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Abstract: Aerial imagery has the potential to advance high-throughput phenotyping for agricultural 
field experiments. This potential is currently limited by the difficulties of identifying pixels of 
interest (POI) and performing plot segmentation due to the required intensive manual operations. 
We developed a Python package, GRID (GReenfield Image Decoder), to overcome this limitation. 
With pixel-wise K-means cluster analysis, users can specify the number of clusters and choose the 
clusters representing POI. The plot grid patterns are automatically recognized by the POI 
distribution. The local optima of POI are initialized as the plot centers, which can also be manually 
modified for deletion, addition, or relocation. The segmentation of POI around the plot centers is 
initialized by automated, intelligent agents to define plot boundaries. A plot intelligent agent 
negotiates with neighboring agents based on plot size and POI distributions. The negotiation can be 
refined by weighting more on either plot size or POI density. All adjustments are operated in a 
graphical user interface with real-time previews of outcomes so that users can refine segmentation 
results based on their knowledge of the fields. The final results are saved in text and image files. The 
text files include plot rows and columns, plot size, and total plot POI. The image files include 
displays of clusters, POI, and segmented plots. With GRID, users are completely liberated from the 
labor-intensive task of manually drawing plot lines or polygons. The supervised automation with 
GRID is expected to enhance the efficiency of agricultural field experiments. 

Keywords: segmentation; pixels of interest; field plots; UAV; satellite; high-throughput 
phenotyping 

 

1. Introduction 

Agricultural field experiments have an advantage over greenhouse experiments because 
environmental conditions in the field are closer to real-world situations. The disadvantages of open-
field experiments are the massive scale; unpredictable influence of natural forces; and expensive and 
labor-intensive manual phenotyping, which often requires traveling long distances and enduring 
harsh working conditions. Remote sensing technology, on the other hand, has the potential to 
improve in-field phenotyping efficiency [1]. That is, remotely sensed images can partially substitute 
for manual phenotyping in a high-throughput manner, or even include additional plant 
characteristics not possible to collect through manual phenotyping. 

To record and utilize such characteristics from field experiments, orthoimages can serve as the 
digital media for transferring the information. This type of image is acquired from satellites or 
unmanned aerial vehicles (UAV), having been adjusted for lens distortion and camera tilt. Practically, 
orthoimages are saved in Geographic Tagged Image File Format (GeoTIFF). This file format can 
record more than three imagery channels, allowing scientists to explore information beyond visible 
wavelengths, such as near-infrared (NIR). GeoTIFF can also embed geographical information into 
orthoimages. To use these images for field experiments, plot boundaries must be defined for 
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segmentation, and the pixels of interest (POI) must be extracted. During the image process, several 
roadblocks prevent the use of orthoimages for high-throughput phenotyping for agricultural 
experiments. 

The first roadblock is a lack of ground devices for geographical information in the majority of 
orthoimage applications. Efforts have been made to ease this difficulty. One example is QGIS [2], 
which has a graphical user interface (GUI) and comes with versatile toolsets, enabling users to dissect 
terrain [3,4] or time-series variation [5], visualize raster data [6,7], and export the derived information 
for further applications. For applications without geographical information, QGIS allows users to 
either specify an area of interest (AOI) by manually drawing polygons or assign pixels as reference. 
Then, the software can identify pixels that share a similar spectral pattern. However, implementing 
segmentation in such a way can be time-consuming and laborious because one must manually draw 
the polygons around plots being investigated. 

To overcome the second roadblock of manually drawing polygons and assigning reference 
pixels, image segmentation tools have been developed to eliminate the labor by utilizing the grid 
layout of agricultural experimental fields. Field plots are commonly organized in grid layouts with 
rectangular, rhombus, or parallelogram patterns. Hence, by having essential parameters (e.g., size of 
plot, number of rows and columns) that define the field arrangement as guidance, plots can be 
automatically segmented if plots are aligned properly. Progeny [8] and EasyMPE [9] implemented 
this method to allow users to define plots without drawing polygons. The challenge is that plots are 
often misaligned between one row and another. 

