are 104 fields available for assessing the accuracy improvement in yield prediction
accuracy for nationwide crop yield prediction (Table S1, Supplementary Materials). Within these
observed yield data, 69 fields are located where L–M blended images can improve the prediction
accuracy according to the previously defined (see Figure 6) 42% Landsat missing data threshold.
Figure 9 shows the predicted yields against the observed values for 63 fields in Western Australia
(i.e., WA), and six fields in eastern Australia (i.e., Queensland (QLD), New south Wales (NSW),
Victoria (VIC), and South Australia (SA)).
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Figure 9. Scattergram for C-Crop-predicted yield against observed values for 2015 at the field level
for (a) Western Australia (n = 63) and (b) eastern Australia (n = 6) wheatbelt using MODIS and L–M
blended data for gap-filling Landsat (LLM) when the fraction of incomplete Landsat series is below 42%
for the growing season. The RMSE statistics have units of t/ha.

In these areas (see Figure 9), when the fraction of incomplete Landsat series across the growing
season of 2015 falls below 42%, using LLM reduced the field-level yield prediction errors by 0.15 t/ha
for Western Australia and 0.28 t/ha for eastern Australia. More specifically, the bias of 598 kilotons in
grain production over the cropping area of 39,882 km2 in Western Australia and of 1672 kilotons in
grain production over the cropping area of 59,716 km2 in eastern Australia can be decreased when
using the threshold determined herein to decide the areas where the blended data can improve the
prediction accuracy.

5. Discussion

Globally, wheat-growing regions are distributed within areas that experience a relatively high
frequency of clouds [59]. Persistent cloud cover limits the use of HSR sensors over large spatial extents
due to the low frequency of the observations, whereas the other sensors that have HTF are constrained
by the LSR. Although blending improves the monitoring of rapidly changing processes such as crop
growth, it may introduce unforeseen spatial and temporal variances in the blended images when
images are often not observed concurrently [10], and implementing the current suite of algorithms
across large areas is currently computationally expensive. Therefore, it is important to systematically
quantify and evaluate the utility of blending imagery across time and space before embarking on the
development of nationwide blending capabilities.

This study developed a parsimonious approach to identify when and where blending is beneficial
for crop yield prediction at the 25-m pixel resolution. When incomplete Landsat series falls below
42% of the possible imagery in the growing season, blending is recommended because it improves
the accuracy of the yield estimates. When incomplete Landsat series exceeds 42% of data, the use of
HTF LSR data (e.g., MODIS) for the 25-m pixel-level yield prediction is recommended, reducing the
computational need for blending. LTF HSR data show benefits, for example, in providing detailed
information on plant photosynthesis across space; thus, they should be solely used for crop yield
prediction when enough cloud-free images are available throughout the growing season.

Annual precipitation, which is strongly associated with cloudiness [60,61] and, thus, partly
governs the amount of missing Landsat data, indicates which data sources should be preferably
used (Figure 8). For instance, MODIS should be used for the prediction for greater than 50% of the
wheatbelt during wet years (e.g., 2003, 2010, 2011, and 2016). During dry years (e.g., 2006 and 2018),
the proportion of the wheatbelt where Landsat is suitable for yield prediction increases by >10%
compared to the average proportion (17%). For crop yield prediction, blended data can be optimally
applied across approximately 33% of the wheatbelt during dry to normal years.
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Crop production fluctuates from year to year due to the rapidly changing patterns of precipitation
and temperature [42,62,63]. Over the last 50 years, the amount of precipitation received by the
Australian wheatbelt declined [64]. Based on model projections, it was also suggested that the changing
climatic conditions will affect both the frequency and intensity of the extreme events such as floods,
heatwaves, and droughts, which will impact agricultural production [65,66]. Within the context of the
present study, an increase in the number of clear sky days can be beneficial for the use of RS in crop
yield forecasting. Moreover, a decline in the number of rain days in recent decades within the wheatbelt
area can also be noted (see Figure S4, Supplementary Materials). Here, this decline in the number of
rain days is assumed to correlate with the increase in the number of days with clear skies. However,
a decrease in the number of rain days does not necessarily imply an absence of clouds, as there could be
non-precipitating clouds. However, studies such as Norris et al. [67], using observations and Coupled
Model Intercomparison Project Phase 5 (CMIP5) model outputs, showed that, on average, there is a
decline in cloud amount across the region from 60◦ S–60◦ north (N). This decline was attributed to the
poleward shift of mid-latitude storm tracks, among others.

