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Abstract: Deep learning (DL) has great influence on large parts of science and increasingly
established itself as an adaptive method for new challenges in the field of Earth observation (EO).
Nevertheless, the entry barriers for EO researchers are high due to the dense and rapidly developing
field mainly driven by advances in computer vision (CV). To lower the barriers for researchers in
EO, this review gives an overview of the evolution of DL with a focus on image segmentation and
object detection in convolutional neural networks (CNN). The survey starts in 2012, when a CNN set
new standards in image recognition, and lasts until late 2019. Thereby, we highlight the connections
between the most important CNN architectures and cornerstones coming from CV in order to alleviate
the evaluation of modern DL models. Furthermore, we briefly outline the evolution of the most
popular DL frameworks and provide a summary of datasets in EO. By discussing well performing
DL architectures on these datasets as well as reflecting on advances made in CV and their impact on
future research in EO, we narrow the gap between the reviewed, theoretical concepts from CV and
practical application in EO.

Keywords: artificial intelligence; AI; machine learning; deep learning; neural networks; convolutional
neural networks; CNN; image segmentation; object detection; Earth observation

1. Introduction

In recent years, deep learning (DL) has received a lot of attention, in both scientific research and
practical application [1,2]. Two main factors are responsible for this growing attention: the accessibility
of data and the increase in computational processing power, especially with graphics processing
units [3–5]. Due to these developments, researchers were able to demonstrate working concepts for
DL which could even outperform established approaches. Their fast improving insights were quickly
applied in other disciplines and in practice. Therewith, a self-reinforcing research environment was
created which today has significant impact on science and practice.

Increasing data accessibility can also be found in the field of Earth observation. The availability of
high-resolution optical and multispectral imagery is particularly important. Due to the recent trend
of opening archives of Earth observation data, it can be expected that this amount of high resolution
remote sensing data will increase dramatically in near future. However, high resolution optical data
have already paved the way for transferring DL concepts from computer vision to Earth observation
application such as detecting or segmenting vehicles, roads and buildings from overhead images. With
these proof-of-concepts of DL for Earth observation research, today, the applications are wide and
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no longer limited to RGB images. The numbers of DL implementations in Earth observation are still
growing and showing new trends and possibilities of analysing remotely-sensed data [6–9].

The importance of DL today reaches far across the scientific community. In 2019, Nature led the
Google scholar metric h5-index, where its top three papers are all covered DL and can therefore be
seen as part of the most relevant papers in 2019 overall. In the same list of h5-index journals of 2019,
the IEEE Conference on Computer Vision and Pattern Recognition, well known for its contributions to
the research on DL, reached the top ten for the first time [10]. Furthermore, interest from data driven
companies such as Google and Facebook has been responsible for driving its recent popularity [1].
Their contributions are both theoretical and practical. For instance, Google is the leading affiliation
for papers submitted between 2014 and 2018 during one of the world’s most important conferences
in the field, Neural Information Processing Systems Conference [11]. At the same time, both Google
and Facebook are mainly developing the two most popular DL frameworks, TensorFlow [12] and
Pytorch [13], respectively (see Section 4).

One proxy for the recently fast growing interest in research on DL are the publications submitted
to arXiv, a distribution service of open access articles frequently used in computer science. Figure 1
shows the annual absolute number of publications concerning deep learning and also its share of all
publications submitted to arXiv in the computer science (cs) and statistics (stat) categories in the same
year. Both numbers are growing, which means that there is not just an absolute growth in DL research
but also its share of research in computer science and statistics is getting bigger each year.

Figure 1. Evolution of deep learning related publications: (a) citations listed in Google scholar for
Krizhevsky et al. 2012 [3]; (b) arXiv listed publications in the categories cs and stat including the terms
deep learning, convolutional neural networks, convolutional networks or fully convolutional and their share of
all publications listed in the two categories; and (c) publications in selected Earth observation journals,
searched for with the same terms as in arXiv.

What makes DL so successful is its capacity to represent more abstract concepts [1,2,14] such as
speech or images. DL models outperformed classical machine learning models and signal processing
approaches [14], for instance in speech recognition [15–17] and image recognition for handwritten
digits [18–20]. Finally, in 2012, Ciresan et al. [20] and Krizhevsky et al. [3] introduced convolutional
neural networks (CNNs), the most representational DL models [2], for image recognition of natural
images. The model of Krizhevsky et al. [3] called AlexNet, a CNN which extracts features from RGB
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images to predict a single label, won the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
in 2012 [3]. ILSVRC is an annual competition, held since 2010 for computer vision tasks such as image
recognition and object detection. The breakthrough of AlexNet in performance during the ILSVRC in
2012 can today be seen as the birth of recent developments in DL [21] and is used as starting point in
this review.

From traditional computer science, where research is done on DL, the technique evolved into
other disciplines which do research with DL. The paper of Krizhevsky et al. [3] is widely cited in
both fields, those doing research on as well as with DL. Therefore, the number of citations can be
interpreted as a proxy for how much attention DL and especially CNNs received over the last years, as
well as outside the field of computer science. Figure 1 shows the increasing number of citations, thus
demonstrating the relevance of not only AlexNet but also DL with CNNs for recent research.

Since imagery data are fundamental for Earth observation research, the application of DL
seems likely. Nevertheless, looking at the combined publications of leading remote sensing journals
and conference papers in Figure 1, one can see that DL reached the Earth observation community
with an offset of three to four years, taking 2012 as the starting point. However, since then, the
number of publications concerning DL and remote sensing has more than doubled each year. This
trend continued in 2020, when in the first quarter the number of publications was nearly half the
number for the entire year of 2019. Current reviews discuss the wide range of applications of DL
on remotely-sensed data for super resolution, data fusion, denoising, weather forecasting, scene
recognition, classification and object detection with optical, multispectral, hyperspectral and SAR
sensors in different resolutions [6–9,22–24].

However, due to the vast amount of insights in DL over the last eight years, this review aims to
provide a more detailed overview about the progress primarily made in computer vision from 2012 to
late 2019 by focussing on object detection and image segmentation with CNNs. Therefore, the review
takes an evolutionary perspective to outline the major milestones and their interrelations. By running
a thread through important DL publications, we specifically address Earth observation researchers
who want to add DL to their toolbox, or want to reflect on the evolution of DL approaches to choose a
matching model design for their own research questions. Providing this thorough introduction, we
contribute to the open question number eight, “How to best handle high entry barriers to DL?” (p. 32)
as stated by Ball et al. (2017) [8]. Overall, this review contributes to a better understanding of the
principles of CNNs. This foundation will further be used in Part II: Applications to discuss applications
of CNNs in Earth observation research by reviewing leading Earth observation journals.

2. Terminology and Basic Concepts of Deep Learning with CNNs

In supervised machine learning (ML), algorithms try to learn features from labelled training data
to predict an accurate output from an unknown input. DL models are specific ML models, made
of stacked layers, which enable those models to consecutively extract richer features from the input
data. As more layers are stacked, the model becomes deeper, and more complex features can be learned,
hence the name deep learning. ML itself is part of the wide field of artificial intelligence (AI), thus DL
is not the same as AI but part of it. Before different DL models are introduced, reference is made to
Table 1. It explains the intensive and commonly used abbreviations in DL literature, which are also
used in the following sections in order to accustom an audience interested in DL to its terminology.
Furthermore, the table is ordered thematically and chronologically to provide a thread through DL
literature concerning image recognition, image segmentation and object detection with CNNs.

The classical DL model, the artificial neural network (ANN) pictured in Figure 2c, can briefly
be described as a sequence of fully connected layers, from input over hidden to output layers of
artificial neurons. All neurons within one layer are connected to each neuron of the previous layer via
linear operations also called weights or parameters, hence the term fully connected. The connections
transport the values from all neurons of the previous layer by multiplying them with the weights
assigned to each connection and passing them to the neurons of the next layer. Here, each neuron sums
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up the incoming values and performs a subsequent non-linear function, the activation. Such a network
then transports values from the input layer via the weights over all hidden layers to the output layer
and can be seen as a non-linear function of higher order, mapping input values to outputs [5,25].

Table 1. List of abbreviation, explanations and the original literature or further discussion. The sorting
of the table reflects the structure of Sections 2 and 3. At the same time, it is a guiding thread through
the milestone-publications on deep learning architectures of convolutional neural networks for image
recognition, segmentation and object detection from 2012 to late 2019.

Abbreviation Reference Explanation

DL [2,25] Deep Learning
ANN [25] Artificial Neural Network
SGD [26–29] Stochastic Gradient Descent
BP [25,26,30] Backpropagation
ReLU [31–33] Rectified Linear Unit
CNN [2] Convolutional Neural Network
RNN [34] Recurrent Neural Network
LSTM [35] Long Short Term Memory
GAN [36] Generative Adversarial Network

IR Image Recognition
ImageNet [37] DL dataset
ILSVRC [3] ImageNet Large Scale Vision Recognition Challenge
AlexNet [3] CNN by Alex Krizhevsky et al. [3]
ZFNet [38] CNN by Zeiler and Fergus [38]
VGG-16/19 [39] CNN by members of the Visual Geometry Group
LRN [3,38] Local Response Normalisation
Inception V1-3 [40–42] CNN architectures with Inception modules
BN [41] Batch Normalisation
ResNet [43] CNN architecture with residual connections
ResNeXt [44] Advanced CNN architecture with residual connections
Xception [45] ResNet-Inception combined CNN architecture
DenseNet [46] Very deep, ResNet based CNN
SENet [47] Squeeze and Excitation Network
NAS [48] Neural Architecture Search
NASNet [49] CNN architecture drafted with NAS
MobileNet [50] Efficient CNN architecture
MnasNet [51] Efficient CNN architecture drafted with NAS
EfficientNet [52] Efficient CNN architecture drafted with NAS

IS Image Segmentation
PASCAL-VOC [53,54] Pattern Analysis, Statistical modeling and Computational Learning—

Visual Object Classes dataset
FCN [55] Fully Convolutional Network
DeepLabV1-V3+ [56–60] CNN architectures for IS
CRF [61] Conditional Random Field
ASPP [58,59] Atrous Spatial Pyramid Pooling
DPC [62] Dense Prediction Cell, CNN module drafted with NAS
AutoDeepLab [63] CNN architecture drafted with NAS
DeconvNet [64] Deconvolutional Network CNN
ParseNet [65] Parsing image context CNN
PSPNet [66] Pyramid Scene Parsing Network
U-Net [67] U-shaped encoder–decoder CNN
Tiramisu [68] U-Net-DenseNet combined CNN
RefineNet [69] Encoder–decoder CNN
HRNetV1-2 [70,71] High Resolution Networks CNNs for IS



Remote Sens. 2020, 12, 1667 5 of 43

Table 1. Cont.

Abbreviation Reference Explanation

OD Object Detection
MS-COCO [72] Microsoft-Common Object in Context dataset
R-CNN [73] Region based CNN
SPPNet [74] Spatial Pyramid Pooling Network
RoI pooling [75] Discretised pooling of Regions of Interest
Fast R-CNN [75] R-CNN + RoI pooling based CNN
RPN [76] Region (RoI) Proposal Network
Faster R-CNN [76] R-CNN + RPN + RoI pooling based CNN
FPN [77] Feature Pyramid Network
IoU [53,78] Intersection over Union (metric)
Cascade R-CNN [79] Faster R-CNN based cascading detector for less noisy detections
RoI align [80] Floating point variant of RoI pooling for higher accuracy
Mask R-CNN [80] Faster R-CNN + FCN based instance segmentation
CBNet [81] Composite Backbone Network for R-CNN based networks
PANet [82] Path Aggregation Network
SNIP(ER) [83,84] Scale Normalisation for Image Pyramids (with Efficient Resampling)
TridentNet [85] CNN using atrous convolution
fps frames per second (metric)
YOLO-V1-3 [86–88] You Only Look Once
NMS Non-Maximum Suppression
DarkNet [87,88] CNN backbone for YOLO-V2+3
SSD [89] Single Shot MultiBox Detector
RetinaNet [90] CNN using an adaptive loss function for OD
RefineDet [91] CNN performing anchor refinement before detection
NAS-FPN [92] FPN variant drafted with NAS
EfficientDet [93] Efficient CNN for OD based on EfficientNet
BiFPN [93] Bi-directional FPN

In supervised learning, to calibrate or train the parameters within an ANN, a set of inputs
with known outputs, the labels, is passed forward through the ANN. The predicted outcome is
compared with the label and a measure is calculated representing the performance of the ANN, the
loss. To increase the models performance, the loss function is minimised. This is done by partially
deriving its gradients for each contributing parameter. The opposite of those gradients is then used
to change the parameters iteratively until a minimum of the loss function is reached. In DL, this is
known as stochastic gradient descent with back propagation [25–30,94]. In this way, an ANN gradually
learns from labelled training data which combination of parameters best represents the variance of the
training dataset. The trained model can then be used with a known accuracy to infer on unknown data
coming from a distribution represented by the training data. Thereby, the order of inputs in an ANN
is not necessarily important, since the model does not especially exploit the underlying structure of
the input data.

The main characteristics of a DL model can be summarised as stacked layers of non-linear
functions, trained to extract features from input data to predict an output based on those automatically
found instead of hand crafted features. The model type and its architecture are influencing the handling
of the underlying structure of the data and the feature richness found by it. As a model gets deeper,
more complex, abstract and distinctive features are able to be found. However, this behaviour is
not infinite and overfitting tends to occur when simply adding parameters to the model by making
it deeper.

An ANN as described above belongs to the DL models called stacked autoencoders. Other model
types are Recurrent Neural Networks (RNNs) [34], or more specifically Long Short-Term Memory
(LSTM) [35], which are used for processing sequential data; Generative Adversarial Networks (GANs) [36],
the primary idea of which was to generate data; and finally Convolutional Neural Networks (CNNs).
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CNNs are popular for processing 2D array input data such as images [2], which we focus on in
this review.

Figure 2. Overview and details of a convolutional neural network (CNN) architecture for image
recognition. (a) Zoom in on a three-channel RGB input, convolution + activation function, e.g.,
Rectified Linear Unit (ReLU) (blue) and adjacent max pooling operations (orange). Those operations
are used repeatedly in (b) the convolutional backbone, part of the overall structure of the architecture.
From an input image, feature maps are created by convolution and resized by max pooling operations
getting smaller in resolution but deeper in feature maps until they reach a classifier, the head of
the architecture, here a fully connected artificial neural network (ANN). (c) Details on the transition
between convolutional backbone and classifier head, as well as the structure of a multi-layer ANN
performing classification.
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Images are records of natural signals and therefore provide information as pixel values and their
local connectivity. From this property, low level features such as edges can be combined to features
of higher levels with a semantic meaning. Therefore, analysing images means exploring pixel values
and their local connectivity to find strong, distinctive representations which can be used for image
classification. Using a DL model such as an ANN would not fully take the local connectivity of a
natural signal into account. In contrast, a CNN allows for the learning of those representational
features of imagery data to an increasingly abstract degree, while also being aware of their values and
local arrangement. The convolutional operations are thereby trainable kernel functions connecting
the layers in a CNN as the linear connections are doing it in an ANN. Due to the local sensitivity
of a kernel function, CNNs are able to take local connectivity of the input data into account when
learning the features from them [2].

To further introduce the basic functionality of a CNN, a network architecture for image recognition
is to be assumed, as shown in Figure 2b. The overall architecture can roughly be split into three
modules: input, convolutional backbone and classifier head. The 2D array input is passed through
a sequence of convolutions, activations and max pooling operations called the convolutional backbone
in order to extract high level features. The adjacent classifier, located at the end of the backbone and
therefore the head, is here, similar to an ANN, a sequence of stacked, fully connected layers. It uses the
extracted features from the convolutional backbone to classify them into output classes and provide
their probability.

Figure 2a shows how kc1 kernels of size 3 × 3 convolve the 2D input array over its entire
depth, producing a stack of dc1 feature maps corresponding to the kernel functions. Since the kernel
functions are linear operations, each feature map is activated with a non-linear function, e.g., ReLU
f (x) = max(0, x) [31–33]. On each activated feature map, a pooling operation is applied such
as max pooling with a 2 × 2 kernel, selecting the maximum value from a 2 × 2 neighbourhood.
Pooling introduces translation invariance to the model [2,95] and reduces resolution by factor 2 when
applied with a stride of 2. This is useful, when going deeper into the net where progressively
semantically low level features with high local relations are combined to many semantically high level
features with low spatial relevance [2,96]. To keep the computations reasonable as well as allowing
deeper stacks of feature maps with larger feature variance, the resolution is decreased by max pooling
while the number of feature maps is increased by convolutional layers using gradually more kernels
(depicted as subsequently smaller but deeper blocks in Figure 2b). All convolutional operations,
the kernel functions, are the weights in a CNN, which are adjusted during training. Therewith, the
extracted features are not hand crafted but learned from training data [3].

To enter the classifier, the last stack of max pooled feature maps in the backbone is flattened.
This is done by transferring each pixel value of the final feature maps to an input neuron for a shallow
fully connected ANN, as depicted in Figure 2c. The final output layer holds as many neurons as
there are classes and the activation of this layer is in this case the softmax function, which returns the
probability for each class based on the values transported to the last layer. The output probability
distribution finally tells how likely each possible class is predicted for the whole image. From this
introduction, major characteristics of CNNs and differences to ANNs can be summarised:

• The convolutional backbone is a strong feature extractor for a natural signal, while it maintains
the fundamental structure of that signal and is sensitive for local connectivity.

• Instead of pairwise connections of neurons, kernel functions are used to connect layers, in order
to learn features from training data.