To deal with the third roadblock of misaligned field plots, the Phenalysis program [10] was 
developed to adjust plot centroids using particle swarm optimization [11]. The algorithm arbitrarily 
initializes plot centroids and iteratively updates their locations based on the cost function, which is 
defined by intra-plot and inter-plot vegetation indices. The centroid locations are optimized when 
the function value converges or satisfies the criterion. 

The fourth roadblock is the extraction of AOI within plot boundaries. Trainable Weka 
Segmentation (TWS) [12] is a segmentation tool that comes with a supervised learning algorithm and 
learns pixel-based features from a provided training dataset. TWS can classify any pixel from given 
images. As the common disadvantage of supervised learning algorithms, the training process itself 
is labor-intensive. Additionally, this type of algorithm experiences difficulty when images contain 
objects that are outside the training range. Images of agricultural fields are extreme challenges for 
training. For example, plants can grow across their neighboring plots so that leaf canopies connect 
with or overlap each other. Irrelevant objects appear in a variety of forms, such as weeds and drip 
irrigation pipes. 

Among the existing methods and software packages, none of them simultaneously fixed these 
roadblocks and satisfy all desirable features to efficiently analyze images for plot information, 
including (1) independence from ground devices for geographical information, (2) freedom from 
drawing lines or polygons, (3) tolerance to plot variation due to plant interaction within and between 
plots, and (4) usability with minimal training. In this study, we developed automated methods and 
a software package to achieve all of these features, requiring little user guidance and including an 
easy-to-operate, interactive GUI. When users slide control bars on the GUI, results are instantly 
displayed for adjustment so that users can integrate their knowledge about the experimental fields 
into the final results. The package, named GReenfield Image Decoder (GRID), was designed by 
PyQT5 [13] and managed by Python Package Index. 

2. Methods 

2.1. Workflow 

GRID is initiated by prompting the user for an input image (Figure 1a) and an optional map file 
(Figure 1b). The map file contains the identification of plots that are arranged in rows and columns. 
The number of rows and columns also serves as the default to guide the segmentation. Without the 
map file, GRID automatically infers the layout from the image. For the input image, users can either 



Remote Sens. 2020, 12, 1697 3 of 16 

 

keep the original scope or assign four corners to crop a rectangular area for segmentation (Figure 1c). 
To differentiate pixels of interest (POI) from the background, a pixel-wise clustering is carried out 
(Figure 1d). POI and background pixels are labeled as 1 (highlighted in yellow) or 0 (black), 
respectively, to form a binary image (Figure 1e). The binary image can be further refined by shade 
removal (Figure 1f) and noise removal (Figure 1g). Based on the distribution of POI in the image, 
GRID can infer the field layout and locate plot centers via signal analyses (Figure 1h). The determined 
plot centers are used as starting points to initialize an intelligent agent. Agents will bargain with their 
neighboring plots and expand the plot boundaries (Figure 1i). Detailed algorithms of all the above 
steps are elaborated in the later sections. Each step in GRID comes with friendly graphical user 
interface (GUI) components. Users are allowed to fine-tune parameters via simple actions, such as 
dragging slider bars or clicking a mouse, and the final results are updated in real time. The 
segmentation results are saved as text in comma-separated values (CSV) files with CSV extension 
names (Figure 1j) and are visualized in Portable Network Graphics (PNG) images. The text files 
include plot rows and columns, plot size, and total plot POI. The image files include displays of 
clusters, POI, and segmentation results. Other than text and image files, a binary file is generated 
along with the analysis. This file, with the extension name “.grid”, records all optimized parameters 
from the segmentation, and users can load it into GRID to replicate the analysis on other images. 

 

Figure 1. Workflow of GReenfield Image Decoder (GRID). GRID takes an image (a) and an optional 
field layout text file (b) as input data. Users can either use the original image or a cropped image (c). 
The image is classified pixel-wise (d), and the clusters of interest can be selected to define pixels of 
interest (POI) (e). The POI from the selected clusters are displayed as yellow, and all non-POI are 
displayed as black. POI can be fine-tuned by removing shade (f) and noise (g). The plot centers (h) 
and boundaries (i) are automatically created and displayed as the red crosses and boxes, respectively. 
GRID output includes the text file (j) and images corresponding to (d), (e), and (i). GRID not only 
processes grid patterns in rectangle shapes, but also other patterns, such as rhombus shapes (k). 

