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Abstract: The spatial distribution of soil moisture (SM) was estimated by a multiple quantile regression
(MQR) model with Terra Moderate Resolution Imaging Spectroradiometer (MODIS) and filtered SM
data from 2013 to 2015 in South Korea. For input data, observed precipitation and SM data were
collected from the Korea Meteorological Administration and various institutions monitoring SM.
To improve the work of a previous study, prior to the estimation of SM, outlier detection using the
isolation forest (IF) algorithm was applied to the observed SM data. The original observed SM data
resulted in IF_SM data following outlier detection. This study obtained an average data removal rate
of 20.1% at 58 stations. For various reasons, such as instrumentation, environment, and random errors,
the original observed SM data contained approximately 20% uncertain data. After outlier detection,
this study performed a regression analysis by estimating land surface temperature quantiles. The soil
characteristics were considered through reclassification into four soil types (clay, loam, silt, and sand),
and the five-day antecedent precipitation was considered in order to estimate the regression coefficient
of the MQR model. For all soil types, the coefficient of determination (R2) and root mean square error
(RMSE) values ranged from 0.25 to 0.77 and 1.86% to 12.21%, respectively. The MQR results showed
a much better performance than that of the multiple linear regression (MLR) results, which yielded
R2 and RMSE values of 0.20 to 0.66 and 1.08% to 7.23%, respectively. As a further illustration of
improvement, the box plots of the MQR SM were closer to those of the observed SM than those of the
MLR SM. This result indicates that the cumulative distribution functions (CDF) of MQR SM matched
the CDF of the observed SM. Thus, the MQR algorithm with outlier detection can overcome the
limitations of the MLR algorithm by reducing both the bias and variance.

Keywords: isolation forest; multiple quantile regression; outlier detection; spatial soil moisture;
Terra MODIS

1. Introduction

To understand hydrological processes, including evapotranspiration, infiltration, percolation,
and runoff, soil moisture (SM) is a key variable [1]. Therefore, understanding the spatial distribution of
SM is crucial in analyzing hydrological processes [2]. In addition to using water resources research
to study rainfall runoff, SM has been widely used in other specific fields, such as in agriculture to
study plant growth and hydrometeorology to study interactions between the atmosphere and land [3].
In the past, SM data were obtained by measuring in the laboratory by soil sample analysis or in
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the field by in situ SM probes at the temporal scales of every day to biweekly using various field
techniques, such as capacitance measurements and time/frequency domain reflectometry (TDR/FDR).
TDR involves an electronic instrument used to capture representative soil water content measurements.
However, these methods have limitations in that it is difficult to obtain representative SM data over
a large area due to the point-based nature of such measurements [4], and that such methods are
expensive when applied to large areas. To overcome these shortcomings, many studies have continued
to estimate the spatial SM distribution using satellite data [5].

There are two broad categories of remote sensing methods used to estimate spatial SM periodically:
indirect measurements based on land surface parameters and direct measurements using microwave
satellites. First, satellites with microwave sensors produce SM estimates by using surface variables
such as backscatter and brightness temperature [6–13]. Microwave satellites can provide daily SM
data at a global scale with a low frequency and resolution [14–16]. Therefore, such methods are
commonly deemed to be appropriate for uses on a global scale [17,18]. Despite these advantages,
it remains difficult to monitor local-scale SM estimates and droughts [19]. Additionally, local or
regional applications related to the fields of agricultural and hydrology remain challenging because
of these difficulties [20–22]. Second, the spatial distribution of SM can be estimated by regression
analysis using various variables, such as the normalized difference vegetation index (NDVI) and the
land surface temperature (LST), without using microwave satellite data [4]. Although the spatial SM
was estimated based on LST data and multiple linear regression (MLR) analysis in a previous study [5],
simple linear regression analysis algorithms do not fully explain the behavior of SM, which varies in
response to weather, season, and soil type. Moreover, in the previous study, the soil properties were
reclassified into four classes and subjected to regression analysis to compensate for the limitations of
insufficient SM observation data. In this reclassification process, there was a possibility that many
uncertainties would appear in the SM data. Thus, to reduce uncertainty and to improve the research
results of SM behavior tracking, it has become necessary to develop an algorithm to remove outliers in
SM input data.

Since LST shows varying sensitivity to vegetation and soil, a direct relationship between LST and
SM has not been clearly identified [23], although LST is one of the essential elements for estimating
SM [24,25]. Originally, a unique relationship between spatial SM and LST was proposed by previous
studies [26–29] and many studies have been conducted utilizing this relationship [30–34]. Although LST
data from the Moderate Resolution Imaging Spectroradiometer (MODIS) has been applied to indirectly
calculate the SM content, prior to using indirect data, noise caused by various factors from all indirect
satellite data should be eliminated through preprocessing, such as gap filling and interpolation [5].
By applying one of these methods, previous studies have shown that MODIS LST can be reconstructed
by geostatistical interpolations considering spatiotemporal properties [35,36]. These geostatistical
interpolations, such as spline methods, kriging, inverse distance weighting (IDW), and conditional
merging (CM) have been used for correction by matching satellite data and ground-measured data
at various spatial scales [37,38]. These geostatistical methods have been widely used for combining
satellite-based and observational data. Moreover, the CM method has been used in research related to
radar observation to correct the error that may occur in the original kriging method [39]. Additionally,
Jung et al. [5] applied the CM method to correct LST data, which yielded a better spatiotemporal
distribution than that of the original LST data.

