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Abstract: The timely and accurate recognition of damage to buildings after destructive disasters is
one of the most important post-event responses. Due to the complex and dangerous situations in
affected areas, field surveys of post-disaster conditions are not always feasible. The use of satellite
imagery for disaster assessment can overcome this problem. However, the textural and contextual
features of post-event satellite images vary with disaster types, which makes it difficult to use
models that have been developed for a specific disaster type to detect damaged buildings following
other types of disasters. Therefore, it is hard to use a single model to effectively and automatically
recognize post-disaster building damage for a broad range of disaster types. Therefore, in this paper,
we introduce a building damage detection network (BDD-Net) composed of a novel end-to-end
remote sensing pixel-classification deep convolutional neural network. BDD-Net was developed
to automatically classify every pixel of a post-disaster image into one of non-damaged building,
damaged building, or background classes. Pre- and post-disaster images were provided as input
for the network to increase semantic information, and a hybrid loss function that combines dice loss
and focal loss was used to optimize the network. Publicly available data were utilized to train and
test the model, which makes the presented method readily repeatable and comparable. The protocol
was tested on images for five disaster types, namely flood, earthquake, volcanic eruption, hurricane,
and wildfire. The results show that the proposed method is consistently effective for recognizing
buildings damaged by different disasters and in different areas.

Keywords: disaster assessment; building detection; building damage; remote sensing; deep learning;
convolutional neural network

1. Introduction

Natural disasters are often highly destructive and unpredictable. People’s lives can be threatened
by these disasters and their property can be looted in the aftermath. When a disaster strikes,
people inside buildings may not be able to escape quickly enough and may become trapped inside.
Therefore, it is crucial for rescuers to know the exact locations of disaster-damaged buildings before
they take actions. Additionally, counting buildings that have suffered damage can assist in accurate
post-disaster assessment to estimate property losses and guide post-disaster repairs. Therefore,
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the production of maps showing damaged buildings is essential in the response and recovery phase of
the disaster management cycle. Since ground-based manual statistical methods are slow and unsafe
(for example, there are often aftershocks after a major earthquake, so it could be very dangerous to
conduct field statistics at this time), very high resolution (VHR) satellite imagery is an attractive data
source for disaster damage assessment and quick decision support. Such imagery can capture spatially
explicit details at a broad scale without the need for manual field research and is, therefore, feasible for
the rapidly analyzing and mapping of damaged buildings over a large area [1].

Various methods have been used to recognize damaged buildings based on various remote sensing
imagery acquired before and/or after events. For example, Akbar et al. combined pre-event unmanned
aerial vehicle (UAV) images and hand-crafted features to evaluate structural health [2]. Gong et al.
used synthetic-aperture radar (SAR) data to assess building damage after an earthquake [3]. Lucks et al.
analyzed post-event aerial images with a superpixel-wise method to assess building damage [4].
Recently, the rapid development of deep learning and convolutional neural networks (CNNs) made
disaster detections using remotely sensed imagery more effective and efficient. Fujita et al. developed
an object detection model to detect whether buildings had been washed away by a hurricane [5].
Duarte et al. combined airborne and satellite images to improve the accuracy of damaged building
classification [6]. Doshi et al. proposed a new index named the disaster impact index (DII) to
evaluate affected areas based on the recognition of undamaged buildings and roads [7]. Vetrivel et al.
integrated deep learning and post-event 3D points cloud data to improve performance of disaster
damage detection [8]. Cao and Choe developed a method for post-hurricane damage assessment based
on object detection [9]. Nex et al. provided three CNNs pre-trained with satellite, airborne, and UAV
image, respectively, to promote operational building damage assessment [10].

The successful methods detailed above are a few examples among many deep learning-based
approaches, which cannot all be listed here. These methods are useful for recognizing building damage
caused by the specific type of disaster for which each was developed. However, a question remains,
namely: can a general method be developed to recognize damaged buildings with full use of the
pre-and post-event aerial images following different types of natural disasters? This question is the
motivation of this paper.