• By sequentially repeating convolution, activation and pooling, the idea of how natural signals
are composed, of low combined to high level features, the artificial architectures of CNNs for
extracting features follows the hierarchical structure of a natural signal and mimic the behaviour
of the visual cortex of living mammals [96–99].

• The modular composition of both the convolutional backbone itself and the overall architecture
makes the CNN approach highly adaptable for a variety of tasks and optimisations.
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However, image recognition was chosen as an introductory example because of its relatively
simple network architecture. By changing the head structure after the convolutional backbone, the
network can be changed to perform a completely different task, such as image segmentation object
detection or instance segmentation. In Figure 3, example applications are shown for all these tasks.
The tasks main characteristics can be summarised as:

• Image recognition is understood as the prediction of a class label for a whole image.
• Image segmentation, semantic segmentation or pixel wise classification segments the whole

image into semantic meaningful classes, where the smallest segment can be a single pixel.
• Object detection predicts locations of objects as bounding boxes and a class label.
• Instance segmentation is an object detection task on which an image segmentation task for the

specific bounding box and class is applied additionally. This results in a segmentation mask of
the specific object predictions. In this review, instance segmentation is discussed together with
object detection, due to their evolutionary closeness.

Figure 3. Examples for the tasks of: image recognition, assigns a single label to a whole image;
image segmentation, densely classifies each pixel, object detection: locates and classifies specific objects
in an image by providing a bounding box; and instance segmentation, provides a segmentation mask
for detected objects within a bounding box. The example image is from the DOTA dataset, an object
detection dataset of high resolution RGB aerial images [100].

3. Evolution of CNN Architectures in Computer Vision

The CNN family grew bigger when AlexNet was introduced during the ILSVRC in 2012 [3].
To provide an overview of the evolution of CNNs, AlexNet is used as the root of the highly ramified
field, which reaches until late 2019 in this review. As mentioned in Section 2, next to the main trunk of
architectures used for image recognition, the focus is also put on branches with architectures for image
segmentation and object detection tasks. Despite this focus, the number of architectures and variations
since AlexNet is still overwhelming. Hence, the evolutionary review focusses on the main successors,
defined by their performance on well-established benchmark datasets of their specific tasks, as well as
their legacy to the field. Thus, a thread through the evolution of CNNs is provided, which starts in
2012 and follows recent trends until late 2019 (see Table 1).

3.1. Image Recognition and Convolutional Backbones

As introduced in Section 2, the main part of a CNN is the convolutional backbone. Its design is
of high relevance for optimising its performance. Since convolutional backbones are widely used in
other DL tasks, such as image segmentation and object detection, achievements in image recognition
can be seen as a main driver for the field. The review on architectures for image recognition in this
section therefore discusses more sophisticated backbones and concepts about CNNs than the one
already introduced in Section 2. For a better overview of the evolution, the different architectures are
assigned to four groups of CNN families which we call: Vintage Architectures, containing AlexNet [3],
ZFNet [38] and VGG variants [39]; the Inception Family; the ResNet Family; and finally architectures
of the MobileNet family and such designed using neural architecture search with the goal of being
efficient, which we refer to as the Efficient designs.
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In addition to new architectures, training data is one significant component of the recent successes
in DL [3–5]. The ImageNet dataset, with about 14 million labelled images for image recognition [3,37]
in its latest version, is used during the ILSVRC. In 2012, Krizhevsky et al. [3] won the image recognition
task with large margin using their CNN called AlexNet. Since then, the 2012 version of the ImageNet
dataset is widely used as benchmark for CNNs on image recognition [21].

Concerning the benchmarking of architectures designed for image recognition, two measures
are of importance when reviewing the evolution: their numbers of parameters and top five accuracy
(acc@5):

acc@5 = 1− 1
n

n

∑
i=1

min
j

d(ŷij, yi) (1)

where n is the number of images, ŷij with j = 1, . . . , 5 are the five predicted classes for an image with
the highest probability, yi the ground truth label of that image and for d(ŷij, yi) = 0 if ŷij = yi and 1 if
ŷij 6= yi. The top five accuracy is used since the images in the dataset might show more than one class
but the ground truth labels yi just label one class for each image in image recognition on ImageNet [21].
The higher is the acc@5, the better is the performance, where a smaller number of parameters enables
more efficient processing and abstraction. Hence, the goal is to maximise acc@5 and minimise the
number of parameters.

3.1.1. Vintage Architectures

Figure 4 shows the evolution of acc@5 performance for milestone architectures over time,
where the size of a circle relates to the numbers of parameters in log scale. It becomes clear that,
since AlexNet in 2012, the acc@5 first rapidly increased and until late 2015 saturates around 95%
with a tendency of stable to smaller numbers of parameters. That leads to the questions of which
major advances were introduced during the last seven years and which of them are still prominent
in state of the art (sota) architectures in late 2019. AlexNet [3], named after Alex Krizhevsky, as
well as its two follow up architectures ZFNet [38], named after the authors Zeiler and Fergus, and
VGG-19 [39], named after the Visual Geometry Group (see Figure 5), are here grouped together as
Vintage Architectures. All three architectures are similar in their design: convolutions with non-linear
activation and max pooling layers are repeated. With it, features are extracted from an input image by
subsequently deeper feature maps with smaller resolution until a fully connected classifier head is
reached. This classifier predicts on the extracted features and provides the probability for each possible
class. Whereas AlexNet uses 11 × 11 and 5 × 5 kernel sizes for the first convolutional layers, also
called the stem of a network, reaching 81.8% acc@5 at 62M parameters [3], ZFNet decreased the size
to 7 × 7 and 5 × 5, improving acc@5 to 83.5% at 62M parameters. Zeiler and Fergus [38] argued that
a smaller receptive field in the beginning of the network extracts more information. Due to smaller
kernel sizes in the stem, they were able to extract more feature maps holding information and made
their net even deeper by increasing the number of feature maps in each convolutional layer [3,38].

However, a significant leap in accuracy was possible with the VGG-19 architecture.
Simonyan and Zisserman [39] introduced, as a relative to AlexNet and ZFNet, a deep network variant
of 19 layers. The depth was reached by repeating building blocks, starting with a stack of convolutional
layers up to four times and adjacent dimension reduction by max pooling. They also used 3× 3 kernels
exclusively in their convolutional layers, which is still common in recent architectures. The stacked
3 × 3 kernels are able to synthesise larger receptive fields by using fewer parameters. The main ideas
of these Vintage Architectures can be summarised as:

• The convolutional backbone consists of repeated convolutions to increase the feature depth and
some kind of resizing method such as pooling with stride 2 to decrease resolution.

• The ReLU activation after convolutional layers is used to speed up training with backpropagation
with stochastic gradient descent [3,31–33,101].

• In VGG-19, the repeated building blocks with stacked convolutions of constant size enlarge the
receptive field and deepen the network.
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Figure 4. Evolution of milestone architectures for image recognition from 2012 to 2019, compared by
their accuracy (acc@5) metric on the ImageNet 2012 dataset and showing their numbers of parameters
in log scale as size of the circle. The different colours show relations between the architectures;
mixed colours mean that concepts of two architecture families are combined in those architectures.

Figure 5. Conceptual overview of the Vintage Architectures. The architecture designs of AlexNet [3] and
ZFNet [38] are similar despite smaller kernel in the first convolutional layers and deeper feature maps
in ZFNet, whereas VGG-19 [39] is considerably deeper overall and it uses a uniform kernel size.

3.1.2. Inception Family

In the same year that VGG-19 was presented, the GoogLeNet variation with Inception
modules [40] was introduced, a late successor to the initial work of LeCun et al. (1989) [30]. Since this
should be the starting point of the Inception Family, the network is called Inception V1 further on.
The main idea of the network was that, after the stem of first convolutions, the novel Inception modules
are repeated as building blocks with sporadic max pooling in between for dimension reduction
(see Figure 6, right). An Inception module itself is made up of parallel convolutional layers of different
kernel sizes and max pooling. As a result, an increased variety of feature representation is reached
which is processed from the same input (see Figure 6, left). To avoid an explosion of parameters,
so-called bottleneck layers were introduced in the beginning of the Inception module. These are 1 × 1
convolutional layers, which intermediately reduce the depth of an input tensor before it enters one of
the next parallelised convolutions. Due to this depth reduction of feature maps, bottleneck layers lead
to fewer parameters needed for each parallel operation but gain richer features when concatenating
the results later on.
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Figure 6. Conceptual overview of the Inception module and Inception V1 architecture [40]: (Left) the
Inception module shows the 1 × 1 convolutional bottleneck layers, which reduce depth before the
3 × 3 and 5 × 5 convolutional operations; and (Right) the overall architecture of Inception V1 that
consists of stacked Inception modules with increasing output depth and sparse max pool operations in
between.

Therewith, Szegedy et al. [40] were able to build a 21-layer deep network, when counting the
convolutional layers. Because of this deep design, backpropagating the gradients while training
became increasingly difficult. To avoid or reduce any training effects on the early layers in the network
due to vanishing gradients [5,40,41], two additional classifiers in the middle of the network were
integrated. The task of the so-called auxiliary classifiers is to provide additive gradients to early layers,
so that they have an additional training effect. The so-derived gradients are able to adjust even early
layers in the network during backpropagation. During inference, the auxiliary classifier branches are
not used and cut off as they are only helpful during training the weights. The resulting Inception V1
reached a acc@5 of 89.9% with only 6.8M parameters. This is much more efficient than the VGG-19
design with a slightly higher acc@5 score of 92% but many more parameters, at 144M.

Five months later, Ioffe and Szegedy [41] proposed an adaptation of Inception-V1 with a stem
of stacked 3 × 3 conv layers such as VGG-19. However, what was more important for this novel
implementation and even the whole DL field was the introduction of batch normalisation after
convolution and before ReLU activation. Batch normalisation [41] together with appropriate parameter
initialisation [18,32,102–104] and suitable activation functions [31–33,101] are part of the solution of
solving the problems of vanishing and exploding gradients [32,105]. These concepts became highly
important due to increasing network depth and the ability of those deep networks to converge during
training. Enhancing the Inception V1 with batch normalisation, the updated variant was able to
exceed VGG-19 in acc@5 performance, with 92.18% at 11.5M parameters being more efficient.

The idea of the Inception modules was further improved in Inception V2 and V3,
where Szegedy et al. [42] applied factorisation on convolutions. Like VGG-19 they used stacked
3 × 3 convolutions to increase the receptive field. Factorisation can furthermore be used on a m× n
kernel to split it into a stack of 1× n and m× 1 kernels. Therefore, instead of m× n× d parameters,
1× n× d + m× 1× d parameters are sufficient.

By applying factorisation on the original Inception module, three modified modules were
created to increase the representational capacity of the model by using parameters more efficiently.
The different modules are plugged into the network according to their ability to represent features in
specific depths of the network, see Section 6 in [42]. The resulting Inception V3 network leaped up to
an acc@5 of 94.4% using 23.6M parameters.

The idea of factorised convolutional filter banks can also be translated to a depth-wise factorisation,
where convolutions are applied to each input channel separately. Chollet [45] assumed in his work
“[. . . ] that cross-channel correlations and spatial correlations can be mapped completely separately”
(p. 1801). With this extreme idea of factorisation, Chollet [45] presented a network called Xception.
Beside the stem, it exclusively uses depth-wise separable convolutions as feature extractors. Those are
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1 × 1 or pointwise convolutions with adjacent 3 × 3 depth-wise convolutions for each output channel,
without a nonlinear activation in between. Benchmark results of Xception are similar to Inception V3
with 94.4% acc@5 but slightly less parameters 22.8M. The Inception Family proposed and established
the following cornerstones of sota CNNs:

• Bottleneck designs and complex building block structures
• Batch normalisation to make deep networks trainable faster via stochastic gradient descent
• Factorisation of convolutions in space and depth

3.1.3. ResNet Family

Beside the Inception modules, Xception also uses so-called residual connections, which lead to
another stage of development, the ResNet Family. The first ResNet [43] was introduced in late 2015, at
the time when Inception V3 was proposed. What gives this family its name is the above-mentioned
residual connection used in the ResNet building block (see Figure 7). Technically, within the block’s
main trunk, the input depth is reduced by a 1 × 1 convolution, then features are extracted by a 3 × 3
convolutional layer and finally depth is increase again using 1 × 1 convolution. This bottleneck design
is closely related to the slightly older Inception Family, focussing on parameter efficiency. What is new
is what goes around the main trunk. Before the first convolution, the input is branched away from
the trunk and merged back after the second 1 × 1 convolution by simply adding the values to the
output of the trunk. This branch is called a shortcut or residual connection. In case that the input is not
manipulated on the shortcut, it is called an identity shortcut. As the depth and resolution have to be
the same of residual branch and main trunk for adding them back together, but still allow the depth to
increase and resolution to decrease within the main trunk, the shortcut can also perform operations
such as convolution [43] (see version 2 of the ResNet building block in Figure 7).

With the two ResNet building block designs, which are less complex than the Inception building
blocks, it was possible to stack the components to very deep networks. However, increasing depth
led to the counterintuitive degradation problem, which can be described as saturation, and rapidly
decreased accuracy when using deeper architectures. Inception V1 [40] used the auxiliary classifiers
to cope with this problem, but they made the network overly complex with additional branches.
To avoid the degradation of deeper networks and support the optimisation with backpropagation, the
above-described ResNet design reformulates the function H(x, Wi), which describes the convolutional
operations of the main trunk. In ResNet, it is now a residual function H(x, Wi) := F(x, Wi) + x, where
F(x, Wi) is the residue to approximate and x the input before the convolutional operation. Since the
x is known due to the residual connection, approximating the residue is considered easier [43].
Furthermore, when letting the residue of convolutional operations in the final part of the network be
zero, an identity function is learned from x. From the backpropagation point of view, it is now possible
to transport larger gradients to convolution operations early in the network and enable optimisation
of those layers. Hence, residual connections enable deeper networks to converge during training and
perform better than shallow networks [43,44,46].

ResNet [43] was presented with multiple depths, where the ResNet-152 model (152 layers,
see Figure 7), performed with an acc@5 of 95.5% at 60.3M parameters. Similar to the Inception Family,
the ResNet idea evolved over time. ResNeXt [44] changed the ResNet building blocks by introducing
so-called cardinality, which can be imagined as parallel convolutional operations with fewer feature
maps in each parallel branch. This design widens the block to the next dimension, hence the name.

Technically, this was implemented by redesigning the 3 × 3 convolution operation in the main
trunk of the block to be grouped convolution, introduced in ShuffleNet [106]. The use of 32 groups
on a 128 deep input feature map leads to four feature maps per group, which are convolved together.
ResNeXt-101 was able to improve acc@5 slightly up to 95.6% at 83.6M parameters.
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Figure 7. Conceptual overview of the ResNet building block and the ResNet-152 architecture [43]:
(Left) The two ResNet building blocks show the convolutional operations in the main trunk, extracting
features and the residual connections surrounding these operations to enable a more efficient transport
of gradients during training. The difference between the two variants is that the first transports the
input value of the block without changing it (identity shortcut) where the second uses convolution
with stride 2, to match the output resolution and depth of the main trunk. (Right) Overall architecture
of ResNet-152 consists of 152 layers due to stacked ResNet building blocks.

Another ResNet variant is DenseNet [46] which uses residual connections intensively. As the
name suggests, in a DenseNet building block,. each convolutional layer takes as input the result of the
previous convolution as well as all previous inputs within the block via multiple residual connections,
forming a densely-connected building block. Instead of addition, DenseNet uses concatenation to
merge the layers resulting in a very deep feature map as the output of a block. For this reason, before
entering the next block, depth is reduced in a transition block using a bottle neck design. For a detailed
description, we refer to the work of Huang et al. [46]. DenseNet is trailing ResNet and ResNeXt designs
with an acc@5 of 93.9% for DenseNet-264, which uses significantly fewer parameters, just 34M.

Considering the network depth of the Vintage Architectures or the Inception Family, the ResNet
Family led to very deep architectures, which were trainable without auxiliary classifiers by using the
novel residual connection and the now established batch normalisation. Furthermore, the residual
connection introduced by the ResNet Family is still a widely used component in CNN architectures
and contributes to more sophisticated flow control in network architectures. Together, both families,
Inception and ResNet contributed to the evolution by demonstrating that CNNs are highly modular
models. Xception as well as the older Inception-ResNet-V2 [107] are exemplary for merging the
corner stones of each family into new architectures. The results are Inception-like modules with
bottleneck designs and batch normalisation, enhanced by residual connections. Those networks are
deeper than their ancestors without auxiliary classifiers and perform better or equal to those with
fewer parameters.

Besides complete new architectures, plug in modules such as the Squeeze and Excitation (SE)
module [47] demonstrated that the modification of existing model layouts can enhance even the Vintage
Architectures in an efficient way. SE modules used in SENet are small fully connected neural networks
which weight the feature map outputs of a convolutional operation. They support the hypothesis that
not all features in a feature map are equally responsible for the final prediction. The usage of such
weighted convolutional operations improves Vintage Architectures such as VGG as well as networks
from the ResNet and Inception Family by adding few parameters to the network [47].