2.2. Input Images and Field Layout 

GRID supports most image formats, including GeoTIFF, PNG, and Joint Photographic Experts 
Group (JPEG). All the channels from the image are loaded as a 3-D array (i.e., width by height by 
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channels), which later serves as numeric features for pixel-wise clustering. By default, GRID assumes 
the first three channels from the input image are red, green, and blue, respectively. If the image has 
more than three channels, GRID considers the fourth channel as near-infrared (NIR), but it does not 
make presumptions for any additional channels. To accelerate the computing speed, the input image 
is encoded to Uint8 and is proportionally resized to a smaller copy. The longest side of this copy is 
shorter than 4096 pixels and is used to represent the original image for the entire analysis. The image 
loading function is implemented by Python Rasterio [14], and the 3D array is managed by a numpy 
array [15]. 

A map file is an optional input into GRID and should be saved as a CSV file. Recorded in the file 
are tabular data, which represent the field layout. For example, if the image contains five columns 
and three rows of plots, the table should also have five columns and three rows of data cells. Values 
in the data cells are the plot names given their positions in the field. The names are also shown in the 
output file and allow users to track the specific plot. In general, providing the map file gives GRID a 
better idea of how many plots exist in the image and results in a better segmentation with the default 
configuration. However, if no map file is provided, GRID can still determine the field layout, but with 
less accuracy. 

2.3. Perspective Correction 

An orthomosaic is the most common input image format in phenomics. An orthomosaic is 
generated from merging several small orthoimages to cover a wide range of areas and has already 
been corrected for lens distortion and camera tilt. However, the correction cannot ensure that the 
selected AOI from an orthomosaic is in the shape of a rectangle; usually, an observable distortion 
remains in the image. To alleviate this problem, GRID linearly transforms and maps the current AOI 
into the shape of a rectangle. The four corner coordinates (xi, yi) from the AOI are defined as 
corresponding points P. A homography H can be found in the following equation: 

          𝛲𝐻 =  𝑥 𝑦 1𝑥 𝑦 1𝑥 𝑦 1𝑥 𝑦 1 ∙ 𝑥ℎ 𝑦ℎ ℎ 1𝑥ℎ ℎ𝑦 ℎ 1𝑥ℎ ℎ𝑦 ℎ 1 =  ⎣⎢⎢
⎡𝑥 ′ 𝑦 ′ 1𝑥 ′ 𝑦 ′ 1𝑥 ′ 𝑦 ′ 1𝑥 ′ 𝑦 ′ 1⎦⎥⎥

⎤ =  𝛲′ (1) 

where P’ equals the known four coordinates (x’i, y’i) that correspond to the four corners of the new 
projective rectangle. Therefore, the homography allows GRID to remove the distortion by applying 
such a transformation to the original AOI. The equation solving is implemented by the function 
getPerspectiveTransform () from OpenCV [16]. 

2.4. Pixels of Interest (POI) 

GRID conducts a pixel-level segmentation for each plot. The red and NIR channels (or the red 
and green channels if the image has only 3 channels) are considered as numeric features, which are 
used in a pixel-wise clustering to identify POI (denoted as 1) and background (denoted as 0). Pixels 
are grouped into clusters. Users can decide which clusters belong to POI. The clustering is conducted 
via a k-means clustering algorithm. The number of clusters is set to three by default, corresponding 
to the three major types of objects existing in the field images: vegetation, soil, and the rest. The first-
ranked cluster (vegetation most of the time) is selected as POI by default. Depending on the 
circumstance, users can freely tune the parameters, such as selecting imagery channels used for the 
clustering, number of clusters k and clusters specified as POI. The determination of POI turns the 
input image into a binary 2D matrix B, which consists of 0s (background) and 1s (POI). 