In this study, the spatial distribution of SM was estimated via the multiple quantile regression
(MQR) method based on MODIS NDVI and LST data (Figure 1), and the procedure is as follows:
(1) outliers in the observed SM were removed using the isolation forest (IF) algorithm, (2) the spatial
distribution error of MODIS LST was modified by applying the CM method, (3) the spatial distribution
of SM was estimated through the MQR model development, and (4) the applicability of the model was
evaluated. Finally, the results of this study were compared with those of a previous study [5], in which
the SM was calculated by the MLR model, to show the improvement.
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2. Materials and Methods

MQR was the main algorithm used in this study, and it is important because it can handle many
types of data. In a previous study [5], input data, such as MODIS LST, NDVI, and precipitation,
were selected for estimating SM using principal component analysis. A soil map for obtaining
soil properties, wilting point, and field capacity was prepared from data provided by the Korea
Rural Development Administration (KRDA). All spatial data, such as satellite data and soil maps,
were prepared with a spatial resolution of 1 km, and observed data, such as precipitation and SM,
were prepared with the same spatial resolution using the IDW technique [40].

2.1. MODIS Data

The MODIS data were prepared from the Land Processes Distributed Active Archive Center
(LP DAAC, https://lpdaac.usgs.gov/) and EARTHDATA (https://earthdata.nasa.gov/), including MODIS
LST (MOD11A1) and vegetation indices (MOD13Q1). The MOD11A1 provided daily per-pixel LST
in Kelvin at a 1 km spatial resolution, and low-quality pixels, such as those with clouds and
other atmospheric disturbances, were marked in an accompanying quality assessment (QA) layer.
These pixels were corrected and reconstructed by the CM method. The advantage of this method
is that it can preserve the spatial distribution, maintaining the precision of the observed data. In a
previous study [5], high-precision LST data were estimated through the application of this method,
and the corrected LST data were also used in this study. Please refer to the previous paper [5] for
detailed methods and procedures for generating the corrected LST data.

The MODIS vegetation product (MOD13Q1) provides temporally and spatially continuous
NDVI data with a 16-day interval at 250 m resolution from January 2013 to May 2015.

https://lpdaac.usgs.gov/
https://earthdata.nasa.gov/
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Normally, when calculating daily SM through regression analysis, daily input data are required,
but daily NDVI data were not available. Although vegetation changes vary by type of vegetation,
vegetation generally becomes more vigorous from spring to summer and gradually fades from autumn
to winter. In addition, rapid changes are not common in forests. Therefore, in this study, NDVI data
with a 16-day interval were applied as the vegetation data for daily SM estimation, and the spatial
resolution was resampled to 1000 m, which is the same as the LST data.

2.2. Observed Data

In South Korea, the Korea Meteorological Administration (KMA) is constructing a high-density
ground observation network through the establishment of 687 automatic weather stations (AWSs,
Figure 2a). AWSs monitor weather data, such as precipitation, wind speed, and humidity, on the order
of minutes, which produce data with a much higher accuracy than satellite data. The precipitation
data acquired from AWSs were interpolated to a 1 km spatial resolution, the same as the MODIS data.
The SM observation data were obtained from 58 stations run by various institutions (Table 1). Stations
1 to 9 were from the Automated Agriculture Observing System (AAOS) of the KMA. Stations 10 and 11
were from the Korea Institute of Hydrological Survey (KIHS), and stations 13 to 18 were from K-water.
The other stations were from the Rural Development Administration (RDA).

Table 1. Soil moisture stations with soil type.

No. Station Class No. Station Class No. Station Class No. Station Class

1 CW Sand 16 PU Loam 31 NI Clay 46 SD2 Loam
2 SW Sand 17 HH2 Clay 32 JJ4 Clay 47 SC2 Clay
3 SC1 Sand 18 II Loam 33 JJ5 Clay 48 YY3 Silt
4 CJ Sand 19 CH Loam 34 YG2 Clay 49 CC4 Sand
5 CC1 Clay 20 CO Clay 35 GO Loam 50 YO Clay
6 SS1 Clay 21 YS2 Silt 36 HH4 Clay 51 PB Loam
7 BS Sand 22 JB Sand 37 HH5 Clay 52 GG4 Silt
8 CC2 Loam 23 NG Clay 38 YD Clay 53 TG2 Silt
9 GB1 Silt 24 GD Loam 39 HS Clay 54 JC2 Clay

10 JC1 Loam 25 YS3 Silt 40 HU Clay 55 SY Clay
11 HB Loam 26 CC3 Loam 41 JG Clay 56 HJ Clay
12 YC Loam 27 HH3 Clay 42 BU Silt 57 GG5 Loam
13 IJ Silt 28 JJ3 Loam 43 YJ Clay 58 HH6 Sand
14 YY1 Loam 29 GB2 Clay 44 GJ Clay
15 HH1 Clay 30 MM Clay 45 CY Clay

The soil map, which includes information on the field capacity, wilting point, and soil types,
was essential for estimating SM. The SM map supplied by the RDA was sorted into 12 classes according
to the U.S. Department of Agriculture (USDA) textural classification. However, due to the limitation
of insufficient data with no minimum data for estimating the regression coefficient according to the
12 soil types, the soil types were reclassified into silt, clay, loam, and sand, based on the soil textural
triangle. Sand represents sand, sandy loam, and loamy sand in the triangle. Likewise, clay represents
silty clay, sandy clay, silty clay loam, and clay, and loam represents loam, clay loam, and sandy clay
loam. Finally, silt represents silty loam and silt [16]. Figure 2b show the soil information at the SM
stations. Of the 58 SM stations, clay accounts for approximately 48% (28 stations), and loam accounts for
approximately 24% (14 stations). Therefore, considerable data are available for two soil types (clay and
loam). Furthermore, in this study, the IF algorithm, which eliminates outliers, was applied to solve the
uncertainty that can occur while reclassifying the soil texture into four classes. This process represents
a quality control (QC) process for original SM data to which no QC processes have been applied.
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2.3. Anomaly Detection Algorithm