3.1.4. Efficient Designs

The modular concept of CNNs and their building blocks is crucial for the next group of
architectures. In 2017, two major trends led to today’s state of the art architectures in image recognition:
highly parameter efficient networks and, instead of hand crafted designs, architectures drafted by
other neural networks in a so-called Neural Architecture Search (NAS) [48,49].
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To use DL to solve every day problems, the architectures had to run on mobile devices.
The designs making this possible are grouped as Efficient designs in this review. Motivated by
the restriction of computations for mobile devices, the lightweight MobileNet family was founded.
The first MobileNet-224 [50] had only 4.2M parameters; nevertheless, it performed with an acc@5
of 89.9%. The network mainly consists of depth-wise separable convolutions, which use a highly
parameter efficient stack of 3 × 3 convolution on each input feature map separately, with an
adjacent 1 × 1 pointwise convolution across the entire depth. The next version, MobileNet-V2 [108],
further improves this idea by using mobile inverted depth-wise convolution with residual connections,
pictured in Figure 8 (left). This describes a building block, which first performs an 1 × 1 pointwise
convolution that expands the depth of feature maps for the adjacent 3 × 3 depth-wise convolution.
Afterwards, another 1 × 1 pointwise convolution defines the output depth, which is normally smaller
than the intermediate expansion depth. A surrounding residual connection adds the input to the
output maps by connecting the bottleneck layer. MobileNet-V2 performed with an acc@5 of 92.5 at 6M
parameters [108,109].

In parallel, a few months after the first MobileNet was introduced, NASNet [49] and therewith
a new way to define architectures was added to the development of CNNs. Neural architecture search
(NAS) follows the idea “[. . . ] learning beats programming” of Krizhevsky et al. [110] (p. 84) not only for
features but also whole architectures. In NAS, a defined search space of CNN building blocks was used
by a controller, such as a recurrent neural network (RNN) [34], to find the best so-called child network
architecture. The controller does this by using reinforcement learning which maximises the accuracy
of prediction on an underlying dataset reached by the child during every iteration. Thereby, the RNN
architecture in combination with reinforcement learning allows subsequently adapting the design of
the child network. The reward signal, the accuracy performed by the resulting child network, is used
to update the controller in order for it to produce a new child, which performs better in its defined
task [48,49].

One drawback is that the briefly described search algorithm needs to train each child it produces.
Since ImageNet is a relatively large dataset, it is common praxis to use a smaller dataset such as the
CIFAR-10 dataset [111] during NAS. After the new architecture is defined, it is scaled up to match
the larger variance of ImageNet without being trained on it each time [49,51,52,112–114]. Scaling can
be done by simply repeating the NAS defined building blocks to build a deep CNN [49,112], or by
defining a more complex scaling rule [52], which is mentioned below. The NASNet variant NASNet-A
(6@4032), introduced by Zoph et al. [49], performed with an acc@5 of 96.2% at 88.9M parameters.

Figure 8. Conceptual overview of the Efficient designs: (Left) The MobileNetV2 building block [108],
here with an additional Squeeze-and-Excitation (SE) module [47]. In comparison with a ResNet building
block, the bottleneck design is inverted, so that first the expansion factor (t) is larger than 1, which leads to
intermediate deeper feature maps (td) as the final output depth of the building block (d’). (Middle) The
Mnas search space with a fixed overall architecture of the network, the skeleton, but fully optional layer
designs, based on the MobileNetV2 building block [51]. (Right) A recurrent neural network (RNN) [34]
controller searches the search space for the best performing combination of layer designs by maximising
an optimisation rule [48]. The resulting architecture is scaled in depth, width and resolution to become the
EfficientNet-B7 architecture, the sota design in late 2019 [52].
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Further adaptions of the NAS approach, concerning how the children are handled and which
search space is used, PNASNet-5 (acc@5 = 96.2%, parameters = 86.1M) [112] and models of
AmoebaNet (acc@5 = 96.3%, parameters = 155.3M, model = C) [113] outperformed hand crafted
networks and established NAS.

Due to this new way of designing networks, the next generation of the MobileNet family used
the NAS approach to generate the MobileNASNet (MnasNet). The Mnas search space, pictured in
Figure 8, defines a fixed skeleton of seven repeated blocks, where each block has n layers with d1,. . . ,7

output depth, where n and d1,. . . ,7 are searched. Furthermore, the layer model of each block is a SE
module enhanced MobileNet-V2 building block, but each component of this block is optional and
the layer design is searched by the RNN [51]. By increasingly more complex layer designs found
during NAS, layer diversity was increased, which was found to be important for richer feature
representations [112,115]. With acc@5 of 93.3% at only 5.2M parameters, the resulting MnasNet
performed better than the hand crafted MobileNet-V2, on which it is based, with fewer parameters
needed [51].

The same search space was used in late 2019 by Tan and Le [52] to create the last family
of CNNs for image recognition reviewed in this paper, the EfficientNets. Since the search space
remained unchanged and the optimisation rule was also similar to MnasNet, the resulting
baseline model EfficientNet-B0 (acc@5 = 93.5%, parameters = 5.3M) performed similar to MnasNet.
However, what makes EfficientNet successful is the scaling approach. Tan and Le [52] proposed
compound scaling, which balances scaling in depth, width and resolution of the network (see Figure 8).
The resulting EfficientNet-B7 architecture reached 97.1% acc@5 at 66M parameters, which means an
increase in acc@5 of 15.3% at 4M more parameters used, compared to AlexNet seven years before, see
Table 2.

EfficientNet [52] and its closest relatives, the MobileNets [50,51,108,114] and other NAS induced
architectures [49,112,113], are based on the findings of their ancestors. The most relevant features and
concepts from Vintage Architectures and the Inception and ResNet Family, which are bottleneck designs,
the factorisation of convolutional operations and residual connections are the main components which
are characteristic for the sequential evolution of CNNs. All of these components are finally included
in the MobileNet building blocks and NAS search spaces (see Table 2). Furthermore, using NAS
and scaling successfully demonstrates how flexible CNNs can be designed to fit specific tasks [52].
However, what has not changed over the whole evolution is the meta structure of CNNs. For image
recognition, it still remains: input, convolutional backbone and a final classifier head.

Table 2. Summary of the evolution of convolutional neural networks (CNNs) for image recognition.
Bottleneck and Factorisation refer to the design concepts mainly developed in the Inception Family,
whereas Residual describes the use of residual connections introduced in the ResNet Family. NAS is
neural architecture search, the most recent development for efficient CNN architectures. The number
of parameters is given in millions (M). acc@5 describes the performance on the ImageNet dataset.

Architecture Year Bottleneck Factorisation Residual NAS M Parameters acc@5 [%]

AlexNet [3] 2012 62 81.8
ZFNet [38] 2013 62 83.5
VGG-19 [39] 2014 144 91.9
Inception-V1 + BN [41] 2015 3 11 92.2
ResNet-152 [43] 2015 3 3 60 95.5
Inception-V3 [42] 2015 3 3 24 94.4
DenseNet-264 [46] 2016 3 3 34 93.9
Xception [45] 2016 3 3 3 23 94.5
ResNeXt-101 [44] 2016 3 3 84 95.6
MobileNet-224 [50] 2017 3 3 3 4.2 89.9
NasNet [49] 2017 3 3 3 3 89 96.2
MobileNet V2 [108] 2018 3 3 3 6.1 92.5
MnasNet [51] 2018 3 3 3 3 5.2 93.3
EfficientNet-B7 [52] 2019 3 3 3 3 66 97.1
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Applying CNNs for image recognition on Earth observation data is normally done by classifying
a small patch of a remote sensing image with one or multiple labels of land cover classes. An example
dataset is the BigEarthNet dataset which contains 152 Sentinel-2 tiles divided into 590,326 patches
labelled with 43 land cover classes [116]. Sumbul et al. [117] used a VGG-19 and ResNet-50 to
predict labels on BigEarthNet and reached an average precision of 64.87% and 74.78%, respectively.
Therewith, they demonstrated the increase in performance between this architectures even for Earth
observation data.

3.2. Image Segmentation

As pointed out in the previous section, the features extracted by a convolutional backbone
hold high level semantic information and are used for predicting classes of whole images.
Image segmentation also uses this high level features extracted by a convolutional backbone, but
predicts classes on pixel level, which leads to the following problem: within a convolutional backbone,
the feature maps are subsequently resized to a lower resolution with increasing semantic information.
Hence, they provide less accurate location information, which is necessary for accurate pixel wise
prediction. As a result, image segmentation is confronted with a high resolution-feature depth trade-off.

Additionally, to predict the class of a single pixel, contextual relationship is important.
This information can be found in a range of long and small distances around the pixel. The contextual
information depends on the size and continuity of the semantic uniform segment the pixel belongs
to, as well as the amount and density of neighbouring segments of other classes and background.
Therefore, image segmentation can be seen as a multi scale context problem, even when prediction is
made on single pixels. The advances in image segmentation are focussing strongly on solving this
problem by exploiting features of different stages in the network or preserving or reconstructing high
resolution during feature extraction and prediction.

Since image segmentation makes predictions on pixel level, the underlying benchmark dataset
and metric to compare architectures has to be different from ImageNet and acc@5. In this review,
the Segmentation on PASCAL-VOC 2012 test dataset [53,54] is used and is further referred to as
PASCAL-VOC, if not stated otherwise in this section. This specific dataset was chosen to give
an overview due to its long lasting tradition over other more recently popular and challenging datasets
such as the Cityscape dataset [118,119] to overlook the evolution since 2014. The most frequently
reported metric for this dataset is the mean Intersection over Union (mIoU) over all classes [53,78].

mIoU =
1
C

C

∑
c=1

|yc ∩ ŷc|
|yc ∪ ŷc|

(2)

where C is the number of classes, |yc ∩ ŷc| is the intersection between the ground truth y and predicted
segmentation ŷ per class and |yc ∪ ŷc| is the union of ground truth y and predicted segmentation ŷ
per class. Its range is between 0% and 100% with the goal to maximise mIoU. Over the years, higher
accuracies were achieved, as shown in Figure 9, similar to the evolution of image recognition.

In the following overview about image segmentation, focus is put on Fully Convolutional
Networks (FCNs) inspired architectures. For a wider review of segmentation approaches which
use LSTM or GANs we refer to Minaee et al. [78], Garcia-Garcia et al. [120]. Image segmentation with
CNNs was strongly influenced by the work of Long et al. [55] who introduced FCNs in 2014. To further
discuss the evolution of FCN architectures, they are separated into two groups: naïve decoder and
encoder–decoder architectures. By using the term naïve decoder models, we follow, e.g., Chen et al. [60],
who used this term to describe feature map upsampling mainly by bilinear interpolation and without
using additional information from the encoder path. The overall idea of naïve decoder models
(Figure 10, left) is to use a convolutional backbone to extract feature maps, upsample the feature maps
to recover the input resolution by using bilinear interpolation and finally make pixel-wise prediction
and optional post processing to gain segmentation masks.
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In encoder–decoder models (Figure 10, right), the encoder part of the network can be seen as
the convolutional backbone which extracts feature maps from input data. The decoder uses the final
feature map in combination with spatially more accurate information from earlier stages in the encoder
path. Within the decoder, the feature map is upsampled or deconvolved and additionally combined
with spatially more accurate information transported from the corresponding layer in the encoder to
the decoder via skip connections. After the input resolution is recovered, pixel wise predictions are
made to produce the segmentation mask. The following overview of image segmentation architectures
will first look at the original FCN, then focus on naïve decoder, characterised by the DeepLab family,
and finally discuss encoder–decoder models.

Figure 9. Evolution of milestone architectures for image segmentation from 2014 to 2019, compared by
their mean intersection over union (mIoU) metric on the PASCAL-VOC 2012 test set for segmentation.
Architectures marked with an * are tested on different datasets and no metric on PASCAL-VOC 2012
is reported.

Figure 10. Conceptual overview of naïve decoder (left) and encoder–decoder design (right).
As an example for the naïve decoder design, DeepLabV1 was chosen, which uses atrous convolution
as the last layers in the backbone, bilinear interpolation as upscaling method and a fully connected
conditional random field (CRF) module for refinement [56]. As example for the encoder–decoder
models, an U-Net inspired design shows the skip connections, transporting feature maps from the
encoder path to the corresponding decoder path, providing increasingly precise feature localisation
during upscaling [67].

3.2.1. Naïve Decoder

In 2014, Long et al. [55] introduced Fully Convolutional Networks (FCN) for semantic
segmentation. They used VGG-16 as backbone to create feature maps and trained deconvolutional
layers to upsample them to input resolution. To increase the precision of fine grained features in their
best performing FCN-8s variant (mIoU = 62.2%), they used feature maps from earlier layers in the
VGG-16 backbone via skip connections during upsampling. With that, they provided a combination of
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spatially more accurate and higher level semantic features for the pixel wise classification. Inspired
by the FCN design, Chen et al. [56] introduced DeepLabV1. The major differences are their use
of atrous convolutions, explained below and a naïve decoder performing upsampling by bilinear
interpolation. Atrous or dilated convolutions, as depicted in Figure 11 (left), which are intensively used
in the DeepLab family, are inspired by the algorithme á trous [121]. In atrous convolutions, “holes”
are inserted in a convolutional kernel to increase the receptive field and at the same time maintain
resolution in order to gain dense feature maps with high resolution [56,58]. Because of these dense
feature maps, upsampling can be done with the more computational efficient bilinear interpolation,
compared to trainable layers used 2014 Long et al. [55] in FCN. However, despite the dense feature
maps, after pixel wise prediction, in DeepLabV1 [56], the segmentation map is further refined by
a fully connected conditional random field (CRF) [61]. When published, DeepLabV1 performed with
a mIoU of 66.4%. The disadvantage of this combination of CNN and CRF is that DeepLabV1 is not
end-to-end trainable in one stage.

The later proposed DeepLab-LargeFOV [57] variation uses only 3× 3 kernels and a larger dilation
rate of 12 for the atrous convolution in order to generate a large receptive field. After CRF refinement,
they reached 72.7% mIoU [57,58]. The successor of DeepLabV1, DeepLabV2 [58], uses instead of
an VGG-16 as backbone a ResNet-101 and the novel Atrous Spatial Pyramid Pooling (ASPP) module
in order to introduce multiscale feature exploitation to the DeepLab family.

ASPP is motivated by SPPNet [74], which will be discussed further in Section 3.3. The core
idea of ASPP can be described as a parallel multiscale exploitation of feature maps processed by
atrous convolution of different rates, see Figure 11 on the right. Therefore, multiscale information
can be extracted using an efficient network design, instead of computational expensive processing of
multiscale images, so-called image pyramids. DeepLabV2 consists of an atrous convolution enhanced
ResNet-101 backbone and an ASPP module of convolutional layers with four different dilation rates,
6, 12, 18 and 24. The output feature maps from ASPP are upsampled to input resolution by bilinear
interpolation on which pixel wise prediction is performed. After an adjacent fully connected CRF
refinement, DeepLabV2 reached a mIoU of 79.7% [58].

Even when the multiscale exploitation due to the ASPP module was successful, some problems
were noted later on. By using the largest dilation rate of 24 within ASPP, one can imagine that the outer
cells of the kernel can lie outside the input feature map. Hence, this atrous convolution is degraded to
a 1 × 1 convolution of the centre, and the goal of extracting long distance context information by using
large dilation rates is turned upside down [59].

Another contributing factor of long distance context on pixel-wise classification in segmentation
architectures was investigated in ParseNet [65], which can be seen as an alternative to large dilation
rates. Global image context was exploited by using global average pooling and fusing this branch of
the network with the standard features extracted by convolution. ParseNet was able to reach 69.8%
mIoU without CRF refinement and is an end to end trainable CNN for image segmentation.

Pyramid Scene Parsing Network (PSPNet) [66] goes even further with its Pyramid Pooling
Module. This module pools from the input feature map on different scales, and applies 1 × 1
convolution and upsampling in order to concatenate context features from different scales with
the original input feature map of the module. After a last convolutional operation on those fused
features, the final pixel-wise prediction is performed. Therewith, local context of different scales is
exploited for better classification. PSPNet with a ResNet backbone and without any CRF refinement
performed at 82.6% mIoU. The described advances, such as the extraction of features from multiple
scales, the usage of contextual information from global and local scales and relying completely
on a CNN model without combining it with graphical models for refinement, were aggregated in
DeepLabV3 [59] (see Figure 11, right). Its structure is the same as in DeepLabV2 [58], but changes
were made in the ASPP module. Chen et al. [59] removed the largest dilation rate, due to the problem
described above and instead introduced image level feature extraction by global average pooling.
Therewith, long range information on image level, which was used successfully in ParseNet [65] and
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PSPNet [66], was incorporated into the ASPP module in DeepLabV3. Upsampling is still done with
bilinear interpolation until input image resolution is reached, but no CRF refinement is applied after
prediction of the last convolutional layer that produces the segmentation mask. DeepLabV3 is therefore
the first end to end trainable DeepLab variant, and, when published, it performed with state-of-the-art
results of 85.7% mIoU [59].

Figure 11. Conceptual overview of atrous convolution (left) and the Atrous Spatial Pyramid Pooling
module (ASPP) within the DeepLabV3 [59] architecture (right). In atrous convolution, “holes” are
inserted into the kernel. They provide a larger receptive field and maintain resolution at the same time.
The ASPP module combines atrous convolutions of different rates and global image context via global
average pooling in order to exploit feature maps on different scales efficiently [56,58,59].

The last naïve decoder model reviewed here is HRNetV2 [71], published in 2019. Since no
metric is reported on PASCAL-VOC but on the Cityscape dataset, HRNetV2 cannot directly be
compared with the other architectures discussed before. To narrow this gap, we compare it to the
reported performance of DeepLabV3 on the Cityscape test set with 81.3% mIoU. Both HRNetV1 [70]
and its successor HRNetV2 [71] use four stages of five convolutional blocks. From the second stage,
parallel convolutions on different resolutions are performed and finally merged in the fifth convolution
by upsampling. With it, in Stages 2–4, features of different resolutions are combined with every other
resolution in the so-called multi-resolution block. The difference between HRNetV1 and HRNetV2,
is that V1 only uses the block of highest resolution for final prediction, whereas V2 uses all blocks of
all resolutions by combining them using concatenation and stronger upsampling of low resolution
feature maps. The final input resolution for prediction is reached by further upsampling with bilinear
interpolation. The performance of HRNetV2 on the Cityscape test set is 81.6% mIoU, slightly better
than DeepLabV3 [70,71].