2. Data Sources and Disaster Cases

In this study, image data were obtained from the Maxar/DigitalGloble Open Data Program
(https://www.digitalglobe.com/ecosystem/open-data), which is a publicly available platform aiming
to provide satellite imagery when a large-scale natural disaster occurs. Using this data program,
Gupta et al. collected pre- and post-event VHR satellite imagery of 10 large-scale natural disaster
events from six disaster types occurred around the world and created a so-called xBD dataset (a dataset
for assessing building damage) for performing building damage assessment [11]. The six disaster
types include volcanic eruption, hurricane, earthquake, flood, tsunami, and wildfire recorded between
2016 and 2019 (Table 1). All these xBD datasets consist of RGB imagery with a ground sample distance
(GSD) of 0.8 m after pansharpening.

The xBD datasets contain 2283 1024 pixels × 1024 pixels RGB image pairs, and each pair consists
of pre- and post-disaster images of the same location. Regarding annotations, the pre-disaster
images provide WKT-format labels, providing the coordinates of the building polygon vertices.
The post-disaster WKT labels not only provide the coordinates of the building polygon vertices but
also indicate one of four damage levels (i.e., no damage, minor damage, major damage, or destroyed)
to all the buildings, as well as the disaster type.

https://www.digitalglobe.com/ecosystem/open-data
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Table 1. Details of the disaster events, which were used to test the proposed building damage detection
network (BDD-Net).

Disaster Type Location (and Nickname) Date

Volcanic Eruption Guatemala 03 Jun 2018
Hurricane Italy (Hurricane Florence) 10–19 Sep 2018
Hurricane USA (Hurricane Harvey) 17 Aug–02 Sep 2017
Hurricane Puerto Rico (Hurricane Matthew) 28 Sep–10 Oct 2016
Hurricane Michael 07–16 Oct 2018

Earthquake Mexico 19 Sep 2017
Flood Midwest USA 03 Jan–31 May 2019

Tsunami Indonesia 18 Sep 2018
Wildfire USA (Carr Fire) 23 Jul–30 Aug 2018
Wildfire USA (Woolsey Fire) 09–28 Nov 2018

3. Model Development

3.1. Preprocessing

To generate ground truth for our pixel-classification task with supervised learning, we did some
processing on the xBD dataset. Firstly, the pixels of the building were assigned two kinds of positive
samples according to whether buildings were damaged. Secondly, other pixels were assigned as
negative samples (background).

For the training data, we concatenated pre- and post-event images as a new 6-channel
1024 × 1024 data. Before training the model, we performed augmentations for input data, including flip,
rotation scale and color shifts. In this way, the diversity of training data was enhanced, and the deep
neural network would become more robust. The final step of preprocessing was that we normalized
the input data to have mean 0 and standard deviation 1, so as to make model training easier and speed
up the convergence of the training.

3.2. Deep Pixel-Classification Network

In recent years, pixel-level classification based on deep learning has demonstrated outstanding
performance in the field of remote sensing [12]. With a sequence of convolutional layers, a deep
learning model not only automatically extracts features of different levels without feature engineering
but is also end-to-end. We employed the same principle for labeling damaged buildings from VHR
remote sensing imagery and developed a building damage detection network (BDD-Net).

The BDD-Net is a modification of the U-Net architecture [13] (Figure 1), which has a typical
symmetric encoder–decoder architecture. The encoder is a series of convolutional and contains
downsampling layers. With increasing depth in the encoder, the feature maps become smaller while
high-level features are extracted. It initially expects the smallest feature map that has high-level
features, and, after continuous upsampling and convolutions, the feature map of the original size is
restored. The most critical operation of U-Net is that it uses a skip connection at the same stage of the
encoder and the decoder. The decoder concatenates the feature map from the corresponding stage
of the encoder. In this way, the finally restored feature map is fused with more low-level features,
and features at different scales are fused, so that multi-scale prediction can be performed.
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the number of parameters but improve performance. The core structure of this CNN is a mobile 
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output channel according to expand ratio [16]. Additionally, adding squeeze-and-excitation 
optimization into the network, this block allows the model to pay more attention to the channel 
features with the most information, while suppressing those unimportant channel features [17]. 
Furthermore, the weights of the pretrained model of ImageNet were utilized to initialize BDD-Net. 
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Figure 1. Architecture of the proposed building damage detection network (BDD-Net). BDD-Net
expects six channels as input, and this input is concatenated with pre- and post-disaster images.
BDD-Net includes an encoder part and a decoder part. The encoder contains eight convolutional blocks,
and each block consists of one mobile inverted bottleneck convolution (MBConv). The decoder contains
eight convolutional blocks, each of which consists of one convolutional layer and one upsampling layer.
There are short cut connections between each block of the encoder and decoder.