Outlier detection, or anomaly detection, is a method to find the patterns in datasets that do
not match expected patterns that differ significantly from it. There are a variety of methods such as
isolation-based method, modal-based method, density-based method, and distance-based method.
Among them, IF is an effective technique using a machine learning algorithm based on binary tree
structures with a random sampling method that provides an ensemble of a series of trees from
multidimensional training and testing data sets. Compared to other anomaly detection algorithms,
the reasons for adopting IF in this study are as follows: (1) building iTrees is relatively straightforward,
as users only need to randomly select a subset of the training sets; (2) it takes less time to calculate since
it does not measure distance or density; (3) low memory requirements; and (4) the ensemble algorithm
can overcome the low efficiency of iTrees [41]. The basic concept of IF is that the few anomalous data
far from the normal cluster center can be identified through anomaly detection [42]. The IF technique
consists of a two-stage procedure. A training step structures basic isolation trees that build various
subsamples using random sampling from the training set. The testing step calculates the length of the
path by passing samples to obtain an anomaly score through isolation trees (Figure 3).Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 18 
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To isolate every subsample and stage, a tree structure can be used effectively because there are few
anomalies far from normal points. While normal samples can be far from the root, anomalies are closer
to the root of the tree. Between the minimum and maximum values of the attribute, partitions of every IF
structure are selected at random, and automatically recursive partitions are passed. A randomly selected
partition is calculated, and each tree is classified by dividing different structures. Finally, each path
length is calculated to determine an outlier score. The definition of the anomaly score for instance x is:

s(x, n) = 2−
E(h(x))

c(n) (1)

c(n) = 2H(n− 1) −
(

2(n− 1)
n

)
(2)

where H(i) can be estimated by ln(i) + 0.5772156649 (Euler’s constant) as the harmonic number since
c(n) is the constant value to normalize the average path length for n trees. n is the number of nodes (n).
h(x) is the path length of sample x by the number of edges x traverses and iTrees from the root node
until the traversal is terminated at an external node. E(h(x)) is the average path length of each h(x)
from a collection of iTrees. s is the anomaly score used in the following evaluation. The evaluation
includes the following processes: (a) if s is very close to 1, then it is clearly an anomaly; and (b) if s
is much smaller than 0.5, then it may truly be a normal point. For instance, when s is 1, E(h(x)) will
be zero (0). This means that all the path length for all n trees get close to the root node. In this study,
the IF structure consisted of the sklearn-ensemble library in Python.

To confirm that the IF outlier detection technique really removed the uncertainty of the SM data,
this study suggested a data removal rate (DRR) and the percentage of matching SM increases with
increasing precipitation (PCP), which is COR_PCP, to assess tendency showing SM increases with
increasing PCP at the same time. Two indicators are as following Equations (3) and (4):

DRR (%) =
(Number of raw data) − (Number of IF_SM)

(Number of raw data)
× 100 (3)

COR_PCP (%) =
(Number of days matching SM increases with increasing PCP at the same time)

(Number of the rainfall days) × 100 (4)

2.4. Multiple Quantile Regression Model

It is possible to estimate the conditional quartile by considering various quantiles for the
dependent variable as the parametric method. In addition, this method can be applied to a case where
the distribution of the given data is large or heterogeneous [43]. In addition, since the influence of
dependent variables according to independent variables can be estimated in various quartiles, it is
possible to perform regression analysis considering the distribution characteristics of time series so
that it is not only superior in methodology but also easy to expand to nonlinear models [44].

Quantile regression analysis can directly evaluate LST trends as a method for determining the
linear and nonlinear trends of a particular quantile (r) in the overall data. This trend is expressed by
the following equation [45]:

yr = min


∑

{i|yi<yr(xi)}

(1− r)
∣∣∣yi − yr(xi)

∣∣∣+ ∑
{i|yi>yr(xi)}

r
∣∣∣yi − yr(xi)

∣∣∣
 (5)

where i denotes the i-th value among the n data, i = 1, 2, . . . , n. As seen from the above equation,
the regression analysis of the min-squared regression assesses the tendency to minimize the sum of the
errors of the weights multiplied by the weight line r based on the trend line of the r values. The method
of finding the trend line is similar to the least-squares method, but it differs in that it uses the sum of
absolute values instead of the sum of squared errors. In this way, when the absolute value is used
instead of the square of the error, the effect of the outliers is less reflected in the process of obtaining
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the trend equation, so that it is possible to reduce the effect of excessively increasing or decreasing the
trend due to the outliers.

MODIS LST, NDVI, and precipitation, including antecedent precipitation from one to five days,
were used to develop the MQR model as input data, and regression coefficients and equations were
estimated seasonally, which were divided into spring, summer, autumn, and winter. Jung et al. [5]
described the process of regression coefficients for suitability of the coefficients, such as p-value and
multicollinearity. To predict the spatial distribution of SM, the MQR model was performed by using
the LST variable quintiles, including 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, 0.9, and 0.95, as the single parameter with the greatest correlation with SM among the
land surface factors.