3.2.2. Encoder–Decoder Models

All of the image segmentation architectures reviewed until now, besides FCN [55], share relatively
naïve decoders. This means that mostly bilinear interpolation was used to upsample the feature maps
back to input image resolution. The encoder–decoder models are different from that by introducing
more complex decoder (see Figure 10, right). The main idea is to use shortcuts or skip connections
to transport information from the encoder branch to the decoder. Therewith, high level feature from
the later layer in the encoder are subsequently fused with more locally precise information from early
layers in the encoder during upscaling.

In 2015, Noh et al. [64] introduced DeconvNet, which uses a VGG-16 as encoder and a mirrored
VGG-16 as decoder. Within the decoder, instead of pooling, unpooling layers use the spatial localisation
recorded during pooling, called pooling indices. With this information, a sparse feature map of higher
resolution is restored and an adjacent deconvolution layer densifies them. Therewith, the decoder
reaches the input resolution where pixel wise prediction is performed to generate the segmentation
mask. DeconvNet reached a mIoU of 69.6%, matching the DeepLab version at this time without using
additional refinement with a CRF.
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In SegNet, Badrinarayanan et al. [122] used a similar approach and added batch normalisation
with ReLU activation for each convolutional layer in the encoder and decoder. SegNet outperformed
DeconvNet slightly; those results were reported not on PASCAL-VOC but the CamVid dataset [123].

In 2015, Ronneberger et al. [67] proposed U-Net, an encoder–decoder architecture whose structure
has been applied widely in many domains since it was introduced. U-Net, originally built for medical
image analysis for cell tracking, is similar to SegNet [55] and ConvNet [64]. Its encoder is made up
of five building blocks where each consists of two adjacent 3 × 3 convolutions which double the
amount of feature maps subsequently from 64 up to 1024. Between the blocks, the feature maps are
downscaled with 2 × 2 max pooling of stride 2. The decoder uses deconvolution layers for upscaling
within five blocks, where each block receives the whole feature maps from the encoder path of the same
resolution, not only the pooling indices. The feature maps are transported via skip connections from
the encoder to the corresponding building block in the decoder. Feature maps coming “up” within
the decoder are concatenated with the feature maps from the encoder. Thereafter, high level semantic
information is combined with more precise local information but lower semantic meaning during
upscaling. When input resolution is finally restored, a last 1× 1 convolution predicts the segmentation
map [67]. Since U-Net was developed for a specific cell tracking task, no results on PASCAL-VOC
are reported in the original publication. However, Zhang et al. [124] reported a 72.7% mIoU for
a vanilla U-Net on PASCAL-VOC. The U-Net design was modified, for instance in Tiramisu [68],
which combines U-Net structure and DenseNet [46] building blocks, and in U-Net++ [125], where
nested dense building blocks perform convolution on the skip connections.

With RefineNet [69], an encoder–decoder design was proposed, which focusses on residual
connections. The encoder is built on a ResNet-152, the decoder of RefineNet blocks, which are using
residual connections with sparse nonlinear activation. With this combination in RefineNet, a direct
flow of features within the decoder was emphasised. RefineNet reached a mIoU of 83.4%.

Due to the convincing results achieved by encoder–decoder architectures, the DeepLab family also
modified their naïve decoder model to an encoder–decoder design in DeepLabV3+ [60]. DeepLabV3+
uses a modified Xception backbone in the encoder. The modifications were inspired by the depth-wise
separable convolutions [45] and the last convolutional layers became separable atrous convolutional
layers. Due to this factorisation in depth, the model gained computational efficiency. With an overall
stride of 16 for the encoder, the decoder first bilinearly upsamples the encoded feature maps by a factor
of 4. After that, the corresponding feature maps from the encoder are concatenated via skip connections
and after additional convolutional operations an adjacent bilinear upsampling of factor 4 restores
input resolution. On these feature maps, the final prediction is performed to produce the segmentation
mask. This effective decoder model in combination with the modified DeepLabV3 model reached
a mIoU of 87.8%.

Similar to image recognition, after architectures were designed and optimised heavily by hand,
NAS was used to search for high performance and computationally efficient image segmentation
architectures. Dense Prediction Cell (DPC) [62], which belongs to the DeepLab family, and
Auto-DeepLab [63] are two examples based on NAS [48]. DPC focusses on the optimisation of the ASPP
module by searching for, e.g., dilation rates and the grid size of average spatial pyramid pooling [62].
DPC performs with 87.9% mIoU on PASCAL-VOC using a modified Xception backbone [62].

In contrast, Auto-DeepLab [63] focusses on searching for an image segmentation optimised
backbone instead of optimising a single module. That means that in addition to the operations in
a building block, the overall network structure is searched too. Hence, no fixed skeleton is defined
such as in Mnas searchspace [51] or the DPC. For further details on the searchspace, we refer to
the work of Liu et al. [63]. The Auto-DeepLab-L variant reached a mIoU of 85.6% but performed
comparatively better on the more challenging Cityscape dataset, where it reached the same mIoU of
82.1% as DeepLabV3+ [63].

Reviewing the advances in CNNs for image segmentation, it was pointed out that multiscale
feature and image context exploitation by maintaining high resolution and fusing features from
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different stages of the model are the cornerstones of sota architectures. Atrous convolution which are
mostly used in naïve decoder models and skip connections which are typical for encoder–decoder
models, are major concepts that were established during the evolution of image segmentation
architectures. Table 3 summarises this evolution and demonstrates the decreasing use of CRFs for
refinement and increasing use of atrous convolution and multiscale feature extraction.

Table 3. Summary of the evolution of convolutional neural networks (CNNs) for image segmentation
and the above discussed cornerstones. The Backbone is the reported CNN used for feature extraction;
CRF describes the use of a conditional random field for refinement; Atrous shows the application of
atrous convolution; Multiscale shows if a dedicated module that handles multiscale feature extraction,
e.g. ASPP, is used; NAS means that parts of the architecture are drafted by using neural architecture
search; and mIoU describes the performance on the PASCAL-VOC 2012 dataset for image segmentation.

Architecture Year Backbone Type CRF Atrous Multiscale NAS mIoU [%]

FCN-8s [55] 2014 VGG-16 encoder–decoder 62.2
DeepLabV1 [56] 2014 VGG-16 naïve decoder 3 3 66.4
DeconvNet [64] 2015 VGG-16 encoder–decoder 69.6
U-Net [67] 2015 Own encoder–decoder 72.7
ParseNet [65] 2015 VGG-16 naïve decoder 3 69.8
DeepLabV2 [58] 2016 ResNet-101 naïve decoder 3 3 3 79.7
RefineNet [69] 2016 ResNet-152 encoder–decoder 83.4
PSPNet [66] 2016 ResNet-101 naïve decoder 3 82.6
DeepLabV3 [59] 2017 ResNet-101 naïve decoder 3 3 85.7
DeepLabV3+ [60] 2018 Xception encoder–decoder 3 3 87.8
DensePredictionCell [62] 2018 Xception naïve decoder 3 3 3 87.9
Auto-DeepLab [63] 2019 Own naïve decoder 3 3 3 82.1

When CNNs for image segmentation are applied to Earth observation data, encoder–decoder
models are a popular choice (see Section 4.2). The ISPRS 2D labelling dataset [126] is a widely used
benchmark dataset consisting of a digital surface model and multispectral aerial images with very
high spatial resolution. One example investigation of this dataset by Wang et al. [127] shows the
application of the above-discussed DeepLabV3+ based on a ResNet-101 backbone. They modified
this combination with an auxiliary loss directly after the ASPP module and a final CRF refinement
and therewith demonstrated the applicability of a sota CNN coming from computer vision and its
adaptation to the needs of Earth observation data.

3.3. Object Detection

While image recognition and image segmentation can be modelled as classification problems,
object detection is a multi-task problem. Predicting the object class remains a classification problem,
whereas predicting the location, which is a bounding box around each predicted object, is a regression
problem. Therefore, the benchmark dataset has to contain additional bounding box labels and
architectures have to handle both classification and regression at the same time. The used benchmark
dataset is the object detection on Microsoft Common Objects in Context (MS-COCO) test-dev set [72].
The measure of interest is the mean Average Precision (mAP) or in the case of MS-COCO the AP, which
is considered the same (see [128]).

MS-COCO’s AP, also called AP[0.5:0.05:0.95], is an average over all classes for 10 different IoU
(Intersection over Union) levels, between ground truth and predicted bounding boxes. The IoU
threshold defines if a prediction is a true positive. By taking different IoU levels into account,
models with more accurate localisation characteristics are favoured. The calculation of AP for
a single IoU is the average of interpolated precision values pinterp at 101 equally spaced recall values
r =∈ 0.0, . . . , 1.0 [128,129]. Precision and recall are thereby:

Precision =
TP

TP + FP
= p (3)
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Recall =
TP

TP + FN
= r (4)

where TP are true positives, FP false positives and FN false negatives. The empirical precision recall
curve p(r) is interpolated with

pinterp(r) = max
r̃ : r̃≥r

p(r̃) (5)

in order to generate pinterp(r). Finally AP is calculated with [53,129]:

AP =
1

101 ∑
r∈{0.0,. . . ,1.0}

pinterp(r) (6)

Other jointly reported metrics beside AP on MS-COCO are AP75 and AP50 with a single fixed IoU
of 75% and 50%, respectively. Since MS-COCO was introduced in 2014, the first architectures reviewed
use the PASCAL-VOC 2007 test set of the object detection task [54]. For these architectures, the mAP
is reported, which is calculated similarly to MS-COCO’s AP but with a fixed IoU and 11 instead of
101 bins of the precision–recall curve (see Equation (6)).

Architectures for object detection can be divided into two groups: two-stage detectors and
one-stage detectors. In general, two-stage detectors perform with higher AP, which is shown in the
progress made from late 2013 to 2019 in Figure 12. One-stage detectors are lightweight in parameters
and complexity and thereby faster, measured in processed frames per second (fps) [130]. On a
closer look, two-stage detectors are distinguished by a first stage, which processes class agnostic
region proposals. The object class prediction of those potential regions and the final bounding box
regression are then performed in the second stage. On the other hand, one-stage architectures perform
class prediction and bounding box regression in a single shot from the input image. One-stage
detectors play an important role in the evolution of CNN based object detection and are also widely
used in applications and research [130–132]. Therefore, some popular designs are reviewed below.
However, focus is put on two-stage detectors, and, among those, especially on the Region based CNN
(R-CNN) family. For a wider overview on object detection, we refer to the works of Liu et al. [130],
Wu et al. [132], Zhao et al. [133] and Jiao et al. [134].

Figure 12. Evolution of milestone architectures for object detection from late 2013 to 2019,
compared by their average precision (AP) metric on the MS-COCO test-dev set for object detection.
Architectures marked with an * are tested on different datasets and no metric on MS-COCO test-dev
set is reported.

3.3.1. Two-Stage Detectors

In 2013, Girshick et al. [73] introduced Region based CNN (R-CNN), which incorporated a CNN
into a pipeline of established graphical models and classifiers in order to predict objects in images.
From the input image, class-agnostic region proposals are generated with the selective search algorithm
of Uijlings et al. [135]. For each proposal produced this way, AlexNet [3] or VGG-16 [39] is used to
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extract meaningful features for each proposal. Those features are then forwarded to binary class
specific support vector machine (SVM) classifiers predicting the object class. To improve localisation,
a class specific bounding box regression is applied using the initial region, coming from the selective
search algorithm as a starting point. R-CNN with the bounding box regression scored a mAP of 66%
on PASCAL-VOC 2007. However, R-CNN has some drawbacks, due to the property of performing
tasks in a repetitive manner, e.g., feature extraction with a CNN for each region proposal or class
specific SVM classifiers. Furthermore, the model is more of a model composition and therefore no end
to end training is possible [73,76].

Spatial Pyramid Pooling (SPP) used in SPPNet by He et al. [74] and a redesigned R-CNN inspired
architecture fixed some of the above mentioned issues. SPP is not a novel idea, but using it in a CNN
context was a novel application. SPP pools features from arbitrary input sizes on different scales
resulting in fixed length outputs. This enables processing on multiple scales which makes the object
detection task more robust since objects are naturally appearing at different scales in images. Within the
convolutional backbone, the SPP layer replaces the last pooling operation [74].

Another change in the overall design of SPPNet made it up to over one hundred times faster
than the original R-CNN. This speed up was achieved by applying the convolutional backbone with
adjacent SPP to extracted features only once on the whole input image instead of processing each
region proposal coming from selective search separately. Therefore, the region proposals derived
from the same input image with selective search are downscaled in order to match the resolution of
the shared feature map to extract the corresponding features from there. SPPNet with bounding box
regression performed with a mAP of 59.2% on PASCAL-VOC 2007 using a fast variant of ZFNet as
convolutional backbone. This is less, measured by mAP, but 38 times faster than R-CNN [74].

Fast R-CNN was introduced by Girshick [75]. Similar to SPPNet, it also exploits shared feature
maps for the regions proposed by selective search and established the use of shared feature maps as
the standard approach for two stage object detection. An other similarity to SPPNet is the RoI (Region
of Interest) pooling layer in Fast R-CNN, which connects convolutional backbone with a RoI wise
classifier and bounding box regression. It performs max pooling by dividing the RoI provided by
selective search into a feature map of fixed resolution. A clear difference from SPPNet is that Fast
R-CNN introduced a multitask head that performs classification and regression within fully connected
layers. Besides the region proposal, feature extraction and object detection are within one model, and
no further SVMs are necessary. This was possible due to the definition of a multi task loss which
sums the loss of regression and classifier head. Due to this combined design, training became much
more efficient. Nevertheless, since selective search is still used for proposing regions the model is not
end-to-end trainable. Using a VGG-16 backbone, Fast R-CNN performed with a mAP of 66.9% on
PSCAL-VOC 2007. A first performance on MS-COCO is also reported with an AP of 19.7% [75].

The next successor from the R-CNN family is Faster R-CNN by Ren et al. [76], developed in
2015. With it, the Region Proposal Network (RPN) module was introduced and finally two stage
object detection became end to end trainable models, unified in a single network performing all tasks
needed for competitive object detection results. After the convolutional backbone the RPN, a small
fully convolutional network is inserted. At each position of its sliding window, k translation invariant
anchor boxes are investigated, where k is 9 in the proposed method, three scales and three aspect ratios.
Since multiple anchors are predicted at the same sliding window position, heavy overlapping and
overly noisy object proposals would be the result. To mark a region proposal as valid, it must be the
region with the highest IoU score or a score greater than 0.7, whereas a proposal with an IoU less than
0.3 is marked as a negative example. Each positive anchor is then regressed to the proposed object
boundary and is finally used as an RoI. Beside the RPN module, the architecture is the same as for Fast
R-CNN: RoI pooling with adjacent multitask object class predictor and final bounding box regression.
Based on a VGG-16 backbone, Faster R-CNN performs with 21.9% AP [76], changing the backbone to
ResNet-101 AP goes up to 27.2% [101].
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Further advances in gaining higher AP on MS-COCO address the following dilemma: for
classification, high level semantic features are optimal but they lack localisation. At the same time,
object detection needs precise local information to find objects of different scales and potentially
densely packed in the image. These issues are comparable to the mentioned problems in image
segmentation, in Section 3.2, and thus are the solutions.

Feature Pyramid Network (FPN) (see Figure 13), introduced in 2016 by Lin et al. [77], enables the
inherent bottom up feature pyramid of the convolutional backbone with an adjacent top down
path. The novel top down path is upsampled by factor of two beginning with the last layer of the
convenient bottom up path by using nearest neighbour interpolation. In addition, each upsampled
level is connected via lateral connections to the corresponding bottom up feature maps. In that way,
fine grained low level features with high location information are passed to upscaled coarse high
level semantic features. This idea is comparable with encoder–decoder models but as part of the
convolutional backbone for object detection. Therefore, the feature pyramid defined by the levels of
the novel top down path holds features in different scales and localisation precision, all enhanced
by high level features. Each of the feature pyramid levels is connected to a RPN with three aspect
ratios but no scale ratio for the anchors, since the different scales are now provided by the FPN levels.
The FPN enhancement of a Faster R-CNN with ResNet-101 backbone reached 35.8% AP, an increase
of 8.6%.

Figure 13. Conceptual overview of Feature Pyramid Network (FPN) and its variants. In the original
FPN [77] (left), the last layers of the convolutional backbone (bottom up path) are paired with a top
down path which uses the bottom up feature layers to enhance the semantic high level information
with precise localisation. Prediction of region proposals is then done on the different layers of the top
down feature pyramid. The two variants Path Aggregation Network (PANet) [82] and bidirectional
FPN (BiFPN) [93] enhance the structure with an additional bottom up path (red arrows) and intra-scale
skip connections (green arrows), respectively.

In 2017, with the advances in CNN architectures, made in object detection and image segmentation,
He et al. [80] presented an end to end trainable DL model for instance segmentation Mask R-CNN.
Besides the two heads for classification and bounding box regression, a third head which performs
instance mask segmentation was added to the architecture. By using the features within a RoI,
binary class specific masks are predicted with the FCN for image segmentation introduced by
Long et al. [55]. Due to the higher spatial precision needed for image segmentation, RoI pooling
was adapted to be RoI align. Therefore, the RoI coordinates were represented as floating point numbers
instead of quantising them to discrete granularity. To extract the feature values for one RoI bin,
values are also sampled at four equally spaced points, bilinearly interpolated and aggregated by
using max or average pooling to finally represent the feature value in the RoI bin. Since standard
object detection is still possible with instance segmentation architectures, performance is reported on
MS-COCO object detection task with 39.8% AP [80].