In order to improve the feature-extraction capability of the encoder, the EfficientNet-B0 was
adopted as the backbone to build BDD-Net. The EfficientNet is a state-of-the-art deep convolutional
neural network (CNN) [14]. By using the neural architecture search (NAS), EfficientNet can reduce the
number of parameters but improve performance. The core structure of this CNN is a mobile inverted
bottleneck convolution (MBConv) [15]. EfficientNet performs 1 × 1 convolution and change output
channel according to expand ratio [16]. Additionally, adding squeeze-and-excitation optimization into
the network, this block allows the model to pay more attention to the channel features with the most
information, while suppressing those unimportant channel features [17]. Furthermore, the weights of
the pretrained model of ImageNet were utilized to initialize BDD-Net. The encoder of the proposed
CNN firstly expects a batch of 6-channel 1024 × 1024 image-pairs and performs convolution before
downsampling. After eight convolution and downsampling steps, the size of the feature maps will
be 4 × 4. Then, these feature maps are upsampled to 8 × 8 and the decoder concatenates the feature
maps of the encoder to perform the next convolution and upsampling. By continuously upsampling,
the proposed network outputs a feature map of the original size (1024 × 1024). Each block contains a
convolutional layer, a batch normalization layer, and an activation function. The activation function is
the leaky rectified linear unit (Leaky ReLU), which keeps positive values unchanged and prevents
negative values from being lost. The equation for the Leaky ReLU is defined as follows:

LeakyReLu(x) = max(0, x) + β∗min(0, x) (1)

where, x is the input and β is the negative slope that is typically set as 0.01.
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It is possible to detect damaged buildings by directly analyzing post-disaster images. However,
in some affected areas, buildings are razed to the ground or washed away following a disaster,
meaning that the footprints of the buildings are no longer present. Therefore, not all the post-disaster
images can provide information about the locations or boundaries of buildings. In this work,
this problem was solved by including pre-disaster images as an auxiliary data source to enrich spectral
and textural features. Pre- and post-disaster image pairs were concatenated to provide the input
(Figure 1). Image pairs with a temporal difference contain more semantic details than single-temporal
images, enabling the model to focus on the variations of the foreground rather than the differences
between the foreground and background.

3.3. Loss Function

One of the most import challenges in the pixel classification of remote sensing images is imbalanced
data distribution, since it is necessary to accurately classify every pixel of the image and pixels of
small objects influence less to the loss. According to the present analysis, the area of undamaged
buildings accounts for approximately 5% of the total area in the data used in this study, while the area
of damaged buildings accounts for approximately 1%. Therefore, only with a reasonable loss function
can be optimized to achieve a highly accurate result.

The dice similarity coefficient (DSC) is a widely used metric in performing highly imbalanced
image segmentation tasks, and measures the degree of agreement between the prediction and the
ground truth [18]. The DSC is defined as:

DSC =
2|P∩G|
|P|+ |G|

(2)

where, P is the output of segmentation and G is the ground truth.
However, Equation (2) is not differentiable and, therefore, cannot be directly used as a loss function

for convolutional neural networks. A continuous version of the dice score that is differentiable can be
used as a loss function to optimize the proposed model:

Ldice = −
2
∑N

i pigi∑N
i pi +

∑N
i gi

(3)

where, pi is a continuous value from the output of the softmax function of the last layer of the network,
gi is the ground truth of each pixel, and N is the number of pixels.