3. Results

3.1. Outlier Detection of Observed SM Data

To assess tendency showing SM increases with increasing PCP at the same time, the IF developed
two algorithms. The first one is the algorithm (IF1) using only observed SM data, and the other one is the
algorithm (IF2) using both observed SM data and PCP as an independent variable. Finally, the observed
SM data, after applying the IF algorithm for outlier detection (IF_SM), were used as the target variable
for quantile regression analysis.

Table 2 shows DRR and COR_PCP at 58 stations. From that result, the average DRR for IF1 and
IF2 was 23.6% and 16.0%, respectively. However, the result of IF1 showed that most of the original
SM data had approximately 28.8% uncertain data, whereas the result of IF2 showed a variety of
removal efficiency. This would come from considering PCP trends. To confirm the basic idea based
on increasing SM with increasing PCP, this study applied for IF2 algorithm and compared that using
COR_PCP. The COR_PCP showed 26.8% for IF1 and 35.2% for IF2. The results in the IF2 algorithm
improved tendency to increasing PCP and SM by about 8.4%. Finally, this study selected the results of
the IF2 algorithm. In Figure 4, the raw data (original observed SM) and the isolation forest considering
PCP (IF_SM) data were compared at major stations and are illustrated in Figure 4, represented by
different marks such as blue circles and red Xs.

Table 2. Summary of the data removal rate (DRR) and COR_PCP values at 58 soil moisture stations.

Station
No.

DRR (%) COR_PCP (%) Station
No.

DRR (%) COR_PCP (%) Station
No.

DRR (%) COR_PCP (%)

IF1 IF2 IF1 IF2 IF1 IF2 IF1 IF2 IF1 IF2 IF1 IF2

1 9.3 9.4 70.1 74.6 21 28.8 15.7 11.2 23.1 41 28.8 19.1 18.7 28.4
2 10.0 10.0 46.3 62.5 22 28.5 16.2 11.3 19.0 42 28.8 14.9 18.8 30.3
3 9.1 9.1 62.5 69.4 23 28.9 15.0 12.3 23.2 43 28.8 17.3 20.1 25.0
4 8.3 8.3 56.9 68.6 24 30.6 19.2 22.6 25.3 44 28.8 18.1 24.5 31.1
5 10.0 10.0 66.2 73.9 25 28.8 17.3 20.5 29.1 45 28.8 13.9 25.5 32.9
6 9.9 9.9 61.0 75.2 26 29.1 19.3 17.6 21.3 46 28.5 16.0 27.3 28.6
7 9.1 9.1 75.8 75.0 27 29.3 17.6 22.5 26.8 47 28.8 15.2 25.2 29.6
8 10.0 10.0 70.1 82.5 28 28.9 16.8 16.6 22.8 48 28.8 14.7 24.8 32.5
9 10.0 10.0 52.7 66.7 29 28.8 17.3 17.0 21.8 49 28.8 14.9 20.1 30.6
10 21.7 13.3 22.7 31.8 30 28.9 15.0 14.8 24.4 50 30.6 16.4 12.6 24.4
11 2.1 7.6 64.2 64.2 31 28.8 15.7 15.2 26.1 51 28.8 14.4 26.0 33.6
12 7.0 8.3 72.0 73.2 32 28.9 18.9 17.4 26.5 52 28.8 17.5 20.0 24.8
13 1.1 8.2 69.5 72.0 33 28.8 16.5 19.0 22.6 53 28.8 13.6 19.7 28.9
14 1.9 7.8 75.7 71.6 34 30.6 20.6 23.6 31.5 54 28.8 14.7 18.8 28.9
15 1.1 7.6 63.7 70.8 35 28.8 17.0 18.1 25.2 55 30.9 14.6 15.4 25.5
16 28.8 15.7 22.8 30.7 36 28.8 16.8 20.6 27.5 56 28.8 14.1 15.9 24.5
17 29.2 14.1 18.9 28.3 37 28.8 16.2 12.1 24.2 57 28.8 13.6 18.6 27.1
18 28.8 14.1 18.0 29.7 38 28.8 17.0 17.0 25.5 58 28.8 15.7 17.7 25.0
19 28.8 13.6 17.4 25.7 39 28.8 18.6 13.2 23.0
20 28.8 17.8 14.4 26.1 40 28.8 16.5 24.3 29.7

Note: DRR: data removal rate; COR_PCP: tendency showing SM increases with increasing PCP; IF1: isolation forest
using only observed SM data; and IF2: isolation forest using both observed SM data and PCP.
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3.2. Seasonal Multiple Quantile Regression (MQR) Results