Another optimisation of Faster R-CNN was introduced by Cai and Vasconcelos [79] who proposed
Cascade R-CNN. Looking back at RPN, which, since it was introduced, is the state-of-the-art region
proposal method for two-stage detectors, a positive anchor is mainly defined by an IoU between 0.5
and 0.7 during training. The trade-off between a high and small IoU is that a small IoU proposes
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more regions of interest as positive. This leads to noisy object proposals, whereas a high IoU
declines the hypothetical bounding box coming from RPN as too weak, resulting in false negatives.
Therefore, a cascading IoU with increasing bounding box refinement, which starts at a low IoU,
was introduced to tackle this problem. Starting with the proposals from RPN, RoI align extracts
the features for anchors with an IoU of 0.5 and a first classification and bounding box regression
is performed. The bounding box results are then used as if they were produced by RPN but now
an IoU of 0.6 is applied. Again, RoI align extracts the features for the new, more accurate region
proposals from the same feature map as before and the next classifier and bounding box regression
use them. This is repeated for a third time with an IoU of 0.7 which produces the final results of the
object detection. Using ResNet-101 as backbone, Cascade R-CNN performed with an AP of 42.8% on
MS-COCO [79]. A later implementation for Cascade Mask R-CNN which uses a ResNeXt-152 backbone
reached 50.2% [136]. Rethinking the feature pyramid of FPN, high semantic features are passed within
the top down path to finer grained feature maps, with weaker semantic but better localised features,
and thereby enhancing those. However, no fine grained information is directly passed to the first
top down pyramid level, which holds coarse but high level features. Path Aggregation Network
(PANet) [82] adds an additional augmented bottom up path with access to low level, highly localised
features via lateral connections directly after the FPN inspired top down path. The feature pyramid
of this second bottom up path therefore holds both high semantic feature and low semantic highly
localised feature enhanced activation maps. The following architecture, which uses the Mask R-CNN
detector head and a PANet enhanced ResNeXt-101 backbone, reached an AP of 45% [82].

FPN became a popular method to handle the important scale variation in object detection;
however, different approaches do exist such as SNIP [83] and its successor SNIPER (Scale Normalisation
for Image Pyramids with Efficient Resampling) [84] focussing on multi scale training. Another example
for the handling of scale by using atrous convolution is the scale-aware TridentNet [85]. The last
convolutional blocks of a backbone are replaced with Trident blocks. Those, as the name suggests,
consist of three branches of atrous convolution with three different dilation rates. The branches share
weights, to prevent overfitting due to potentially tripling the amount of parameters. Their detection
is aggregated by none maximum suppression (NMS): for small objects, the branch with the smallest
dilation rate finds the strongest activation and suppresses weaker activations from the other two
branches and vice versa. After applying a scale aware training scheme, the TridentNet-enhanced
ResNet-101 Backbone, which ends in a common Faster R-CNN detector, reaches an AP of 48.4% [85].

With FPN and TridentNet, the deeper layers in convolutional backbones were successfully
enhanced in order to produce richer features for the subsequent detector. Nevertheless, the backbones
remain architectures designed for image recognition tasks. However, object detection specific
backbones have to be trained from scratch. That means, that no pre-trained parameters can be
utilised for refinement, but all initialised values have to be solely trained on a given object detection
dataset, which is a time and processing power consuming task [81]. Therefore, further enhancements
of image recognition backbones pre-trained on ImageNet were investigated. Instead of changing
some layers in a single backbone, a couple of the same backbones, differentiated into assistant
backbones and one lead backbone, are connected to a Composite Backbone Network (CBNet) [81].
The novel composite connections of the neighbouring networks are lateral connections in each stage
of the neighbouring backbones, following the so-called Adjacent Higher-Level Composition scheme.
After each convolutional block in a network, the feature maps are passed to the neighbouring network
as input to the same stage. Therefore, Adjacent Higher-Level Composition upsamples the feature
map and performs a 1 × 1 convolution in a bottle neck style, to reduce feature map depth. Following
that approach, features are passed from assistant to assistant until the lead backbone is reached,
which then passes the feature maps from different stages and therefore in different scales to the
detector. By using three connected backbones as CBNet and the most recent member of the R-CNN
family, the Triple-ResNeXt-152 Cascade Mask R-CNN model reaches state-of-the-art AP of 53.3% on
MS-COCO in 2019.
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With RPN, FPN, RoI pooling the later RoI align, cascading classifier and regression heads and
finally composite backbones, the most important modules and insights for object detection with
two-stage detectors were developed in close relation to the R-CNN family. However, those modules
are not exclusively made for the R-CNN design and most of them not even for two-stage detectors.
This means that the introduced models and insights for object detection with CNNs are flexible and a
foundation for highly task specific architectures. However, this flexibility comes at a price of highly
complex models. One-stage detectors, on the other hand, tend to be less complex, by using predefined
anchors to extract features after the convolutional backbone and passing them directly to a detector
head, resulting in computational efficient and more streamlined architectures. To complete the review
on object detection models, a brief overview about a selection of one-stage detectors is now provided.

3.3.2. One-Stage Detectors

In 2015, Redmon et al. [86] introduced the first member of the YOLO (You Only Look Once)
family, called YOLO-V1 in this review. The motivation for the whole YOLO family is representative
for one-stage detectors: one-stage detectors are lightweight models that perform accurate real time
detection of more than ~20 fps to bring object detection to mobile platforms, for example. The YOLO-V1
detector separates the feature map which comes from the backbone into S ∗ S cells. In each cell,
YOLO-V1 looks for object centres and predicts object class and bounding box simultaneously. This
approach results in many boxes which are then sorted out by NMS of a class agnostic objectness score.
On PASCAL-VOC 2007, YOLO-V1 performed with mAP of 36.4%, trailing the Faster R-CNN at the
time, but with 45 fps, where the Faster R-CNN processed at 7–18 fps, depending on the backbone [86].
YOLO-V2 [87] introduced multi scale training, a custom and fast backbone called DarkNet-19, batch
normalisation after convolutional layers, a fully convolutional design and more important the use
of anchor boxes. The dimensions of the anchors are chosen by clustering the training dataset using
k-means with five cluster centres. This approach is crucial, since well-chosen anchors have a high
impact on the detection of objects. Thereafter, YOLO-V2 predicts five bounding boxes at each of the
pixel of the last feature map after the backbone. The performance of the largest model with 17 × 17
pixels in the last feature map, YOLO-V2 performed on PASCAL-VOC 2007 with 40 fps and a mAP of
78.6%. Notably, it matched sota performance on this dataset and 21.6% AP on MS-COCO trailing sota
models at the time of its publication.

Finally, YOLO-V3 [88] uses ResNet-inspired building blocks for its DarkNet-53 backbone and
a FPN-inspired detector that passes features from high semantic to lower semantic layers. Due to
this enhancement in scale invariance, the issue of its ancestors, which perform poorly on smaller
objects, was tackled [86,88]. The model detects on three different scaled feature maps using nine
ratios for the anchors, defined by k-means similar to in YOLO-V2, resulting in three anchors per scale.
YOLO-V3 performs with 33% on MS-COCO now trailing sota networks of two and one stage designs,
but outperforms them in speed by a factor of 2.32 compared to RetinaNet [88,90]. The YOLO-V3
design is therefore partly similar to the earlier proposed Single Shot MultiBox Detector (SSD) [89],
which also performs on different scaled feature maps, but uses manually predefined anchors. With a
VGG-16 backbone, its performance was reported with an AP of 26.8%.

The above-mentioned RetinaNet [90] mainly focusses on an adaptive loss function, called focal
loss, to tackle the problem of unbalanced foreground-background classes, explained here. Due to the
lack of a RPN module, one-stage detectors sample many predefined anchors over the whole feature map
in a dense manner. This leads to many boxes which classify background, easy negatives, and just a few
boxes which classify objects. This property of one-stage detectors is used to provide small gradients for
harder to classify foreground examples and an overwhelmingly large loss contribution, and therefore
large gradients for easier to classify background examples. This unbalanced loss leads to minimal
training effect considering the real objects. To overcome this problem, the focal loss down-weights the
loss contribution which comes from easy negatives, in order to focus more on the harder to classify
foreground examples. Since the advances of RetinaNet focus on the loss, its architecture consists
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mostly of established modules such as a FPN enhanced ResNet-101 backbone connecting to a fully
convolutional classifier and bounding box regression. Nevertheless, due to the focal loss, RetinaNet
matches sota performance of 39.1% AP at 5 fps.

In late 2019, Tan et al. [93] introduced EfficientDet, a one-stage detector which further filled
the gap towards two-stage detector performance. Based on the novel EfficientNet family for image
recognition, which they use as backbone, they further used its compound scaling approach [52].
Instead of a FPN at the end of the EfficentNet, they redesigned it to BiFPN. In it, they use the
improvements of PANet, an additional bottom up path, and orthogonal to the common top down and
bottom up paths, cross scale lateral connections, first proposed in NAS-FPN [92] (see Figure 13, right).
Feature connectivity across the FPN module is therefore enhanced even on a consistent scale level
within the feature pyramid by a bidirectional flow, hence BiFPN. The best performance on MS-COCO
was reached with the EfficientDet-D7 variant using auto-augmentation [137] with 52.2% AP [93].

As in image segmentation, object detection architectures focus heavily on multiscale feature
exploitation, but instead of atrous convolution, the FPN is widely used. Two-stage detectors dominate
the object detection designs, when it comes to AP performance. Nevertheless, with the EfficientDet
family, one-stage detectors improved recently. What remains an advantage of two-stage detectors is
their modularity, which makes them easily adaptable for new modules, concepts and to other types
of imagery data. Furthermore, the initialisation of the ratio of anchor boxes and the selection of the
IoU which defines a true positive should always be considered when designing the architecture to
match the dataset at hand. This was pointed out by discussing the anchor initialisation, e.g., of the
YOLO architectures and cascading IoU in Cascade R-CNN. Table 4 summarises those cornerstones and
provides an overview of the evolution and the onset and use of specific cornerstones in both two- and
one-stage detectors.

Table 4. Summary of the evolution of convolutional neural networks (CNNs) for object detection
and the above-discussed cornerstones, divided into two- and one-stage detectors. The Backbone
is the reported CNN used for feature extraction; RPN shows if a region proposal network is used;
RoI describes which kind of pooling is used for the regions of interest; Anchors describes if prior
anchor boxes are utilised; NAS describes if neural architecture search was used; Multiscale Feature
describes the approach of multiscale feature extraction; and AP describes the performance on the
MS-COCO dataset.

Two-Stage Detector
Architecture Year Backbone RPN RoI Multiscale Feature AP [%]

R-CNN [73] 2013 AlexNet -
Fast R-CNN [75] 2015 VGG-16 pooling 19.7
Faster R-CNN [76] 2015 VGG-16 3 pooling 27.2
Faster R-CNN + FPN [77] 2016 ResNet-101 3 pooling FPN 35.8
Mask R-CNN [80] 2017 ResNeXt-101 3 align FPN 39.8
Cascade R-CNN [79] 2017 ResNet-101 3 align FPN 50.2
PANet [82] 2018 ResNeXt-101 3 align FPN 45
TridentNet [85] 2019 ResNet-101-Deformable 3 pooling 3xAtrous 48.4
Cascade Mask R-RCNN [81] 2019 CBNet (3xResNeXt-152) 3 align FPN 53.3

One-Stage Detector
Architecture Year Backbone Anchors NAS Multiscale Feature AP [%]
YOLO-V1 [86] 2015 custom -
SSD [89] 2015 VGG-16 3 3 26.8
YOLO-V2 [87] 2016 DarkNet-19 3 21.6
RetinaNet [90] 2017 ResNet-101 3 FPN 39.1
YOLO-V3 [88] 2018 DarkNet-53 3 FPN-like 33
EfficientDet-D7 [93] 2019 EfficientNet-B6 3 3 BiFPN 52.2

In a recent example in Earth observation, Ding et al. [138] presented the application of
an established Faster R-CNN with a FPN enhanced ResNet-101 backbone for object detection on
the DOTA dataset [100] containing 2806 optical, aerial images of very high resolution with 15 object
classes. During their application they demonstrated how to adapt the region proposal step to the
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needs of densely cluttered and arbitrary rotated objects in Earth observation data. Their approach
takes rotation of objects and their specific height width ratio into account by adding an angle offset for
rotation and spatial transformation of the RoI to fit the objects height width ratio. The adjacent RoI
align does extract much more object specific features from this rotated RoIs resulting in state of the art
performance on the DOTA dataset [138]. This study is one example on how to leverage the modularity
of two-stage detectors to adapt the model to the needs of Earth observation data.

Independent of the task, image recognition, image segmentation or object detection, we want to
mention that careful feature selection, an efficient training process and the choice, combination and
possibly weighting of loss functions might have huge impacts on the model performance. The decision
for an appropriate architecture is the first step but in DL more has to be considered to make the model
perform well for the problem and data at hand. However, the next steps in training and fine tuning
the network are more dependent on the combination of the task and data as well as used hardware.
Due to this, we do not discuss them in this introduction to the cornerstones of DL architectures but
want to highlight their importance and refer to open question number 9 “How to train and optimise
the DL system?” (p. 32) by Ball et al. [8] for more details.

4. Popular Deep Learning Frameworks and Earth Observation Datasets

4.1. Deep Learning Frameworks

DL specific frame works are important tools for investigating and using the architectures
introduced in Section 3. Among others, such frameworks should provide cornerstones to create
architectures, input data pipelines to feed labelled data efficiently during the training process and
training schemes themselves to fit a model to the training data, to name some important issues.
Over the years, when architectures were proposed and optimised, DL frameworks were also introduced.
They opened the method for a wider community with increasingly easier applications of DL. Here, the
evolution of the two most popular DL frameworks TensorFlow [12] and Pytorch [13] and their closest
relatives is outlined.

In 2007, Theano developed as Python package for ML eventually became a DL framework.
One strength of Theano was the calculation of gradients by automatic differentiation of designed
networks as well as CPU and GPU processing inspiring today’s leading DL frameworks [139,140]. Its
officially supported development has ended with version 1.0 in November 2017 [141]. For an easier
access to Theano and later TensorFlow and other frameworks, Keras was introduced in May 2015 [142].
It became popular mainly because of its user friendly handling for a wider research community
interested in applying DL. The main author is associated with Google, hence Keras is closely
related to the TensorFlow library published later in November 2015, developed by GoogleBrain [12].
TensorFlow’s handling was criticised for time intensive prototyping mainly due to its session
initialisation. However, in September 2019, this major drawback was fixed by introducing eager
mode in TensorFlow2 which also includes Keras as high level API. With this union, Keras provides
easy access to TensorFlow in a native way but at the same time it is now possible to have full access to
core TensorFlow functionality if necessary without leaving the framework [12,143,144].

The evolution of Pytorch, which is supported by Facebook AI Research (FAIR), starts with Caffe,
which was originally developed by Jia et al. [145] in 2013. Caffe is a DL framework specialising in
CNNs and image processing. In April 2017, Facebook released Caffe2 as an open source derivative
and finally merged it with Pytorch one year later in May 2018 [146]. Pytorch [13] is mainly based on
the Torch library and as the name suggests developed for Python, same as for Keras and TensorFlow.
Both frameworks, Pytorch and TensorFlow, are open source and today’s most popular and widely
used in research and practice [140].

From an Earth observation perspective, data, features and labels are commonly processed and
visualised in a geo information system (GIS). Commercial tools such as ArcGIS as well as open source
solutions such as QGIS provide accessibility to the above mentioned frameworks and therewith
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support the use of DL in a spatial data environment. For ArcGIS, the tools are implemented in the
Image Analyst extension [147] supporting TensorFlow, Keras, Pytorch and CNTK. For QGIS the
established Orfeo ToolBox for ML [148] supports DL via the remote OTBTF (Orfeo ToolBox meets
TensorFlow) module [149], which uses TensorFlow as backend. Another open source project which
leverages QGIS is rastervision [150] which supports TensorFlow, Keras and Pytorch.

4.2. Earth Observation Datasets

Given the tools as architectures and frameworks, the application on Earth observation data is the
next step to bridge the gap between computer vision and applied Earth observation. Since overhead
imaging data differ from so-called natural images, it is questionable if the architectures developed
for the datasets presented above also perform well on Earth observation data. The main differences
between Earth observation data and natural images as they were used in the datasets mentioned are:

• The position of the sensor in Earth observation data has mostly an overhead perspective relative
to the scene, whereas a natural image is captured from a side looking perspective, hence the same
object classes appear differently.

• Data intensively used in computer vision are often three channel RGB images, whereas Earth
observation data often consist of a multichannel image stack with more than three channels,
which has to be considered, especially when transferring models from computer vision to Earth
observation applications.

• Computer vision model input data are often from the same sensor and platform, whereas in Earth
observation both can change and data fusion has to be incorporated into the model.

• Objects which appear in overhead images do not have a general orientation. That means that
objects of the same class commonly appear at 360° rotation, which has to be considered in
training data, architecture or both. Whereas in natural images bottom and top of the image and
therewith also of the pictured objects are often defined more specifically which results in a general
orientation of objects which can be expected for natural images.

• In natural images, objects of interest tend to be in the centre of the image and in high resolution,
whereas in Earth observation data the objects can lie off nadir or at boarders with coarse resolution.

• In Earth observation data, objects or classes tend to be more densely packed and heterogeneous
than in natural images [6,134,151].