The potential influence of climate change on grain production suggests a decline in world
food supply [68] and an increase in the level of exposure of the global population to the risk of
hunger [69]. It is, therefore, important to ensure the accuracy and efficiency of yield prediction at
anytime, anywhere, and at any scale. A more precise description of grain weight patterns in time
and space provides more accurate information for precision agriculture to improve its production
and sustainability. The semi-empirical carbon turn-over model used for crop yield prediction is based
on historical yield data, and, in the future, relevant drivers (e.g., precipitation and temperature) and
their interactions may change under climate change, thus requiring model re-calibration [4,6,70,71].
Our approach was tested with C-Crop but could be extended to other semi-empirical models [72] and
models based on machine learning [73].

Development of a national-scale yield prediction system requires time series of HSR and HTF
imagery to describe the crop growth; therefore, next-generation HSR and HTF satellite data like
Sentinel-2 [74,75] should be tested for nationwide yield estimates post the growing season of 2015.
Harmonized Landsat and Sentinel-2 surface reflectance products should be tested for national-scale
crop yield prediction [76] when observed yield data for more recent years are available. However,
spatio-temporal fusion of MODIS and Landsat data is still necessary for long-term studies that involve
historical satellite images collected before 2015 (back to the year 2000, when MODIS was launched).
Future studies should also focus on using active RS technologies, such as radio detecting and ranging
(Radar) [77,78] and light detection and ranging (LiDAR) [79], for a national yield estimation because
of their ability to penetrate clouds and detect a plant’s three-dimensional structural characteristics.
Data blending between HSR optical imagery and active RS data (e.g., Radar and LiDAR) [80] warrants
further study.

6. Conclusions

Sparse time series of satellite remote sensing, due to LTF and/or cloud contamination, represent
one of the main barriers limiting accurate crop yield estimation at regional to national scales. Blending
of HSR but LTF images with LSR but HTF images was proposed to increase the temporal resolution
and maintain spatial details. In this study, the benefits of blending were tested for crop yield prediction
across the Australian wheatbelt. We found that, when time series are gap-free, yield prediction
from Landsat is the most accurate on both field and pixel scales. When Landsat time series contain
<42% missing values during the growing season, blending is recommended for nationwide crop
yield prediction at the 25-m pixel resolution. When Landsat time series contain ≥42% missing
observations, MODIS outperforms blending. Across Australia, these recommendations would improve
yield estimates by 0.15 t/ha for Western Australia and 0.28 t/ha for eastern Australia on average.
By identifying where and when to blend, this work paves the way to more accurate monitoring of
biophysical processes and yields, while keeping computational costs low.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/10/1653/s1,
Table S1: Summary of observed data (the number of field-years) used herein; Figure S1. Long-term (1901–2018)
average monthly accumulated precipitation (mm/month) (left) and the long-term average rain days (right) across
the wheatbelt for (a, b) Queensland, (c, d) New South Wales, (e, f) Victoria, (g, h) South Australia, (i, j) Western
Australia, and (k, l) Tasmania. The precipitation data are sourced from Jeffrey et al. [37], and the wheat belt mask
was resampled from native 2-km2 horizontal resolution onto the precipitation data grid with 5-km2 horizontal
resolution using nearest neighbor [40]. The vertical black lines (a–f) represent one standard deviation of the
monthly wheatbelt specific precipitation for each state. The horizontal line (g–l) represents the median of the
data, the box spans from 25th to 75th quartiles of the data, and the rain day threshold is 0 mm/day. It should be
noted that Northern Territory is not included in the analysis due to its small cropping area; Figure S2. An example
of MODIS and Landsat blended NDVI using ESTARFM. The x-axis and y-axis are time (t, DOY) and spatial
resolution (m), respectively. Both MODIS and Landsat have valid observations at t1 and t2. The image at the
center of the top row is a valid observation of MODIS at ts, and that at the center of the bottom row is Landsat-like
blended data at ts created using the 16-day MODIS composite images on the DOYs 257, 273, and 289, as well as
the Landsat images acquired on the DOYs 257 and 289; Figure S3: The implementation flowchart of validation
and identification of threshold for when to blend. The shaded areas indicate the original data sources; Figure S4:
Long-term (1900–2018) average monthly accumulated precipitation (mm/month) across (a) eastern Australian,
(b) Western Australia, and (c) the wheatbelt. The precipitation data are sourced from Jeffrey et al. [37].
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