Although the dice loss can solve the imbalanced-class problem to some extent, it still makes the
training unstable in extremely unbalanced segmentation [19]. Inspired by the medical image model
AnatomyNet [20], the dice loss and focal loss [21] were combined to perform remote sensing image
classification. This integrated total loss function was utilized to optimize the proposed model. The total
loss is defined as:

L = Ldice + λL f ocal = C−
C−1∑
c=0

N∑
n=1

pn(c)gn(c)
pn(c)gn(c) + (1− pn(c))gn(c) + pn(c)(1− gn(c))

− λ
1
N

c−1∑
c=0

N∑
n=1

gn(c)(1− pn(c))
2 log(pn(c)) (4)

where, c is the specific class; pn(c) is the predicted probability of pixel n being in class c; gn(c) is the
ground truth for pixel n belonging to class c; C is the total number of classes, including background;
λ, which is set to 0.5, is the trade-off between dice loss and focal loss; and N is the total number of
pixels in the satellite image under analysis.
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3.4. Model Learning

The optimization of the weights in this deep learning process was based on stochastic gradient
descent (SGD) [22]. During the training (or learning), the deep networks expected a batch of samples
and perform forward propagation. When one iteration ends, the gradient of the loss function would
be calculated to update the weights of the networks. This process was based on a chain rule and
back-propagation. The speed of the network converge depended on the learning rate, which was an
important hyperparameter to control the size of the gradient descent. The networks were optimized
using ADAM, a variant of stochastic gradient descent [23]. By normalizing the global learning rate
with the running average of the gradient to adaptively adjust the learning rate for each parameter,
ADAM could amplify the step size along low gradients and attenuate for high gradients. In this way,
even if the base learning rate was not set accurately, the model was still able to converge efficiently.
During the model training, the base learning rate was set to 0.0001.

Convolutional neural networks have demonstrated effectiveness for transferring learning in
remote sensing imagery [24]. If a CNN is trained with a sufficiently large dataset, it can generally adapt
to the pattern of the image data. This means that it can be utilized for a new task without training from
scratch. In this way, the deep convolutional neural network only needs to be fine-tuned for the task at
hand and thus requires less training time and computational resources. A common practice is to start
with an existing network that has been pre-trained on one of the most image dataset (e.g., ImageNet or
PASCAL VOC) [25,26]. For the proposed BDD-Net, the baseline EfficientNet that has been pre-trained
on ImageNet was utilized for fine-tuning.

The BDD-Net was trained on two NVIDIA RTX 2080 GPUs. Due to limitations of GPU memory,
the batch size was set to 4.

3.5. Accuracy Assessment

In this study, the F1-score were used to assess the model performance. Although OA is the most
commonly used model evaluation metric, it has limitations for imbalanced categories and may not
reflect the true performance of a model [27]. The F1-score is a harmonious average of recall and
precision, and has values ranging from 0 to 1. The greater the F1 value, the better the performance of
the model. The F1-score are defined as follows:

precision = TP
TP+FP

recall = TP
TP+FN

F1 =
2× precision × recall

precision + recall

(5)

where, TP, FP, FN, and TN are the true positive, false positive, false negative, and true negative pixel
classifications, respectively.

4. Results

As explained above, the input form and loss function are important for the performance of
the BDD-Net. Therefore, quantitative experiments were conducted to measure the capability of the
proposed model. In all of the xBD dataset, we randomly selected 10% of data from five scenarios
for testing separately, including a flood in the Midwest USA, an earthquake in Mexico, a volcanic
eruption in Guatemala, the Hurricane Matthew in the USA, and a wildfire in the USA (the Woolsey
Fire). Other data was used to train and validate deep neural networks. The proportion of training and
validating data was 80% and 10%.

There were obvious differences in F1 scores between post-event single images as input and pre-
and post-event paired images as input (Figure 2). The evaluated area with the highest F1 value was
the Hurricane Matthew case. Of the five cases, the lowest F1 value was 82.9% when the input data
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contained pre- and post-disaster image pairs. However, when only the post-disaster images were used
as input, the highest F1 score was only 47.9%.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 11 
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Figure 2. The results of pixel-classification for post-disaster images based on various input forms when
using a combination of dice loss and focal loss as the loss function.

Furthermore, the hybrid loss function that combined dice loss and focal loss obtained higher
F1 scores than the other commonly used loss functions, namely the weight cross-entropy [13] and
cross-entropy plus dice loss [28] (Figure 3).
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Figure 3. The F1 values obtained for the different disaster types when using various loss functions
to optimize the deep convolutional neural network when using pre- and post-disaster image pairs
as input.

Moreover, when only the post-event images were used as input, the deep CNN obtained low F1
values for all of the five disaster scenarios regardless of what loss function was utilized (Figure 4).
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Figure 4. The F1 values obtained for the different disaster types when using various loss functions to
optimize the deep convolutional neural network when using only post-disaster images as input.