Due to these properties of Earth observation data, the tasks of image recognition,
image segmentation and object detection can be considered more challenging. To cope with this
problem, DL models which were fitted to computer vision datasets are fine-tuned on Earth observation
datasets. Those Earth observation datasets are often smaller and therefore it is common practice to
refine models which have already learned how to hierarchically extract features from imagery data
on larger computer vision datasets. This refinement of models, originally trained on other datasets,
is known as transfer learning. Already optimised parameters for a computer vision task are refined to
an Earth observation task which can be seen as transferring learned skills to apply them in a different
context [152–154]. However, even for transfer learning, special Earth observation datasets have to
be created. In Table 5, popular Earth observation datasets are presented and also well performing
architectures, best practice examples or the baseline models of the datasets are associated in the
last column.
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Table 5. Summary of DL datasets, with abbreviations for longer names, grouped by their tasks image recognition (IR), image segmentation (IS) and object detection
(OD). In the column Topic, the abbreviation LULC means Land Use Land Cover classification. All datasets are freely available, with the need to contact the author for
a few of them. The last column shows example applications by briefly describing the architectures.

Dataset Task Topic Platform Sensor Resolution Example Application by Architectures

NWPU RESISC45 [155] IR LULC multiple platforms optical high VGG-16 [155]
EuroSAT [156] IR LULC Sentinel 2 multispectral medium Inception-V1 and ResNet-50 [156]
BigEarthNet [116,117] IR LULC Sentinel 2 multispectral medium ResNet-50 [117]
So2Sat LCZ42 [157] IR local climate zones Sentinel 1+2 mltspectr+SAR medium ResNeXt-29 + CBAM [157]

SpaceNet1 [158] IS building footprints - multispectral low VGG-16 + MNC [158,159]
SpaceNet2 [160] IS building footprints WorldView3 multispectral high U-Net (modified: inputdepth = 13) [160]
SpaceNet3 [161] IS road network WorldView3 multispectral high ResNet-34 + U-Net [161]
SpaceNet4 [162] IS building footprints WorldView2 multispectral high SE-ResNeXt-50/101 + U-Net [162]
SpaceNet5 [163] IS road network WorldView3 multispectral high ResNet-50 + U-Net [164], SE-ResNeXt-50 + U-Net [163]
SpaceNet6 [165,166] IS building footprints WordView2 + Capella36 mltspectr + SAR high VGG-16 + U-Net [166]
ISPRS 2D Sem. Lab. [126] IS multiple classes plane multispectral very high U-Net, DeepLabV3+, PSPNet, LANet (patch attention

module) [167], MobileNetV2(with atrous conv) + Dual
path encoder + SE modules [168]

DeepGlobe-Road [169] IS road network WorldView3 multispectral high D-LinkNet (ResNet-34 + U-Net with atrous decoder) [170],
ResNet-34 + U-Net [171]

DeepGlobe-Building [169] IS building footprints WorldView3 multispectral high ResNet-18 + Multitask U-Net [172], WideResNet-38 +
U-Net [173]

DeepGlobe-LCC [169] IS LULC WorldView3 multispectral high Dense Fusion Classmate Network (DenseNet + FCN
varaint) [174], Deep Aggregation Net (ResNet +
DeepLabV3 + variant) [175]

WHU Building [176] IS building footprints multiple platforms optical high VGG-16 + ASPP + FCN [177]
INRIA [178] IS building footprints multiple platforms multispectral very high ResNet-50 + SegNet variant [179], U-Net variant [180]
DLR-SkyScapes [181] IS multiple classes helicopter optical very high SkyScapesNet (custom design [181])

NWPU VHR-10 [182] OD multiple classes airborne platforms optical very high DarkNet + YOLO (modified: VaryBlock) [183],
ResNet-101 + FPN (modified: Densely connected
top-down path) + fully convolutional detector head [184]

COWC [185] OD vehicle detection airborne platforms optical very high VGG16 + SSD + correlation alignment domain
adaptation [186]

CARPK [187] OD vehicle detection drone optical very high VGG16 + LPN (Layout Proposal Net) [187]
DLR 3K Munich [188] OD vehicle detection airborne platform optical very high ShuffleDet (ShuffleNet + modified SSD) [189]
DOTA [100] OD multiple classes airborne platforms optical very high to high ResNet-50+improved Cascade R2CNN see leader board

of [100], ResNet-101/FPN + Fater R-CNN OBB + RoI
transformer [138]

DIOR [24] OD multiple classes multiple platforms optical heigh to medium ResNet-101 + PAnet and ResNet-101 + RetinaNet [24]
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When looking at the tasks in combination with platforms, sensors and resolution, a pattern can
be observed that spaceborne platforms with multispectral sensors which provide lower resolution
are used for image recognition of whole image chips, so-called scene labelling. On the other hand,
for image segmentation and object detection sensors with a higher resolution are used. Examples
are spaceborne systems, mainly WorldView, and airborne platforms with sensors of very high spatial
resolution. This underlines the necessity of richer feature information for image segmentation and
object detection tasks than for image recognition. Since sensors with higher resolution provide
this information depth, optical and multispectral sensors are dominating the selection for image
segmentation and object detection tasks presented in the overview.

To cope with the special properties of Earth observation data, the best performing architectures
are mostly modified versions of the architectures discussed in Section 3 or completely new designs
made especially for the requirements of Earth observation data. For the selected studies here, the
ResNet Family is the most widely used backbone architecture, within which the layer depth is rather
shallow between 18 and 101 compared to the 152 layers commonly chosen in the computer vision
related designs.

In image segmentation, encoder–decoder models dominate, often due to their complex but
modular design which can be adapted to the properties of Earth observation data. The same is true for
object detectors. More complex two-stage detector models are used more often than one-stage detectors.
However, what is more obvious when reviewing the evolution of Earth observation datasets and
models for object detection is their ability to deal with rotated bounding boxes. This becomes necessary
due to the rotational invariance of objects in Earth observation data, which when not considered can
easily lead to a large amount of false negatives when objects are densely accumulated [100,138].

5. Future Research

The advances in DL models for image recognition, image segmentation and object detection
since 2012 brought a better general understanding of hierarchical feature extraction from imaging
data. The major findings are: the use of feature pyramid networks, atrous convolutions, image context
exploitation and using features from different stages in the network. Overall, techniques focus on
extraction and combination of multiscale features. With this increasing understanding, features can be
used more effectively and models became better in general. However, with the recent emergence of
NAS-induced network designs, architectures are now able to reach better or equal performance by
using fewer parameters. This is partly due to the fact that they are now specifically trained to handle a
specific task and even more important, on a specific type of dataset. Since NAS uses the reward signal
of how designs perform on tasks and datasets to optimise the architecture, it can be argued that those
architectures are no longer that easily transferable to other domains. Reflecting this development from
an Earth observation perspective, the new advances in leading architectures which come from the
computer vision domain might not directly match the properties of Earth observation data due to
their now more specific design for an underlying computer vision dataset. To take advantage of NAS,
it should be used for optimising Earth observation specific architectures or modules, too. Since NAS is
highly computationally expensive, it remains questionable how fast and widely this technique will
enter the Earth observation community compared to the established hand crafted designs.

Beside architectures, datasets are highly important for pushing DL itself and also in specific
domains. The great effort to create a DL dataset, and therefore the lack of datasets for specific tasks,
remains a major concern in Earth observation research. Most importantly, the diversity of sensors,
labelled classes and topics, as well as the size of datasets should be increased. With increasing datasets
and dataset size insights about the properties of Earth observation data with respect to DL models
will be made. Using these insights, DL models can be better optimised for the properties of the data
of interest [8] instead of solely relying on the findings made in computer vision, which uses different
kinds of data. The example of U-Net [67], proposed in medical imagery analysis shows the impact that
customised architectures can have when designed for specific data. This was also presented recently in
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Earth observation by Azimi et al. [181] introducing the SkyScapes dataset and the custom designed
SkyScapesNet which combines cornerstones of CNN architectures to create a model that matches the
specific properties of Earth observation data. On the other hand, focus should also be lain on training
and designing DL models with small datasets [8], for example with the established use of transfer
learning and data augmentation, as well as weakly supervised learning [57,190–192].

The observation of shallower ResNet Family backbone networks in well performing deep learning
models for Earth observation compared to computer vision tasks, points to the question of the optimal
depth of network designs balancing accuracy and overfitting. Simply using deeper models to gain
higher scores will eventually lead to overfitted models [6]. Hence, the relative shallow depth of the
well performing architectures presented in Table 5 encourages to have a closer look at optimal network
depth. By building architectures with as few parameters as possible, more generalised models are
produced. That would contribute to better transferability of models, which is another open issue
for DL.

Because of the trends in DL architectures and growing dataset diversity, we argue that
a thorough knowledge of the cornerstones of DL is important to assess the vast amount of models
in order to find the designs that match restrictions in data, hardware and time by balancing
performance trade-offs [131]. Furthermore, a well-founded understanding of DL as Earth observation
researcher is highly necessary when it comes to incorporating knowledge of physical and ecological
relationships into DL models [7,9]—an ability that will make the difference between purely data
driven Earth observation with a tendency to remain a black box and more understandable models,
combining data science and geoscientific expert knowledge.

6. Conclusions

The emergence of deep learning (DL) led to the adaptation of models developed in computer
vision for applications in Earth observation and provided novel possibilities to analyse remotely-sensed
data. Nevertheless, the entry barriers remain high for Earth observation scientists who want to use
DL models. To lower them, this review provided a fundamental introduction to the most popular DL
model for image processing: the convolutional neural networks (CNNs). By discussing the evolution
of CNNs in computer vision, we assigned main characteristics to specific tasks. For image recognition,
they are:

• A so-called convolutional backbone extracts features from input data in a hierarchical manner by
stacked convolutional operations. The repeated convolutions with non-linear activation increase
the semantic meaning of features while going deeper into the model [2,3].

• A stack of fully connected artificial neurons uses the extracted features to predict the probability
of the class.

• Such deep models need specific normalisation schemes such as batch normalisation to make
supervised training of deep networks possible and faster [41].

• Residual connections further alleviates the training of increasingly deep architectures [43].
• To emphasise more complex networks, design elements such as bottleneck layers reduce

intermediate feature depth [40] and factorisation of convolutional operations reduce the number
of parameters [42].

• The recent findings in neural architecture search (NAS) bring together complex network structures
and efficient usage of parameters. With NAS, architectures are searched for by an artificial
controller. This controller tries to maximise specific metrics of the networks it creates iteratively
and therewith finds highly efficient architectures [48,52].

Improvements in image segmentation and object detection mainly focus on the so-called heads
of the architectures, which use the backbones developed in image recognition. The output of image
segmentation, a segmentation mask where each pixel is assigned to one class, has the same resolution
as the input image. Since the feature extraction first downscales the input image, image segmentation
models have to recover input resolution. Those opposed operations lead to a high resolution-feature
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depth trade-off. The following properties of CNNs for image segmentation were found to effectively
handle this problem:

• Encoder–decoder models, which first encode information by extracting features and use the
downscaled features maps from different stages of the encoder to recover input resolution in the
decoder, are the most popular designs, namely U-Net [67] and DeepLabV3+ [60].

• So-called atrous convolutions [58], which maintain resolution while extracting features, are widely
used to cope with the high resolution-feature depth trade-off.

• The combination of feature maps of different scales with context information from image level
was found to contribute effectively to pixel wise classification [59].

In object detection, an additional bounding box has to be provided which presents precise
localisation information. Thereby, objects of different size and density should be equally well detected.
This leads to problems which relate to multiscale feature extraction. The most effective modules
invented in respect to object detection are:

• Two stage object detectors show both good performance and adaptability. The most popular
detectors are the Faster R-CNN [76] design and its successors. In the first stage, they propose class
agnostic regions of interest (RoIs) for objects. During the second stage those RoIs are classified
and the bounding box is regressed to tight object boundaries.

• For multiscale processing, the feature pyramid network (FPN) [77] enhances the convolutional
backbone by merging high semantic features with precise localisation information.

• Cascading classifiers and bounding box regression suppress noisy detections by iteratively
refining RoIs [79].

Atrous convolution, image context aware designs and FPN show how important multiscale feature
exploitation is for image segmentation and object detection. However, these findings can be applied
regardless of the task for which they were originally developed. This leads to fruitful development
but is also the reason for the high entry barriers, since interrelations of different approaches have to
do be considered. To narrow the gap between theoretical concepts and the application of DL to Earth
observation research, an overview of Earth observation related datasets is given and recent trends are
discussed from an Earth observation perspective. The major findings are:

• Building models with NAS might lead to overly optimised architectures for specific tasks and
datasets. Therefore, it is questionable if such models which are recently successful in computer
vision tasks perform equally well in Earth observation, as was the case with hand crafted designs.
However, NAS can also be used to find Earth observation specific designs.

• The number of DL datasets for Earth observation applications is still small in relation to possible
applications and sensor diversity. Since datasets are highly important to push the understanding
of the interaction between DL models and specific types of data, an increase in datasets has huge
potential for further advances for DL in Earth observation.

• Beside more datasets, weakly supervised learning provides encouraging results as an alternative
to expensive dataset creation. It is especially important for proof of concepts studies and
experimental research.

While reflecting on the differences and commonalities of data and used architectures in computer
vision and Earth observation, we state that the advances in computer vision have to be adapted
to match Earth observation applications. Therefore, a thorough understanding of DL concepts is
crucial for assessing and adapting models. With the provided extensive introduction to CNNs,
we created a foundation to closely review the application of DL in the field of Earth observation
research. In Part II of this survey, we will use this basis to further discuss the recent trends of CNNs
doing image segmentation and object detection by reviewing published findings in leading Earth
observation journals.



Remote Sens. 2020, 12, 1667 34 of 43

Author Contributions: Conceptualisation, T.H. and C.K.; writing—original draft preparation, T.H.;
writing—review and editing, T.H. and C.K.; visualisation, T.H.; and supervision, C.K. All authors have read and
agree to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We would such as to thank David Marshall for final proofreading.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bengio, Y. Deep Learning of Representations: Looking Forward. In Statistical Language and Speech Processing;
Dediu, A.H., Martin-Vide, C., Mitkov, R., Truthe, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 1–37.

2. LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef]
3. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25, pp. 1097–1105.

4. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep learning for computer vision: A brief
review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

5. Shrestha, A.; Mahmood, A. Review of Deep Learning Algorithms and Architectures. IEEE Access 2019,
7, 53040–53065. [CrossRef]

6. Zhang, L.; Zhang, L.; Du, B. Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of
the Art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40. [CrossRef]

7. Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing:
A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [CrossRef]

8. Ball, J.E.; Anderson, D.T.; Chan, C.S., Sr. Comprehensive survey of deep learning in remote sensing: Theories,
tools, and challenges for the community. J. Appl. Remote Sens. 2017, 11, 1–54. [CrossRef]

9. Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning
and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [CrossRef]

10. Google Scholar. Top Publication. Available online: https://scholar.google.com/citations?view_op=top_
venues&hl=en (accessed on 1 April 2020).

11. Acemap. NeurIPS Affiliation Statistics. Available online: https://archive.acemap.info/conference-statistics/
affiliation-rank?name=NIPS&year=2018&type=affiliation#table-1 (accessed on 1 April 2020).

12. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.;
Devin, M.; et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available online:
https://www.tensorflow.org/ (accessed on 1 April 2020).

13. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.;
Antiga, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In Advances in
Neural Information Processing Systems; Wallach, H., Larochelle, H., Beygelzimer, A., Alché-Buc, F., Fox, E.,
Garnett, R., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2019; Volume 32, pp. 8024–8035.

14. Bengio, Y.; Courville, A.; Vincent, P. Representation learning: A review and new perspectives. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1798–1828. [CrossRef]

15. Dahl, G.E.; Ranzato, M.; Mohamed, A.R.; Hinton, G. Phone Recognition with the Mean-Covariance
Restricted Boltzmann Machine. In Proceedings of the 23rd International Conference on Neural Information
Processing Systems—Volume 1; Curran Associates Inc.: Red Hook, NY, USA, 2010; pp. 469–477.

16. Dahl, G.E.; Yu, D.; Deng, L.; Acero, A. Context-Dependent Pre-Trained Deep Neural Networks for
Large-Vocabulary Speech Recognition. Trans. Audio Speech and Lang. Proc. 2012, 20, 30–42. [CrossRef]

17. Hinton, G.; Deng, L.; Yu, D.; Dahl, G.E.; Mohamed, A.; Jaitly, N.; Senior, A.; Vanhoucke, V.; Nguyen, P.;
Sainath, T.N.; et al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views
of Four Research Groups. IEEE Signal Process. Mag. 2012, 29, 82–97. [CrossRef]

18. Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006,
313, 504–507. [CrossRef] [PubMed]

http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1155/2018/7068349
http://dx.doi.org/10.1109/ACCESS.2019.2912200
http://dx.doi.org/10.1109/MGRS.2016.2540798
http://dx.doi.org/10.1109/MGRS.2017.2762307
http://dx.doi.org/10.1117/1.JRS.11.042609
http://dx.doi.org/10.1038/s41586-019-0912-1
https://scholar.google.com/citations?view_op=top_venues&hl=en
https://scholar.google.com/citations?view_op=top_venues&hl=en
https://archive.acemap.info/conference-statistics/affiliation-rank?name=NIPS&year=2018&type=affiliation#table-1
https://archive.acemap.info/conference-statistics/affiliation-rank?name=NIPS&year=2018&type=affiliation#table-1
https://www.tensorflow.org/
http://dx.doi.org/10.1109/TPAMI.2013.50
http://dx.doi.org/10.1109/TASL.2011.2134090
http://dx.doi.org/10.1109/MSP.2012.2205597
http://dx.doi.org/10.1126/science.1127647
http://www.ncbi.nlm.nih.gov/pubmed/16873662


Remote Sens. 2020, 12, 1667 35 of 43

19. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. In Advances
in Neural Information Processing Systems; Schölkopf, B., Platt, J., Hoffman, T., Eds.; MIT Press: Cambridge,
MA, USA, 2007; Volume 19, pp. 153–160.

20. Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.

21. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;
Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vision 2015, 115,
211–252. [CrossRef]

22. Tsagkatakis, G.; Aidini, A.; Fotiadou, K.; Giannopoulos, M.; Pentari, A.; Tsakalides, P. Survey of
Deep-Learning Approaches for Remote Sensing Observation Enhancement. Sensors 2019, 19, 3929. [CrossRef]

23. Ma, L.; Liu, Y.; Zhang, X.; Ye, Y.; Yin, G.; Johnson, B.A. Deep learning in remote sensing applications: A
meta-analysis and review. ISPRS J. Photogramm. Remote Sens. 2019, 152, 166–177. [CrossRef]

24. Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey
and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [CrossRef]

25. Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]
26. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533–536. [CrossRef]
27. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.

Proc. IEEE 1998, 86, 2278–2324. [CrossRef]
28. Cho, K.; Raiko, T.; Ilin, A. Enhanced Gradient for Training Restricted Boltzmann Machines. Neural Comput.

2013, 25, 805–831. [CrossRef]
29. Cho, K. Foundations and Advances in Deep Learning. Ph.D. Thesis, Aalto University, Espoo, Finland, 2014.
30. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation

Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
31. Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In ICML; Fürnkranz, J.,

Joachims, T., Eds.; Omnipress: Madison, WI, USA, 2010; pp. 807–814.
32. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

33. Glorot, X.; Bordes, A.; Bengio, Y. Deep sparse rectifier neural networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, FL, USA, 11–13 April 2011;
pp. 315–323.

34. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation.
In Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Volume 1: Foundations;
Rumelhart, D.E., Mcclelland, J.L., Eds.; MIT Press: Cambridge, MA, USA, 1986; pp. 318–362.

35. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
[PubMed]

36. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative Adversarial Nets. In Advances in Neural Information Processing Systems; Ghahramani, Z.,
Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY,
USA, 2014; Volume 27, pp. 2672–2680.

37. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database.
In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA,
20–25 June 2009; pp. 248–255.

38. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision–ECCV
2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T., Eds.; Springer International Publishing: Cham,
Switzerland, 2014; pp. 818–833.

39. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2014, arXiv:1409.1556.

40. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [CrossRef]

http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.3390/s19183929
http://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
http://dx.doi.org/10.1016/j.isprsjprs.2019.11.023
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/NECO_a_00397
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276
http://dx.doi.org/10.1109/CVPR.2015.7298594


Remote Sens. 2020, 12, 1667 36 of 43

41. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. Proc. Mach. Learn. Res. 2015, 37, 448–456.

42. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer
Vision. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 2818–2826. [CrossRef]

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778. [CrossRef]

44. Xie, S.; Girshick, R.; Dollár, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural
Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5987–5995. [CrossRef]

45. Chollet, F. Xception: Deep Learning with Depthwise Separable Convolutions. In Proceedings of the 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 1800–1807. [CrossRef]

46. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 2261–2269.

47. Hu, J.; Shen, L.; Sun, G. Squeeze-and-Excitation Networks. In Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141.
[CrossRef]

48. Zoph, B.; Le, Q.V. Neural Architecture Search with Reinforcement Learning. arXiv 2016, arXiv:1611.01578.
49. Zoph, B.; Vasudevan, V.; Shlens, J.; Le, Q.V. Learning Transferable Architectures for Scalable Image

Recognition. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 8697–8710. [CrossRef]

50. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H.
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017,
arXiv:1704.04861.

51. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture Search
for Mobile. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 2815–2823.

52. Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. Proc. Mach.
Learn. Res. 2019, 97, 6105–6114.

53. Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes
(VOC) Challenge. Int. J. Comput. Vision 2010, 88, 303–338. [CrossRef]

54. Everingham, M.; Eslami, S.M.; Gool, L.; Williams, C.K.; Winn, J.; Zisserman, A. The Pascal Visual Object
Classes Challenge: A Retrospective. Int. J. Comput. Vision 2015, 111, 98–136. [CrossRef]

55. Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 39, 640–651.

56. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Semantic Image Segmentation with Deep
Convolutional Nets and Fully Connected CRFs. arXiv 2014, arXiv:1412.7062.

57. Papandreou, G.; Chen, L.C.; Murphy, K.; Yuille, A.L. Weakly- and Semi-Supervised Learning of a DCNN for
Semantic Image Segmentation. arXiv 2015, arXiv:1502.02734.

58. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation
with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 40, 834–848. [CrossRef]

59. Chen, L.C.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking Atrous Convolution for Semantic Image
Segmentation. arXiv 2017, arXiv:1706.05587.

60. Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable
Convolution for Semantic Image Segmentation. In Computer Vision–ECCV 2018; Ferrari, V., Hebert, M.,
Sminchisescu, C.; Weiss, Y., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 833–851.

61. Krähenbühl, P.; Koltun, V. Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials.
In Advances in Neural Information Processing Systems; Shawe-Taylor, J., Zemel, R.S., Bartlett, P.L., Pereira, F.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 24, pp. 109–117.

http://dx.doi.org/10.1109/CVPR.2016.308
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1109/CVPR.2017.634
http://dx.doi.org/10.1109/CVPR.2017.195
http://dx.doi.org/10.1109/CVPR.2018.00745
http://dx.doi.org/10.1109/CVPR.2018.00907
http://dx.doi.org/10.1007/s11263-009-0275-4
http://dx.doi.org/10.1007/s11263-014-0733-5
http://dx.doi.org/10.1109/TPAMI.2017.2699184


Remote Sens. 2020, 12, 1667 37 of 43

62. Chen, L.C.; Collins, M.; Zhu, Y.; Papandreou, G.; Zoph, B.; Schroff, F.; Adam, H.; Shlens, J. Searching for
Efficient Multi-Scale Architectures for Dense Image Prediction. In Advances in Neural Information Processing
Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31, pp. 8699–8710.

63. Liu, C.; Chen, L.; Schroff, F.; Adam, H.; Hua, W.; Yuille, A.L.; Fei-Fei, L. Auto-DeepLab: Hierarchical Neural
Architecture Search for Semantic Image Segmentation. In Proceedings of the 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 82–92.

64. Noh, H.; Hong, S.; Han, B. Learning Deconvolution Network for Semantic Segmentation. In Proceedings of
the 2015 IEEE International Conference on Computer Vision (ICCV), Santiago, Chile, 7–13 December 2015;
pp. 1520–1528. [CrossRef]

65. Liu, W.; Rabinovich, A.; Berg, A.C. ParseNet: Looking Wider to See Better. arXiv 2015, arXiv:1506.04579.
66. Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017;
pp. 6230–6239.

67. Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation.
In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015; Navab, N., Hornegger, J.,
Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241.

68. Jégou, S.; Drozdzal, M.; Vázquez, D.; Romero, A.; Bengio, Y. The One Hundred Layers Tiramisu: Fully
Convolutional DenseNets for Semantic Segmentation. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 1175–1183.

69. Lin, G.; Milan, A.; Shen, C.; Reid, I.D. RefineNet: Multi-path Refinement Networks for High-Resolution
Semantic Segmentation. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5168–5177.

70. Sun, K.; Xiao, B.; Liu, D.; Wang, J. Deep High-Resolution Representation Learning for Human Pose
Estimation. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 5686–5696.

71. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-Resolution
Representations for Labeling Pixels and Regions. arXiv 2019, arXiv:1904.04514.

72. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO:
Common Objects in Context. In Computer Vision–ECCV 2014; Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T.,
Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 740–755.

73. Girshick, R.B.; Donahue, J.; Darrell, T.; Malik, J. Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern
Recognition, Columbus, OH, USA, 23–28 June 2014; pp. 580–587.

74. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [CrossRef]

75. Girshick, R.B. Fast R-CNN. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015; pp. 1440–1448.

76. Ren, S.; He, K.; Girshick, R.B.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 39, 1137–1149. [CrossRef]

77. Lin, T.Y.; Dollár, P.; Girshick, R.B.; He, K.; Hariharan, B.; Belongie, S.J. Feature Pyramid Networks for Object
Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 936–944.

78. Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using
Deep Learning: A Survey. arXiv 2020, arXiv:2001.05566.

79. Cai, Z.; Vasconcelos, N. Cascade R-CNN: Delving Into High Quality Object Detection. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 6154–6162.

80. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R.B. Mask R-CNN. In Proceedings of the 2017 IEEE International
Conference on Computer Vision (ICCV), Venicnisee, Italy, 22–29 October 2017; pp. 2980–2988.

81. Liu, Y.; Wang, Y.; Wang, S.; Liang, T.; Zhao, Q.; Tang, Z.; Ling, H. CBNet: A Novel Composite Backbone
Network Architecture for Object Detection. arXiv 2019, arXiv:1909.03625.

http://dx.doi.org/10.1109/ICCV.2015.178
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2016.2577031


Remote Sens. 2020, 12, 1667 38 of 43

82. Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path Aggregation Network for Instance Segmentation. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 8759–8768.

83. Singh, B.; Davis, L.S. An Analysis of Scale Invariance in Object Detection—SNIP. In Proceedings of
the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 3578–3587.

84. Singh, B.; Najibi, M.; Davis, L.S. SNIPER: Efficient multi-scale training. In Advances in Neural Information
Processing Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.;
Curran Associates, Inc.: Red Hook, NY, USA, 2018; Volume 31, pp. 9310–9320.

85. Li, Y.; Chen, Y.; Wang, N.; Zhang, Z. Scale-Aware Trident Networks for Object Detection. In Proceedings
of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA,
USA, 16–20 June 2019; pp. 6053–6062.

86. Redmon, J.; Divvala, S.K.; Girshick, R.B.; Farhadi, A. You Only Look Once: Unified, Real-Time Object
Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

87. Redmon, J.; Farhadi, A. YOLO9000: Better, Faster, Stronger. In Proceedings of the 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525.

88. Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. arXiv 2018, arXiv:1804.02767.
89. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox

Detector. In Computer Vision – ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham,
Switzerland, 2016; pp. 21–37.

90. Lin, T.Y.; Goyal, P.; Girshick, R.B.; He, K.; Dollár, P. Focal Loss for Dense Object Detection. In Proceedings
of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017;
pp. 2999–3007.

91. Zhang, S.; Wen, L.; Bian, X.; Lei, Z.; Li, S.Z. Single-Shot Refinement Neural Network for Object Detection.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 4203–4212.

92. Ghiasi, G.; Lin, T.; Le, Q.V. NAS-FPN: Learning Scalable Feature Pyramid Architecture for Object Detection.
In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Long Beach, CA, USA, 16–20 June 2019; pp. 7029–7038.

93. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. arXiv 2019, arXiv:1911.09070.
94. LeCun, Y.; Boser, B.; Denker, J.S.; Howard, R.E.; Habbard, W.; Jackel, L.D.; Henderson, D. Handwritten Digit

Recognition with a Back-Propagation Network. In Advances in Neural Information Processing Systems; Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 1990; Volume 2, pp. 396–404.

95. Ranzato, M.; Huang, F.J.; Boureau, Y.; LeCun, Y. Unsupervised Learning of Invariant Feature Hierarchies
with Applications to Object Recognition. In Proceedings of the 2007 IEEE Conference on Computer Vision
and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

96. Cadieu, C.F.; Hong, H.; Yamins, D.L.K.; Pinto, N.; Ardila, D.; Solomon, E.A.; Majaj, N.J.; DiCarlo, J.J.
Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition.
PLOS Comput. Biol. 2014, 10, 1–18. [CrossRef]

97. Hubel, D.H.; Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat’s
visual cortex. J. Physiol. 1962, 160, 106–154. [CrossRef]

98. Fukushima, K.; Miyake, S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations
and shifts in position. Pattern Recognit. 1982, 15, 455–469. [CrossRef]

99. Felleman, D.J.; Van Essen, D.C. Distributed Hierarchical Processing in the Primate Cerebral Cortex. Cerebral
Cortex 1991, 1, 1–47. [CrossRef]

100. Xia, G.S.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. DOTA: A Large-Scale
Dataset for Object Detection in Aerial Images. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 3974–3983.

101. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

http://dx.doi.org/10.1371/journal.pcbi.1003963
http://dx.doi.org/10.1113/jphysiol.1962.sp006837
http://dx.doi.org/10.1016/0031-3203(82)90024-3
http://dx.doi.org/10.1093/cercor/1.1.1


Remote Sens. 2020, 12, 1667 39 of 43

102. LeCun, Y.; Bottou, L.; Orr, G.; Müller, K. Efficient BackProp. In Neural Networks: Tricks of the Trade; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; Chapter 2, p. 546. [CrossRef]

103. Sutskever, I.; Martens, J.; Dahl, G.; Hinton, G. On the Importance of Initialization and Momentum in
Deep Learning. In Proceedings of the 30th International Conference on International Conference on Machine
Learning—Volume 28; Microtome Publishing: Brookline, MA, USA, 2013; pp. III-1139–III-1147.

104. Saxe, A.M.; McClelland, J.L.; Ganguli, S. Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. arXiv 2013, arXiv:1312.6120.

105. Bengio, Y.; Simard, P.; Frasconi, P. Learning long-term dependencies with gradient descent is difficult.
IEEE Trans. Neural Netw. 1994, 5, 157–166. [CrossRef]

106. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network
for Mobile Devices. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 6848–6856.

107. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A. Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; pp. 4278–4284.

108. Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. MobileNetV2: Inverted Residuals and Linear
Bottlenecks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [CrossRef]

109. Sandler, M. MobileNet V2 ImageNet Checkpoints. Available online: https://github.com/tensorflow/
models/blob/master/research/slim/nets/mobilenet/README.md (accessed on 1 April 2020).

110. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Commun. ACM 2017, 60, 84–90. [CrossRef]

111. Krizhevsky, A. Learning Multiple Layers of Features from Tiny Images. Available online: https://www.cs.
toronto.edu/kriz/learning-features-2009-TR.pdf (accessed on 1 April 2020).

112. Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.J.; Fei-Fei, L.; Yuille, A.; Huang, J.; Murphy, K.
Progressive Neural Architecture Search. In Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, 18–14 September 2018; pp. 19–35.

113. Real, E.; Aggarwal, A.; Huang, Y.; Le, Q.V. Regularized evolution for image classifier architecture search.
In Proceedings of the AAAI Conference on Artificial Intelligence, Honululu, HI, USA, 27 January–1 February
2019; Volume 33, pp. 4780–4789.

114. Howard, A.; Sandler, M.; Chu, G.; Chen, L.C.; Chen, B.; Tan, M.; Wang, W.; Zhu, Y.; Pang, R.; Vasudevan, V.;
et al. Searching for MobileNetV3. arXiv 2019, arXiv:1905.02244.

115. Zhang, X.; Li, Z.; Loy, C.C.; Lin, D. PolyNet: A Pursuit of Structural Diversity in Very Deep Networks.
In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 3900–3908. [CrossRef]

116. Sumbul, G.; Charfuelan, M.; Demir, B.; Markl, V. BigEarthNet: A Large-Scale Benchmark Archive For Remote
Sensing Image Understanding. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5901–5904, doi:10.1109/IGARSS.2019.8900532.
[CrossRef]

117. Sumbul, G.; Kang, J.; Kreuziger, T.; Marcelino, F.; Costa, H.; Benevides, P.; Caetano, M.; Demir, B.
BigEarthNet Dataset with A New Class-Nomenclature for Remote Sensing Image Understanding. arXiv
2020, arXiv:2001.06372.

118. Cordts, M.; Omran, M.; Ramos, S.; Scharwächter, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.;
Schiele, B. The Cityscapes Dataset. In Proceedings of the CVPR Workshop on the Future of Datasets in
Vision, Boston, MA, USA, 7–12 June 2015; Volume 2.

119. Cordts, M.; Omran, M.; Ramos, S.; Rehfeld, T.; Enzweiler, M.; Benenson, R.; Franke, U.; Roth, S.; Schiele, B.
The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 3213–3223.

120. Garcia-Garcia, A.; Orts-Escolano, S.; Oprea, S.; Villena-Martinez, V.; Martinez-Gonzalez, P.;
Garcia-Rodriguez, J. A survey on deep learning techniques for image and video semantic segmentation.
Appl. Soft Comput. 2018, 70, 41–65. [CrossRef]

http://dx.doi.org/10.1007/3-540-49430-8_2
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/CVPR.2018.00474
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/README.md
http://dx.doi.org/10.1145/3065386
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf
http://dx.doi.org/10.1109/CVPR.2017.415
http://dx.doi.org/10.1109/IGARSS.2019.8900532
http://dx.doi.org/10.1016/j.asoc.2018.05.018


Remote Sens. 2020, 12, 1667 40 of 43

121. Holschneider, M.; Kronland-Martinet, R.; Morlet, J.; Tchamitchian, P. A Real-Time Algorithm for
Signal Analysis with the Help of the Wavelet Transform. In Wavelets; Combes, J.M., Grossmann, A.,
Tchamitchian, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1990; pp. 286–297.

122. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [CrossRef]

123. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth
database. Pattern Recognit. Lett. 2009, 30, 88–97. [CrossRef]

124. Zhang, Z.; Zhang, X.; Peng, C.; Xue, X.; Sun, J. Exfuse: Enhancing feature fusion for semantic segmentation.
In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 18–14 September
2018; pp. 269–284.