The binary image B can be refined via two approaches: de-shade and de-noise. Since every 
orthophoto cannot be taken at noon—the time of day with the minimum amount of shadow—
removing dark, shaded areas observed beneath the leaf canopy is essential for accurate analysis. The 
average of the first three channels (RGB) is used as a darkness (shade) indicator Sxy for a pixel at the 
coordinate (x, y). If we let Mxyi stand for the ith channel value at the pixel, the darkness of the pixel can 
be calculated as: 
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𝑆 = ∑ . (2) 

The corresponding values of the binary image at the coordinate Bxy is determined by Sxy and a 
threshold St: 𝐵 = 1, 𝑖𝑓 𝑆 𝑆0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . (3) 

Users can then filter any pixel darker than a chosen threshold St. 
The other image-refinement approach is to smooth noise signals. In the field, many non-

vegetation and trivial objects can be observed. For instance, pipes used for drip irrigation are usually 
placed under plant canopies and should not be considered part of the plant. Hence, GRID performs 
a 2D convolution operation to alleviate such noises. A pre-defined 3 by 3 kernel, ω, will span over 
the binary image B to smooth noises (Figure 2). A K-means clustering algorithm is implemented by 
OpenCV library, and the convolution operation is conducted via Python Numpy. 

 
Figure 2. Convolution operation for noise reduction. A binary image (B) is smoothed by the Gaussian 
kernel (ω). The binary image contains two pixels of 0s (open cells) that are surrounded by 1s (shaded 
cells) and considered noise. The convolution operation generates a matrix with the two noise cells 
filled by values above the Gaussian threshold (0.5). The transformed binary image displays the 
removed noise. 

2.5. Plot Centers and Layout 

The binary image B defined from the previous step is used to determine plot centers and layouts. 
Plot layouts refer to how the plots are arranged. For most cases, plots are arranged in a grid pattern, 
where all rows and columns are perpendicular to each other. However, in some circumstances, the 
angles between rows and columns are less than 90 degrees, and drawing a simple grid is unlikely to 
accurately segment each plot from an orthoimage. To solve this problem, we must determine the 
angle between rows and a vertical line, and the angle between columns and a vertical line. We define 
these two angles as the “rows angle” and “columns angle”. 

Fourier transformation, a math approach that finds constituent frequencies of given signals, is 
introduced to find the angles. The signal f(x) is a function of x coordinates from the binary image B: 

𝑓 𝑥 = 𝐵  (4) 

where h is the height of the image. We can learn the signal frequency domain  via Fourier 
transformation: 𝑓 𝜉 =  𝑓 𝑥 𝑒 𝑑𝑥 (5) 

where ξ is the signal frequency, and w stands for the width of the image. 
To search for the rows/columns angle, the binary image B is rotated clockwise from 0 to 90 

degrees at 15-degree intervals. Each angle has a corresponding signal and f is defined in Equations 
(4) and (5) above. We use the maximum value of f to represent the periodicity of the signal. Signals 
having stronger periodicities have a higher chance that their corresponding angles match the 
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rows/columns angle. The corresponding angles of the two signals with the highest periodicities are 
compared. The angle closest to 0 degrees is assigned as the columns angle, and the other is assigned 
as the rows angle. By knowing the field layout, we use the local optima of the signals defined in 
Equation (4) to locate plot centers. Signal values are compared with their neighboring values. If the 
location has a relatively higher value than those adjacent, the location is a local optimum and is 
defined as plot center of the corresponding row/column (Figure 3). Finally, combining the 
information of plot centers and field layout, GRID determines 2D coordinates of all the plots. Fourier 
transformation is implemented by Python numpy, and the local optima searching algorithm is 
realized via Python Scipy library [17]. 

 
Figure 3. Automatic detection of plot layout through image rotation. The input image has a layout 
arranged in a rhombus shape (a). The rotation of the POI image is demonstrated at 15-degree intervals 
(b). Vertical-scan signal f(x) is an average value at the position x of the POI image, where x is the 
horizontal position of the POI image (c). Frequency domains 𝑓 𝜉  are computed via Fourier 
transformation, where 𝜉 is the signal frequency over f(x) (d). 𝑓 𝜉  is used to determine the optimal 
rotation of the field image. When the correct rotation matches Fourier transformation, the frequency 
domain contains a single peak with a high POI density relative to other rotations. This example 
demonstrates that valid rotations (45o and 90o) have repeating vertical POI density patterns that, when 
Fourier transformed, result in a frequency domain that can determine the optimal rotation. Red stars 
shown in the two optimal rotations represent the plot centroids in (c) and the single peaks of 
frequency domain (d). 