Table 3 shows specific optimal regression coefficients for the 10%, 50%, and 90% quantiles.
As mentioned above, quantile regression was analyzed with a total of 19 quantiles of 0.05 intervals from
0.05 to 0.95. The coefficient of determination (R2) was calculated and presented to confirm the results
of the MQR model. The R2 shows a value from 0 to 1, and the higher value, the less error variance [46].
Overall, the R2 ranged from 0.38 to 0.82 and the average R2 of 0.61 in clay was much better than those
of the other soil types. Loam had an average R2 of 0.42. Notably, the R2 values for clay in spring and
summer were 0.76 and 0.55, respectively. The reason why R2 of clay was low in summer was considered
to be due to the climatic characteristics of South Korea associated with the monsoon season. Every year
from June to July, there is a rainy season known as Jangma, in which heavy rainfall is concentrated,
and it may cause some places to flood. The uncertainty of the soil moisture variation pattern is largely
due to the rainy season in the summer, and the predicted accuracy decreases accordingly. On the
other hand, in the spring, there is relatively little rainfall, so the pattern of soil moisture change is
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monotonous and seems to have a high correlation. In silt and sand, the average R2 values were 0.40 and
0.39, respectively. In particular, R2 was shown to be low in winter, and it is possible that there was an
instrument error in the observed value because the soil was frozen in winter. Compared to the previous
study [5] using the MLR model, there was no significant improvement in R2 values of less than 0.5.
The reason was determined to be that the classification of soil properties was not perfect. The observed
SM data provided by the RDA showed that the observation period was only approximately one year,
so that it was not stabilized, and irregular changes appeared. In addition, it was judged that the
accuracy was further reduced by reclassifying the soil properties into four categories.

Table 3. Seasonal multiple quantile regression (MQR) regression coefficients according to soil properties.

Class Season QT Con. NDVI LST
Precipitation (mm)

R2
n n-1 n-2 n-3 n-4 n-5

Silt

Spring
0.1 15.088 0.055 −0.087 0.089 0.079 0.078 0.058 0.066 −3.376 0.39
0.5 24.553 0.106 −0.106 0.142 0.119 0.104 0.087 0.096 0.719 0.40
0.9 35.656 0.052 −0.001 0.104 0.046 0.028 0.025 0.030 −9.066 0.41

Summer
0.1 10.026 0.038 −0.155 0.038 0.027 0.036 0.016 0.021 6.791 0.38
0.5 17.717 0.058 −0.051 0.055 0.048 0.043 0.043 0.047 6.966 0.40
0.9 31.081 0.071 0.019 0.058 0.021 0.016 0.029 0.031 −2.576 0.40

Autumn
0.1 18.406 0.007 −0.100 0.042 0.021 0.017 0.019 0.010 −7.386 0.40
0.5 22.940 0.065 −0.167 0.079 0.061 0.045 0.026 0.036 5.807 0.37
0.9 36.441 0.056 −0.045 0.094 0.049 0.030 0.021 −0.001 −8.570 0.41

Winter
0.1 11.860 0.129 1.008 0.251 0.326 0.235 0.223 0.190 −6.306 0.47
0.5 25.117 −0.064 0.968 0.090 0.113 0.071 0.108 0.155 −7.171 0.43
0.9 37.093 −0.034 0.190 0.176 0.068 0.035 0.064 0.059 −15.736 0.42

Clay

Spring
0.1 30.384 0.117 0.059 0.087 0.070 0.046 0.143 0.077 −29.746 0.75
0.5 32.075 0.084 0.324 0.080 0.067 0.063 0.031 0.057 −31.456 0.82
0.9 35.573 0.066 0.387 0.044 0.077 −0.025 0.039 −0.002 −35.157 0.73

Summer
0.1 −2.619 0.047 0.892 0.106 0.062 0.106 0.109 0.031 −9.398 0.48
0.5 25.584 0.124 0.858 0.134 0.110 0.098 0.078 0.063 −34.960 0.72
0.9 33.948 0.026 0.114 0.016 0.003 0.007 0.013 0.020 −4.555 0.38

Autumn
0.1 26.819 −0.021 0.648 −0.008 −0.012 0.037 −0.019 −0.012 −33.065 0.55
0.5 35.786 −0.088 1.060 −0.002 −0.007 0.034 −0.024 −0.032 −48.069 0.75
0.9 36.127 −0.006 0.380 0.032 0.008 −0.019 −0.036 −0.046 −15.892 0.46

Winter
0.1 20.479 0.029 0.165 −0.010 −0.002 0.049 0.046 0.026 −2.949 0.42
0.5 30.070 0.029 0.786 0.018 0.229 0.056 0.181 0.222 −20.613 0.60
0.9 25.154 0.502 0.687 0.148 0.086 −0.036 0.243 0.245 18.411 0.51

Loam

Spring
0.1 19.022 0.054 −0.274 0.126 0.094 0.082 0.087 0.091 2.036 0.42
0.5 28.364 0.072 −0.252 0.106 0.090 0.083 0.075 0.074 −0.018 0.42
0.9 38.353 0.061 −0.132 0.108 0.083 0.050 0.043 0.073 −9.671 0.42

Summer
0.1 3.738 0.021 −0.019 0.022 0.027 0.032 0.034 0.044 10.756 0.40
0.5 14.114 0.065 −0.036 0.070 0.061 0.058 0.057 0.071 9.071 0.41
0.9 32.465 0.084 −0.048 0.077 0.067 0.062 0.061 0.063 −3.093 0.41

Autumn
0.1 12.948 0.012 −0.410 0.015 0.010 −0.007 0.013 −0.002 12.524 0.39
0.5 24.783 0.055 −0.422 0.089 0.064 0.044 0.036 0.019 7.792 0.41
0.9 37.487 0.050 −0.157 0.087 0.064 0.054 0.042 0.028 −7.276 0.41

Winter
0.1 8.255 0.089 0.632 0.138 0.242 0.130 0.157 0.231 17.201 0.45
0.5 22.587 0.163 0.185 0.202 0.179 0.140 0.142 0.153 9.681 0.40
0.9 36.759 0.212 0.242 0.223 0.232 0.200 0.192 0.175 −11.426 0.41