125. Zhou, Z.; Rahman Siddiquee, M.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical
image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical
Decision Support—4th International Workshop, DLMIA 2018 and 8th International Workshop, ML-CDS 2018
Held in Conjunction with MICCAI 2018; Maier-Hein, L., Syeda-Mahmood, T., Taylor, Z., Lu, Z., Stoyanov, D.,
Madabhushi, A., Tavares, J., Nascimento, J., Moradi, M., Martel, A., et al., Eds.; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2018; pp. 3–11. [CrossRef]

126. ISPRS. 2D Semantic Labeling Challenge. Available online: http://www2.isprs.org/commissions/comm3/
wg4/semantic-labeling.html (accessed on 1 April 2020).

127. Wang, Y.; Liang, B.; Ding, M.; Li, J. Dense Semantic Labeling with Atrous Spatial Pyramid Pooling and
Decoder for High-Resolution Remote Sensing Imagery. Remote Sens. 2019, 11, 20. [CrossRef]

128. Common Objects in COntext. Detection Evaluation. Available online: http://cocodataset.org/#detection-
eval (accessed on 1 April 2020).

129. Common Objects in COntext. MS-COCO Github Repository: Cocoapi. Available online: https://github.
com/cocodataset/cocoapi (accessed on 1 April 2020).

130. Liu, L.; Ouyang, W.; Wang, X.; Fieguth, P.W.; Chen, J.; Liu, X.; Pietikäinen, M. Deep Learning for Generic
Object Detection: A Survey. Int. J. Comput. Vis. 2018, 128, 261–318. [CrossRef]

131. Huang, J.; Rathod, V.; Sun, C.; Zhu, M.; Balan, A.K.; Fathi, A.; Fischer, I.C.; Wojna, Z.; Song, Y.;
Guadarrama, S.; et al. Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. In
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu,
HI, USA, 21–26 July 2017; pp. 3296–3297.

132. Wu, X.; Sahoo, D.; Hoi, S.C. Recent advances in deep learning for object detection. Neurocomputing 2020.
[CrossRef]

133. Zhao, Z.; Zheng, P.; Xu, S.; Wu, X. Object Detection With Deep Learning: A Review. IEEE Trans. Neural Netw.
Learn. Syst. 2019, 30, 3212–3232. [CrossRef]

134. Jiao, L.; Zhang, F.; Liu, F.; Yang, S.; Li, L.; Feng, Z.; Qu, R. A Survey of Deep Learning-Based Object Detection.
IEEE Access 2019, 7, 128837–128868. [CrossRef]

135. Uijlings, J.; van de Sande, K.; Gevers, T.; Smeulders, A. Selective Search for Object Recognition. Int. J.
Comput. Vis. 2013, 104, 154–171. [CrossRef]

136. Girshick, R.; Radosavovic, I.; Gkioxari, G.; Dollár, P.; He, K. Detectron. Available online: https://github.
com/facebookresearch/detectron (accessed on 1 April 2020).

137. Cubuk, E.D.; Zoph, B.; Mané, D.; Vasudevan, V.; Le, Q.V. AutoAugment: Learning Augmentation Strategies
From Data. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 113–123.

138. Ding, J.; Xue, N.; Long, Y.; Xia, G.; Lu, Q. Learning RoI Transformer for Oriented Object Detection in Aerial
Images. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Long Beach, CA, USA, 16–20 June 2019; pp. 2844–2853.

139. Theano Development Team. Theano: A Python framework for fast computation of mathematical expressions.
arXiv 2016, arXiv:1605.02688.

140. Nguyen, G.; Dlugolinsky, S.; Bobák, M.; Tran, V.; López García, A.; Heredia, I.; Malík, P.; Hluch, L.
Machine Learning and Deep Learning Frameworks and Libraries for Large-Scale Data Mining: A Survey.
Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]

141. Theano Development Team. Theano: News. Available online: http://deeplearning.net/software/theano/
(accessed on 1 April 2020).

http://dx.doi.org/10.1109/TPAMI.2016.2644615
http://dx.doi.org/10.1016/j.patrec.2008.04.005
http://dx.doi.org/10.1007/978-3-030-00889-5_1
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html
http://dx.doi.org/10.3390/rs11010020
http://cocodataset.org/#detection-eval
http://cocodataset.org/#detection-eval
https://github.com/cocodataset/cocoapi
https://github.com/cocodataset/cocoapi
http://dx.doi.org/10.1007/s11263-019-01247-4
http://dx.doi.org/10.1016/j.neucom.2020.01.085
http://dx.doi.org/10.1109/TNNLS.2018.2876865
http://dx.doi.org/10.1109/ACCESS.2019.2939201
http://dx.doi.org/10.1007/s11263-013-0620-5
https://github.com/facebookresearch/detectron
https://github.com/facebookresearch/detectron
http://dx.doi.org/10.1007/s10462-018-09679-z
http://deeplearning.net/software/theano/


Remote Sens. 2020, 12, 1667 41 of 43

142. Chollet, F. Keras. Available online: https://keras.io (accessed on 1 April 2020).
143. TensorFlow Development Team. TensorFlow Github Repository. Available online: https://github.com/

tensorflow/tensorflow (accessed on 1 April 2020).
144. TensorFlow Development Team. TensorFlow Keras API. Available online: https://www.tensorflow.org/

guide/keras (accessed on 1 April 2020).
145. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T.

Caffe: Convolutional architecture for fast feature embedding. In Proceedings of the 22nd ACM International
Conference on Multimedia, Orlando, FL, USA, 3–7 November 2014; pp. 675–678.

146. Caffe2 Development Team. Caffe2: News. Available online: https://caffe2.ai/blog/2018/05/02/Caffe2_
PyTorch_1_0.html (accessed on 1 April 2020).

147. ESRI. Image Analyst—Deep Learning in ArcGIS Pro. Available online: https://pro.arcgis.com/de/pro-
app/help/analysis/image-analyst/deep-learning-in-arcgis-pro.htm (accessed on 15 May 2020).

148. OTB Development Team. Orfeo ToolBox—Documentation. Available online: https://www.orfeo-toolbox.
org/CookBook/ (accessed on 15 May 2020).

149. Cresson, R. A framework for remote sensing images processing using deep learning technique. arXiv 2018,
arXiv:1807.06535.

150. azavea. Rastervision Documentation. Available online: https://docs.rastervision.io/en/0.10/index.html
(accessed on 15 May 2020).

151. Zhang, C.; Wei, S.; Ji, S.; Lu, M. Detecting Large-Scale Urban Land Cover Changes from Very High Resolution
Remote Sensing Images Using CNN-Based Classification. ISPRS Int. J. Geo-Inf. 2019, 8, 189. [CrossRef]

152. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359.
[CrossRef]

153. Bengio, Y. Deep Learning of Representations for Unsupervised and Transfer Learning. In Proceedings
of the 2011 International Conference on Unsupervised and Transfer Learning Workshop—Volume 27; Microtome
Publishing: Brookline, MA, USA, 2011; pp. 17–37. [CrossRef]

154. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
155. Cheng, G.; Han, J.; Lu, X. Remote Sensing Image Scene Classification: Benchmark and State of the Art.

Proc. IEEE 2017, 105, 1865–1883. [CrossRef]
156. Helber, P.; Bischke, B.; Dengel, A.; Borth, D. Introducing Eurosat: A Novel Dataset and Deep Learning

Benchmark for Land Use and Land Cover Classification. In Proceedings of the IGARSS 2018—2018 IEEE
International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 June 2018; pp. 204–207.

157. Zhu, X.; Hu, J.; Qiu, C.; Shi, Y.; Kang, J.; Mou, L.; Bagheri, H.; Haberle, M.; Hua, Y.; Huang, R.;
et al. So2Sat LCZ42: A Benchmark Dataset for Global Local Climate Zones Classification. arXiv 2019,
arXiv:1912.12171.

158. SpaceNet. SpaceNet 1: Building Detection v1. Available online: https://github.com/SpaceNetChallenge/
BuildingDetectors (accessed on 1 April 2020).

159. Dai, J.; He, K.; Sun, J. Instance-Aware Semantic Segmentation via Multi-task Network Cascades.
In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas,
NV, USA, 27–30 June 2016; pp. 3150–3158.

160. SpaceNet. SpaceNet 2: Building Detection v2. Available online: https://github.com/SpaceNetChallenge/
BuildingDetectors_Round2 (accessed on 1 April 2020).

161. SpaceNet. SpaceNet 3: Road Network Detection. Available online: https://github.com/SpaceNetChallenge/
RoadDetector (accessed on 1 April 2020).

162. SpaceNet. SpaceNet 4: Off-Nadir Buildings. Available online: https://github.com/SpaceNetChallenge/
SpaceNet_Optimized_Routing_Solutions (accessed on 1 April 2020).

163. Etten, A.V. City-Scale Road Extraction from Satellite Imagery v2: Road Speeds and Travel Times.
In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Snowmass
Village, CO, USA, 1–5 March 2020; pp. 1786–1795.

164. Etten, A.V. City-scale Road Extraction from Satellite Imagery. arXiv 2019, arXiv:1904.09901.
165. SpaceNet. SpaceNet6: Multi Sensor—All Weather. Available online: https://spacenet.ai/sn6-challenge/

(accessed on 1 April 2020).
166. Shermeyer, J.; Hogan, D.; Brown, J.; Etten, A.V.; Weir, N.; Pacifici, F.; Haensch, R.; Bastidas, A.; Soenen, S.;

Bacastow, T.; et al. SpaceNet 6: Multi-Sensor All Weather Mapping Dataset. arXiv 2020, arXiv:2004.06500.

https://keras.io
https://github.com/tensorflow/tensorflow
https://github.com/tensorflow/tensorflow
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://caffe2.ai/blog/2018/05/02/Caffe2_PyTorch_1_0.html
https://pro.arcgis.com/de/pro-app/help/analysis/image-analyst/deep-learning-in-arcgis-pro.htm
https://pro.arcgis.com/de/pro-app/help/analysis/image-analyst/deep-learning-in-arcgis-pro.htm
https://www.orfeo-toolbox.org/CookBook/
https://www.orfeo-toolbox.org/CookBook/
https://docs.rastervision.io/en/0.10/index.html
http://dx.doi.org/10.3390/ijgi8040189
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.5555/3045796.3045800
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1109/JPROC.2017.2675998
https://github.com/SpaceNetChallenge/BuildingDetectors
https://github.com/SpaceNetChallenge/BuildingDetectors
https://github.com/SpaceNetChallenge/BuildingDetectors_Round2
https://github.com/SpaceNetChallenge/BuildingDetectors_Round2
https://github.com/SpaceNetChallenge/RoadDetector
https://github.com/SpaceNetChallenge/RoadDetector
https://github.com/SpaceNetChallenge/SpaceNet_Optimized_Routing_Solutions
https://github.com/SpaceNetChallenge/SpaceNet_Optimized_Routing_Solutions
https://spacenet.ai/sn6-challenge/


Remote Sens. 2020, 12, 1667 42 of 43

167. Ding, L.; Tang, H.; Bruzzone, L. Improving Semantic Segmentation of Aerial Images Using Patch-based
Attention. arXiv 2019, arXiv:1911.08877.

168. Zhang, G.; Lei, T.; Cui, Y.; Jiang, P. A Dual-Path and Lightweight Convolutional Neural Network for
High-Resolution Aerial Image Segmentation. ISPRS Int. J. Geo-Inf. 2019, 8, 582. [CrossRef]

169. Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang, J.; Basu, S.; Hughes, F.; Tuia, D.; Raskar, R.
DeepGlobe 2018: A Challenge to Parse the Earth Through Satellite Images. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Salt Lake City, UT, USA, 18–23
June 2018; pp. 172–17209.

170. Zhou, L.; Zhang, C.; Wu, M. D-LinkNet: LinkNet with Pretrained Encoder and Dilated Convolution for
High Resolution Satellite Imagery Road Extraction. In Proceedings of the 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 192–1924.

171. Buslaev, A.; Seferbekov, S.S.; Iglovikov, V.; Shvets, A. Fully Convolutional Network for Automatic Road
Extraction From Satellite Imagery. In Proceedings of the CVPR Workshops, Salt Lake City, UT, USA,
18–23 June 2018; pp. 207–210.

172. Hamaguchi, R.; Hikosaka, S. Building Detection from Satellite Imagery using Ensemble of Size-Specific
Detectors. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, UT, USA, 18–23 June 2018; pp. 223–2234.

173. Iglovikov, V.; Seferbekov, S.; Buslaev, A.; Shvets, A. TernausNetV2: Fully Convolutional Network for
Instance Segmentation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 228–2284.

174. Tian, C.; Li, C.; Shi, J. Dense Fusion Classmate Network for Land Cover Classification. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA,
18–23 June 2018; pp. 262–2624.

175. Kuo, T.; Tseng, K.; Yan, J.; Liu, Y.; Wang, Y.F. Deep Aggregation Net for Land Cover Classification.
In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake
City, UT, USA, 18–23 June 2018; pp. 247–2474.

176. Ji, S.; Wei, S.; Lu, M. Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial
and Satellite Imagery Data Set. IEEE Trans. Geosci. Remote Sens. 2019, 57, 574–586. [CrossRef]

177. Ji, S.; Wei, S.; Lu, M. A scale robust convolutional neural network for automatic building extraction from
aerial and satellite imagery. Int. J. Remote Sens. 2019, 40, 3308–3322. [CrossRef]

178. Maggiori, E.; Tarabalka, Y.; Charpiat, G.; Alliez, P. Can Semantic Labeling Methods Generalize to Any City?
The Inria Aerial Image Labeling Benchmark. In Proceedings of the IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3226–3229.

179. Audebert, N.; Boulch, A.; Le Saux, B.; Lefèvre, S. Distance transform regression for spatially-aware deep
semantic segmentation. Comput. Vision Image Underst. 2019, 189, 102809. [CrossRef]

180. Duke Applied Machine Learning Lab. DukeAMLL Repository of Winning INRIA Building Labeling.
Available online: https://github.com/dukeamll/inria_building_labeling_2017 (accessed on 1 April 2020).

181. Azimi, S.M.; Henry, C.; Sommer, L.; Schumann, A.; Vig, E. SkyScapes Fine-Grained Semantic Understanding
of Aerial Scenes. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea,
27–28 October 2019; pp. 7393–7403.

182. Cheng, G.; Han, J.; Zhou, P.; Guo, L. Multi-class geospatial object detection and geographic image
classification based on collection of part detectors. ISPRS J. Photogramm. Remote Sens. 2014, 98, 119–132.
[CrossRef]

183. Zhang, H.; Wu, J.; Liu, Y.; Yu, J. VaryBlock: A Novel Approach for Object Detection in Remote Sensed
Images. Sensors 2019, 19, 5284. [CrossRef]

184. Tayara, H.; Chong, K.T. Object Detection in Very High-Resolution Aerial Images Using One-Stage Densely
Connected Feature Pyramid Network. Sensors 2018, 18, 3341. [CrossRef]

185. Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A Large Contextual Dataset for Classification,
Detection and Counting of Cars with Deep Learning. In Computer Vision–ECCV 2016; Leibe, B., Matas, J.,
Sebe, N., Welling, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 785–800.

186. Koga, Y.; Miyazaki, H.; Shibasaki, R. A Method for Vehicle Detection in High-Resolution Satellite Images
that Uses a Region-Based Object Detector and Unsupervised Domain Adaptation. Remote Sens. 2020, 12, 575.
[CrossRef]

http://dx.doi.org/10.3390/ijgi8120582
http://dx.doi.org/10.1109/TGRS.2018.2858817
http://dx.doi.org/10.1080/01431161.2018.1528024
http://dx.doi.org/10.1016/j.cviu.2019.102809
https://github.com/dukeamll/inria_building_labeling_2017
http://dx.doi.org/10.1016/j.isprsjprs.2014.10.002
http://dx.doi.org/10.3390/s19235284
http://dx.doi.org/10.3390/s18103341
http://dx.doi.org/10.3390/rs12030575


Remote Sens. 2020, 12, 1667 43 of 43

187. Hsieh, M.; Lin, Y.; Hsu, W.H. Drone-Based Object Counting by Spatially Regularized Regional Proposal
Network. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice,
Italy, 22–29 October 2017; pp. 4165–4173.

188. Liu, K.; Mattyus, G. Fast Multiclass Vehicle Detection on Aerial Images. IEEE Geosci. Remote Sens. Lett. 2015,
12, 1938–1942.

189. Azimi, S.M. ShuffleDet: Real-Time Vehicle Detection Network in On-Board Embedded UAV Imagery.
In Computer Vision–ECCV 2018 Workshops; Leal-Taixé, L., Roth, S., Eds.; Springer International Publishing:
Cham, Switzerland, 2019; pp. 88–99.

190. Zhou, Z.H. A brief introduction to weakly supervised learning. Natl. Sci. Rev. 2017, 5, 44–53. [CrossRef]
191. Shi, Z.; Yang, Y.; Hospedales, T.M.; Xiang, T. Weakly-Supervised Image Annotation and Segmentation with

Objects and Attributes. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2525–2538. [CrossRef]
192. Diba, A.; Sharma, V.; Pazandeh, A.; Pirsiavash, H.; Van Gool, L. Weakly Supervised Cascaded Convolutional

Networks. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 5131–5139.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/nsr/nwx106
http://dx.doi.org/10.1109/TPAMI.2016.2645157
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Terminology and Basic Concepts of Deep Learning with CNNs
	Evolution of CNN Architectures in Computer Vision
	Image Recognition and Convolutional Backbones
	Vintage Architectures
	Inception Family
	ResNet Family
	Efficient Designs

	Image Segmentation
	Naïve Decoder
	Encoder–Decoder Models

	Object Detection
	Two-Stage Detectors
	One-Stage Detectors


	Popular Deep Learning Frameworks and Earth Observation Datasets
	Deep Learning Frameworks
	Earth Observation Datasets

	Future Research
	Conclusions
	References