2.6. Plot Boundaries 

Before determining all plot boundaries, the dimensions of each plot must be estimated. An 
“intelligent agent” is initialized at the center point of each plot (defined in the previous step), and 
then it starts to traverse toward the four different cardinal directions (i.e., north, east, south, and 
west). Whenever the agent arrives at a new pixel position, it will examine whether this pixel is 
assigned to the POI or not. If yes, the agent will continue its traverse in the same direction to the next 
new pixel position. If no, the traversing will also continue in the same direction, but a 1+ increment 
will be added to the counter. The searching process in one direction is terminated when the counter 
becomes greater than the criterion. By default, the criterion is set to 5. With the information about 
how far an agent traveled in each direction, GRID can roughly estimate the width and length of each 
plot. 
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Each agent will bargain with its neighboring agents to expand its territory (Figure 4). The idea 
“bargaining bar” is introduced in this step. When the agent bargains with its horizontal (or vertical) 
neighbor, the bargaining bar is initialized as a vertical (or horizontal) vector at its plot center. The 
length of the vector is plot height (or plot length) estimated from the previous step. Two neighboring 
bars will iteratively compare their “bargaining power” to decide which one can shift a pixel toward 
the opposite plot. In the case of a tie, both bars can shift. This bargaining process will end when two 
bars meet at the same position, which is the position where plot boundaries are finalized. Two factors 
define the bargaining power. The first factor is the proportion of POI covered by the bargaining bar, 
defined as V(bar): 𝑓 𝜉 =  𝑓 𝑥 𝑒 𝑑𝑥 (6) 

where nPOI and nbackground are the number of POI and background pixels in the bargaining bar. The 
second factor is the ratio of the distance between the bar and its plot center (denoted as d) to the 
distance between the centers of the two neighboring plots (denoted as D). We can formulate these 
two factors as the bargaining power: 𝐵𝑎𝑟𝑔𝑎𝑖𝑛𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟 = 𝑉 𝑏𝑎𝑟  𝛾 𝑑𝐷  (7) 

where 𝛾 is the grid coefficient. A higher 𝛾 will result in boundaries that tend to follow a grid pattern, 
which means plots from the same rows/columns are less likely to expand their boundaries into other 
rows/columns. By default, 𝛾 is set to 0.2. For those plots located on the image edge and without 
neighbors, their boundaries are defined by the image borders. 

 

Figure 4. Boundary bargaining between adjacent plots. The bargaining between two plots starts at 
their center points in either column or row directions (a, left). The final boundaries (a, right) are 
determined by the movement of bargaining bars. A bargaining bar moves away from its center if it 
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has more power than its opponent. The power of a bargaining bar is defined by its proportion of 
pixels of interest (POI, red area on the bar itself) over the total pixels (red + blue on the bar) adjusted 
by a penalty. The penalty is a bargaining bar’s distance to its plot center (lower case red d) divided 
by the distance between the centers of the two plots (upper case red D), multiplied by a weight 
(default of 0.2). The right plot has more power than the left plot and reaches its left edge first (b). 
When left and right plots do not have POI intersecting their bargaining bars, both bars move forward 
(c). After the left plot finds its separated POI, it gains power and moves to the right edge (d). At the 
end of the bargaining process, both plots run out of POI and the bars move simultaneously to 
complete the connection and form the boundary (e). 