Sand

Spring
0.1 14.288 0.052 −0.021 0.089 0.055 0.050 0.047 0.043 −13.091 0.40
0.5 21.173 0.085 −0.195 0.162 0.115 0.097 0.097 0.110 −0.466 0.39
0.9 33.889 0.159 −0.306 0.122 0.115 0.077 0.063 0.091 3.008 0.38

Summer
0.1 2.645 0.057 0.090 0.052 0.030 0.047 0.052 0.052 1.584 0.38
0.5 13.922 0.042 0.009 0.046 0.025 0.030 0.027 0.027 5.284 0.38
0.9 22.956 0.073 −0.203 0.094 0.050 0.043 0.024 0.035 14.563 0.42

Autumn
0.1 16.412 0.073 −0.250 0.050 0.053 0.044 0.037 0.032 −4.697 0.40
0.5 26.564 0.054 −0.346 0.058 0.045 0.034 0.028 0.025 −1.823 0.42
0.9 37.189 0.050 −0.428 0.092 0.062 0.052 0.049 0.047 −2.623 0.42

Winter
0.1 6.643 0.142 0.556 0.173 0.179 0.123 0.120 0.128 −0.422 0.41
0.5 12.481 0.181 0.545 0.339 0.317 0.203 0.243 0.241 15.538 0.40
0.9 34.959 0.277 0.139 0.404 0.274 0.191 0.275 0.209 −11.836 0.38

Note: For each independent variable, standardization was conducted before the regression analysis. QT: quantile;
Con.: constant; NDVI: normalized difference vegetation index; and LST: land surface temperature.
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3.3. Performance Comparison between The MLR And MQR Models

Based on the estimated regression coefficients, SM was calculated for each LST quantile ranging
from 10% to 90% and compared with the observed SM. The verification results were shown using R2,
root mean square error (RMSE) and index of agreement (IOA) to show the extent to which the results
were better than those of the previous study using MLR (Table 4) [5]. The RMSE means that the error of
the model is less as it approaches 0, and the IOA ranges from 0 and 1, indicating better efficiency when
the value closer to 1 [46]. Figure 5 shows the time series changes in the observed SM and calculated
SM through the MLR and MQR models. These representative stations in Figure 5 were recommended
by a previous paper from Jung et al. [5]. From that paper, those selected were defined by considering
physical characteristics, which were field capacity (FC) and wilting point (WP), to each soil type.

The SM calculated through the MLR model showed R2 values from 0.2 to 0.66 for the four soil
types, and the average R2 was 0.37. The RMSE ranged from 1.86% to 12.21%, and the average RMSE
was 4.15%. In contrast, the R2 and RMSE values for the MQR results ranged from 0.25 to 0.77, with an
average of 0.50, and from 1.08% to 7.23%, with an average of 3.04%, respectively. While the average
IOA of SM estimated by MLR was 0.54, and ranged from 0.17 to 0.88, the average IOA by MQR was
0.68, and showed a value from 0.3 to 0.87. From these results, the MQR results showed much better
performance than the MLR results. The average R2, RMSE, and IOA improved by 0.13, 1.1%, and 0.14,
respectively. These improvements came from removing uncertainty from measurement errors due to
freezing and mechanical errors by IF and the advanced regression algorithm. However, because the
soil map provided in this study consisted of four types, the SM prediction of the general MLR study
caused these errors. Therefore, the MQR algorithm overcame the limitation by estimating the various
regression equations under detailed conditions, such as season, soil types, and LST quantiles.

Table 4. Comparison of the statistical analysis results between the multiple linear regression (MLR)
and MQR models at 58 SM stations.

Station
No.

R2 RMSE (%/Day) IOA Station
No.

R2 RMSE (%/Day) IOA

MLR MQR MLR MQR MLR MQR MLR MQR MLR MQR MLR MQR

1 0.24 0.44 4.66 4.02 0.62 0.79 30 0.34 0.77 2.55 1.98 0.38 0.49
2 0.26 0.35 9.64 6.36 0.75 0.85 31 0.45 0.60 3.74 2.70 0.72 0.74
3 0.29 0.35 12.21 7.23 0.60 0.77 32 0.33 0.58 2.77 1.08 0.61 0.64
4 0.25 0.36 5.88 4.91 0.81 0.85 33 0.53 0.57 5.91 2.78 0.69 0.72
5 0.48 0.60 5.61 3.11 0.82 0.86 34 0.37 0.57 3.42 2.41 0.45 0.58
6 0.34 0.65 3.21 2.02 0.70 0.76 35 0.31 0.33 4.04 4.01 0.63 0.64
7 0.29 0.42 5.47 4.06 0.73 0.73 36 0.51 0.65 3.55 1.36 0.62 0.70
8 0.48 0.50 3.62 3.22 0.68 0.69 37 0.40 0.58 2.55 2.43 0.72 0.74
9 0.35 0.38 3.53 3.05 0.85 0.87 38 0.40 0.57 2.76 2.34 0.21 0.49