Remote Sens. 2020, 12, 1670 8 of 11

5. Discussion

5.1. The Special Capacity of Deep Convolutional Neural Networks

The novelty of the proposed method is its general capability to handle different disaster scenarios.
The results of the classification experiments suggest that BDD-Net is able to consistently achieve
satisfactory results for a variety of disaster scenarios and thus demonstrate that the performance of the
CNN does not degrade for different disaster scenarios. Furthermore, the results indicate that BDD-Net
is capable of recognizing buildings with different damage levels. To our knowledge, previous models
for the assessment of building damage focused mainly on severely damaged buildings, such as those,
which had been washed away or razed to the ground. The critical reason why BDD-Net is able to
achieve relatively accurate results for various disaster types is that the deep CNN can learn multi-scale
features from a large amount of data; as the training data contain various scenarios, the deep CNN
can extract more types of spectral and contextual features, which facilitates the detection of building
damage following various kinds of disasters.

5.2. Visual Comparison of Image Classification Using Image Pairs and Post-Event Images as Input

As shown in Figure 2, the use of image pairs as the input greatly improved the performance of
BDD-Net. This improvement can be visually appreciated in the sample images (Figure 5). In this
example, when only a post-disaster image was used as the input, an area that had been razed to the
ground was recognized as a patch of damaged land instead of individual buildings as the model could
not identify the boundary of the buildings (Figure 5d). In this case, the model could not clearly recognize
damaged building but recognize undamaged buildings well (Figure 5d). However, this problem was
resolved when a pre- and post-disaster image pair was used as the input (Figure 5e). This is due to the
fact that the pre-disaster image contains the locations and boundaries of buildings. Once there are
damaged buildings in the post-disaster images, the pre-disaster image could supply the location and
boundary information of damaged buildings. This shows that the deep CNN with an image-pair input
can extract building-specific features of affected areas and produce building-explicit output.
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5.3. Comparison of Different Loss Functions

In this study, we compared the results of using different loss functions, including weighted
cross-entropy, a combination of cross-entropy and dice loss, and a combination of dice loss and focal
loss (Figures 3 and 4). When a post-event image was used as input, the performance of the model was
not greatly affected by the use of different loss functions. This is due to the fact that a single post-event
image supplies less semantic information and thus any loss function cannot optimize the network well.
However, when pre- and post-disaster image pairs were used as input, an obvious improvement was
achieved when a combination of dice loss and focal loss was used as the loss function. This suggests
that for the severely imbalanced classes and hard sample in remote sensing pixel classification, this type
of loss function was more effective than the other types considered previously.

6. Conclusions

Satellite images that cover natural disaster areas have unique spectral features. The automated
accurate analysis of post-disaster satellite images has the potential to improve the speed and quality
of the disaster response. The key challenge in using satellite images to assess the damage caused
by natural disasters is the development of a general model, which can deal with different types of
disaster [10]. To solve this problem, in this study, we developed deep neural network referred to as
BDD-Net with three critical technical modifications: (1) developing a U-Net like symmetric structure
with baseline EfficientNet as an encoder to make the model deeper and thus enable to learn more levels
of features; (2) utilizing pre- and post-disaster image pairs as input to better capture the information
of the affected area, especially for areas where buildings have been razed to the ground, and their
boundaries are lost; and (3) combining the dice loss and focal loss functions to optimize the model
during the training process, which solves the problem of difficult model convergence due to severe
class imbalance.

Compared to previous research on the assessment of building damage, this proposed model can
handle multiple types of disasters and achieve F1 scores ≥82.9%. Although this experiment included
only 10 cases of disasters including only five types of disaster (volcanic eruption, hurricane, earthquake,
flood, and wildfire), the satisfactory results revealed the potential of the proposed methodology for
developing an even more robust general model for detecting building damage caused by a broad
range of natural disasters around the world. By using a publicly available data source, such as the
Maxar/DigitalGloble Open Data Program, we can conduct more in-depth research on deep learning
applications in remote sensing pixel classification for the recognition of damaged buildings in various
post-disaster scenarios, and thus provide operational approaches for related disaster assessment
applications under additional real-world scenarios.
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