2.7. Evaluation 

Two images from our lab and several others from the internet were used to benchmark GRID’s 
precision. The first orthomosaic from our lab covers an alfalfa field, which was taken at noon on 9 
June 2019. This orthomosaic was used to validate GRID’s capability in dealing with shaded areas and 
irrelevant objects such as drip irrigation pipes. The field layout is in a straight grid, but some of the 
plots have connected leaf canopies, which usually poses a challenge for existing segmentation 
methods. The second test used an orthomosaic generated by our lab at noon on 31 May 2019. The 
biggest challenge of this image is its field layout; the plot columns tilt at an angle of 30 degrees from 
a vertical line. Therefore, we used this orthomosaic to examine whether GRID can handle field plots 
in arrangements other than a straight grid pattern. The images from the internet were used to exam 
GRID’s performance with different plants in different settings, including drone versus satellite 
images and rectangle versus rhombus field layouts. 

We evaluated the computation time relative to image file size and number of plots. The file size 
can significantly affect the image loading time. Furthermore, a large number of plots in an image can 
also increase the computing time, particularly during the search for plot centers and the boundary 
bargaining process. We modified the first orthomosaic into different circumstances to assess GRID’s 
performance relative to speed. The image was resized to 0.1 GB, 0.5 GB, 1 GB, 1.5 GB, and 2 GB, and 
the loading time was measured for each file size. We also cropped the image into smaller numbers of 
plots—50, 100, 150, and 200— and then evaluated how fast GRID performed plot searching and 
boundary bargaining. Each speed evaluation was conducted 100 times, reported as the mean and 
standard deviation, and visualized with a boxplot. The test environments were implemented on an 
Apple MacBook with Intel Core i9-8959HK CPU @ 2.9 GHz, 32 GB 2400 MHz DDR4 RAM, and 
Radeon Pro Vega 20 4GB GPU. 

3. Results 

3.1. Segmentation on a Variety of Plot Layouts 

We tested GRID on a variety of plot layouts (Figure 5 and Figure S1–3), including straight rows 
and columns, zigzag, rhombus, and multiple rows in a zigzag layout. An alfalfa field with plots in 
straight rows and columns was chosen to demonstrate the control of noise and shade (Figure 5a). 
Plots in the same row were connected by a visible drip irrigation pipe. GRID removed most pipes 
and replaced them with empty areas (white pixels), ensuring they would not be considered part of 
the segmented plots. The alfalfa field image also included plots that appeared to have connected leaf 
canopies, which present ambiguous areas for the segmentation. For instance, we observed that plots 
grown in the 5th row from the top, 2nd and 3rd columns from the left, were connected by their leaf 
canopies. With noise removal and clues from POI distribution, GRID recognized them as different 
plots and found a proper boundary to separate them. Within the final results, many white areas can 
be observed in each plot. Compared to adjacent pixels, these areas were mainly darker pixels, which 
GRID recognized as shade areas. These dark pixels are replaced with white pixels to achieve shade 
removal and prevent these non-vegetation pixels from causing information bias. GRID is also tolerant 
of missing plots. For example, about one-fourth of the plots in the left column of the alfalfa field were 
missing, but GRID still automatically recognized this column. 
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Two satellite images were chosen to demonstrate the tolerance of GRID on low resolution—one 
image of wheat with zigzag plots (Figure 5b) and one image of cherry trees arranged in a rhombus 
shape (Figure 5c). The wheat field is located on the Spillman Experimental Farm at Washington State 
University in Pullman, Washington (WA), U.S.A. Testing germplasms were continuously planted 
one after another in rows. Rows were separated by empty spaces. The individual plants adjacent to 
two germplasms were treated with herbicide for removal to ensure that all plots were the same size. 
Although the resolution was low, GRID clearly separated the plots. The cherry tree orchard is located 
in Grandview, WA, U.S.A. These trees varied in both shape and size. The image was taken when the 
sun cast a black shadow from each tree in the direction of the neighboring tree above and to the right. 
In addition, the soil at the base of the trees was covered with white plastic for weed control. GRID 
successfully removed both the shade and the background plastic. 