10 0.66 0.72 3.82 3.10 0.62 0.68 39 0.25 0.57 4.31 2.43 0.60 0.74
11 0.43 0.48 3.56 3.16 0.66 0.75 40 0.35 0.52 1.86 1.53 0.43 0.61
12 0.38 0.43 3.91 3.09 0.73 0.78 41 0.33 0.57 5.22 2.55 0.17 0.54
13 0.41 0.44 3.68 3.19 0.63 0.75 42 0.31 0.38 4.17 3.62 0.30 0.62
14 0.32 0.43 4.74 3.22 0.49 0.66 43 0.45 0.63 2.48 1.77 0.58 0.63
15 0.52 0.62 3.80 2.08 0.43 0.75 44 0.39 0.59 3.65 2.38 0.45 0.72
16 0.42 0.45 3.10 3.01 0.62 0.81 45 0.40 0.57 3.24 2.52 0.41 0.61
17 0.59 0.67 2.59 2.34 0.48 0.77 46 0.32 0.36 4.09 3.82 0.88 0.81
18 0.58 0.68 3.31 2.92 0.42 0.69 47 0.34 0.61 4.46 2.05 0.53 0.64
19 0.41 0.45 3.71 3.53 0.55 0.70 48 0.40 0.47 3.75 2.67 0.82 0.82
20 0.48 0.55 3.26 2.25 0.46 0.58 49 0.32 0.38 4.91 4.05 0.41 0.66
21 0.44 0.50 3.63 3.61 0.54 0.67 50 0.31 0.62 3.86 1.75 0.51 0.67
22 0.28 0.39 5.09 4.63 0.52 0.64 51 0.30 0.33 3.11 2.89 0.55 0.59
23 0.35 0.66 3.32 2.69 0.21 0.56 52 0.20 0.25 4.42 3.60 0.27 0.37
24 0.35 0.38 4.06 3.70 0.43 0.66 53 0.26 0.36 4.80 3.65 0.47 0.58
25 0.35 0.38 4.25 3.56 0.24 0.30 54 0.32 0.64 3.12 1.75 0.18 0.57
26 0.34 0.38 3.06 3.01 0.40 0.64 55 0.41 0.61 3.39 2.21 0.49 0.64
27 0.31 0.57 4.16 2.09 0.64 0.68 56 0.41 0.60 3.46 2.56 0.75 0.77
28 0.30 0.35 4.57 3.90 0.67 0.68 57 0.20 0.30 5.22 3.57 0.33 0.59
29 0.39 0.58 4.62 1.88 0.51 0.75 58 0.35 0.38 5.55 5.23 0.60 0.64

Note: R2: coefficient of determination; RMSE: root mean square error; and IOA: index of agreement.
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In Figure 5, the MLR results were reevaluated based on the method and information in
Jung et al. [5]. Notably, each box plot shows that the MQR SM is closer to observed SM than
the MLR SM. At the 32 gauging sites in clay, the first quartile (Q1) values of the observed SM, MLR SM,
and MQR SM were 28.6, 25.3, and 28.4, respectively. At these stations, Q1 by MQR showed a significant
improvement. The absolute percent errors for Q1 of the MLR and MQR were 34.8% and 14.2%,
respectively. The MQR result was better than that of the MLR result by 20.6%. At the 14 gauging
sites in loam, the Q1 values of the observed SM, MLR SM, and MQR SM were 14.6, 21.9, and 16.9,
respectively. The third quartile (Q3) values of the observed SM, MLR SM, and MQR SM were 23.1, 25.7,
and 24.0, respectively. At these stations, Q1 and Q3 of the MQR showed significant improvements.
The Q1 absolute percent errors of MLR and MQR were 49.8% and 15.6%, respectively. The Q3 absolute
percent errors of MLR and MQR were 11.1% and 3.9%, respectively. The MQR produced improvements
of 34.2% for Q1 and 7.2% for Q3 over the MLR results. At the 42 gauging sites in silt, the Q1 values of
the observed SM, MLR SM, and MQR SM were 14.0, 19.9, and 15.9, respectively. At these stations,
Q1 of the MQR showed significant improvements. The Q1 absolute percent errors of MLR and MQR
were 41.5% and 13.4%, respectively. The MQR result was 28.1% better than that of the MLR result.
At the seven gauging sites in sand, the Q1 values of the observed SM, MLR SM, and MQR SM were
11.5, 15.6, and 13.1, respectively. At these stations, Q1 of the MQR showed significant improvements.
The Q1 absolute percent errors of MLR and MQR were 34.8% and 14.2%, respectively. The MQR result
was 20.6% better than the MLR result.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 19 
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4. Discussion

4.1. Limitation of the MQR Model

Although the model was improved, there were some results that show poor accuracy. They could
have been caused by the non-standardized of the algorithm and the limitation of observed data.
Moreover, ignoring other variables that might impact on the estimation of soil moisture can reduce
model efficiency for the prediction of soil moisture. This study did not consider elevation and slope as
geophysical features; however, these variables are factors that can explain water flows under the land
surface. Of these results, SW, JJ3, CC4, TG2, and HH6, which showed low performance of the model,
have low elevation and slope at the same time. The elevations were 40 m (SW), 12 m (JJ3), 9 m (CC4),
11 m (TG2), and 3 m (HH6), respectively. The slopes of these stations were all about 0%, respectively.

To simply go over in terms of these effects, SM variation by PCP as natural inflow for these five
stations was analyzed. As seen in Table 5, these results show that average daily SM, when PCP was
less than 5 mm/day (dry SM), was slightly bigger than SM when PCP was over 5 mm/day (wet SM),
which means that this trend was unlike normal SM tendency. Moreover, dry SM at the SW station
increased an average 3.1% compared to wet SM. The reason for this tendency is that these five stations
are in the area around the river or relatively close to the river than the other 53 stations. In this
area, the interaction between surface water and groundwater occurs actively. Thus, it would cause a
strong dynamic movement of soil moisture. This result is a fragmentary analysis, which is difficult to
generalize, but it is necessary to consider those variables as a further review.
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Table 5. The additional features to review limitation of this MQR result: elevation, slope, and seasonal SM.

No. Station Elevation (m) Slope (%)
Soil Moisture (%/Day)

Year PCP over 5 mm/d PCP less than 5 mm/d

2 SW 40 0.40

2013 13.6 17.3
2014 12.0 14.1
2015 12.1 14.9

Mean 12.5 15.6

28 JJ3 12 0.12

2013 19.3 19.9
2014 18.7 19.4
2015 23.1 23.3

Mean 20.6 20.9

49 CC4 9 0.09

2013 22.3 25.7
2014 21.5 23.3
2015 19.7 20.5

Mean 20.9 23.0

53 TG2 11 0.11

2013 18.7 23.4
2014 21.7 22.5
2015 20.9 22.5

Mean 20.7 22.7

58 HH6 3 0.03

2013 22.3 24.6
2014 21.9 21.7
2015 25.5 24.9

Mean 23.4 23.6

Note: PCP over 5 mm/d (SM when PCP is over 5 mm/day); PCP less than 5 mm/d (SM when PCP is less than
5 mm/day).

4.2. Extension of Input Variables

In some papers for estimating SM, various factors applied such as albedo, brightness, greenness,
wetness, NDVI, normalized difference water index (NDWI), normalized difference built-up index
(NDBI), elevation, slope, and aspect [30]. It is thought that adding these variables will improve SM
prediction performance, but it has not been applied in this study. This is because the purpose of this
study was to evaluate how much performance could be improved by the MQR model compared to
that of the MLR model in the previous study [5], after filtering SM outliers. In addition, it could be
expected to improve the simulation performance by applying the temperature vegetation dryness
index (TVDI) [25], considering vegetation (NDVI) and land surface temperature (LST).

Even though this study did not consider the additional variables, we proceeded to improve the
existing simple algorithm based on the satellite image LST data. This study achieved meaningful results;
however, it is still necessary to consider the areas that did not improve significantly. Although the
accuracy of the model could be improved by adding new variables, as the variables become more
complex, multicollinearity between variables and overfitting of untrained variables would increase.
This can lead to significant side effects for the non-verified period.

Nevertheless, as mentioned in Section 4.1, considering the hydrological system of soil moisture,
we found out that the elevation, slope, and distance from the stream will have an additional effect.
Based on surface and groundwater flows, it could be determined that the elevation and slope values
would increase the movement of moisture due to slope in the soil. Furthermore, the soil moisture in
the area close to the river may be sensitive to the influence of groundwater in addition to precipitation
and soil characteristics. Therefore, if sufficient data are available, it is expected that future studies will
greatly improve this algorithm.

5. Conclusions

This study aimed to improve the original MLR algorithm for the indirect measurement of spatial
SM. To improve the original algorithm, this study first performed outlier detection of observed SM
using the IF method, which is a type of machine learning, and the spatial distribution of SM was
estimated using an MQR model from 2013 to 2015. As input for the MQR algorithm, MODIS LST,
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MODIS NDVI, precipitation, and the soil type were used as independent variables, with consideration
for the environmental attributes of SM. Because of the limitation of insufficient data, the soil type was
reclassified into four soil classes: silt, clay, loam, and sand. For this reason, the soil information at
58 stations was not uniformly distributed, and certain soils were more common. Therefore, this study
had to classify four soil types. The primary results are summarized as follows:

1. As a result of outlier detection, the average DRRs for IF1 and IF2 were 23.6% and 14.4%,
respectively, at 58 stations. In addition, average COR_PCP for IF1 and IF2 were 29.9% and 37.6%,
respectively. The result of IF2 shows that the IF algorithm considering PCP (precipitation) can
improve suitability of the outlier detection. Finally, the IF2 result was used as an input variable.

2. When comparing the MLR and MQR results, the R2 and RMSE values for MLR were 0.20 to 0.66
and 1.86% to 12.21%/day, respectively, while the R2 and RMSE values for MQR were 0.25 to 0.77
and 1.08% and 7.23%/day, respectively. From these results, the R2 improved by 0.13 from an
average of 0.38 to 0.50, and the RMSE decreased by 1.1%/day errors from an average of 4.15% to
3.05%/day.

3. Finally, in addition to improvement in accuracy, box plots were constructed for the four major
stations representing each of the soil types to match the cumulative distribution functions (CDF)
between observed SM and estimated SM, including MLR and MQR. At these stations, Q1 and Q3
of the MQR showed significant improvements. The Q1 and Q3 absolute percent errors for the
MQR improved by 25.9% and 5.2%, respectively.

The method of the indirect measurement of spatial SM using MODIS LST, NDVI, and antecedent
precipitation from the previous study [5] was verified. Additionally, MODIS LST corrected by the
CM technique ensured the reliability of the data. Compared to previous results from the MLR
model, improvements were seen not only in the R2 of the MQR model, showing a 62% (0.37 to 0.50)
improvement, but also in the distribution of the MQR, such that the CDF was close to the distribution
of observed SM. This method overcame the limitations of the previous model by improving both the
bias and variance. Nevertheless, since there were not enough data spanning more than two years at
most stations, all data spanning less than two years were used to train the MQR model. Therefore, this
study could have an overfitting problem for prediction. Future research could resolve this issue by
obtaining more than two years’ worth of observed SM data and by splitting the acquired data into
training and verification subsets.
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