Another wheat field image by drone (Figure 5d) was chosen to demonstrate the capability of 
GRID to process the difference between the visual appearance and actual plots. In this field, each test 
plot was arranged with four separate rows, which should be combined for analysis instead of 
segmenting each row as a single plot. Another challenge in this image is that the rows and columns 
of plots are not arranged in straight lines. By providing the number of plots in the field, GRID can 
still detect the proper layout even when plots are not arranged perpendicularly. In addition, some 
unusual objects existed within the plots. For example, one plot grown in the 1st row from the top and 
2nd column from the right and one plot in the 3rd row from the top and 2nd column from the right have 
stripe-patterned objects across all four sub-row plants. By comparing the spectral information from 
the given image, GRID can recognize those objects as non-POI and remove them from the results. 
However, in this case, the contrast between POI and background was weak, so that these irrelevant 
objects were not completely removed. Similarly, in the alfalfa field example above, some drip 
irrigation pipes can still be observed after the segmentation. However, overall, plots were well 
segmented and are representative of their spectral variation. 
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Figure 5. Segmentation of images with different plot layout patterns and resolutions. The patterns 
include perpendicular layout of alfalfa (a), zigzag-like layout of wheat (b), rhombus shape of cherry 
tree orchard (c), and multiple rows within plots of pea field (d). The alfalfa and pea field drone images 
were provided by Zhou Tang and Samuel Revolinski. The other two are Google satellites images for 
wheat on Spillman Agronomy Farm at Washington State University (46°41’50.8”N 117°07’29.1”W) 
and for cherry trees in Grandview, Washington (46.230664, 119.904291). The left panel displays the 
raw images and the right panel demonstrates the extracted pixels of interest with plots defined by the 
red boxes. 

3.2. Extraction of Plot Features 

For all the POI of a plot, GRID calculates their average and standard deviation for all the 
channels of the input image. Six vegetation indices are also calculated pixel-wise, with their average 
and standard deviation as output for each plot. The six vegetation indices include the Normalized 
Difference Vegetation Index (NDVI) [18], Green Normalized Difference Vegetation Index (GNDVI) 
[19], Combination of Normalized Difference Vegetation Index (CNDVI) [20], Ratio Vegetation Index 
(RVI) [21], Green Ratio Vegetation Index (GRVI) [22], and Normalized Difference Greenness 
Vegetation Index (NDGVI) [23] (Table S1, Figure S4). For each segmented plot, GRID extracts both 
plot area and vegetation area in units of the number of pixels. Plot area includes the vegetation area 
and the areas of non-interest, such as soil background, shade, and weeds. The extracted information 
can serve as imagery features associated with plant growth and potential indicators of plant vigor. 

3.3. Intermediate Images for Diagnosis and Futher Studies 

Multiple intermediate images record the major processes of image analyses by GRID. These 
processes include pixel-wise cluster analysis, POI class selection, plot center location, and plot 
segmentation (Figures 5 and 6). These images usually have much better resolution than the displays 
on the GRID interface. These intermediate images can be compared to the original image and used to 
evaluate whether the analysis was conducted appropriately. For example, users can verify if any 
clusters were missed as POI or any clusters were incorrectly classified as POI. The centers and 
boundaries on the original image provide a convenient way to assess the accuracy of the 
segmentation. 



Remote Sens. 2020, 12, 1697 11 of 16 

 

 

Figure 6. Multiple intermediate images of segmentation. GRID saves multiple intermediate images 
for documentation, diagnosis, and further image analyses. These intermediate images demonstrate 
the pixel-wise cluster analysis (a), the plot centers on selected pixels of interest (b), and the raw image 
(c). The plot boundaries are displayed on both selected pixels of interest (d) and the raw image (e). 
The pixels of interest are displayed for the raw image with pixels of non-interest displayed as white 
background (f), which are also saved as HDF5 for each of segmented plots as numpy arrays. The raw 
image was taken by drone on the alfalfa field in Figure 5. 

In addition, the segmented images contain more and potentially highly valuable information 
than what is reported by GRID as text files. For example, a single plot in a segmented image can 
exhibit visible characteristics that are biologically important. The plot length may relate to plant 
standing counts. The distribution of shade may be useful for evaluating canopy coverage, which is 
critical for weed control and water-use efficiency. To accommodate such a need for extracting 
additional image information, GRID outputs the segmented plots in numpy arrays and saves them 
as HDF5 files. The numpy arrays are commonly used for matrix computations, which can then be 
used for further image analyses, including their application as training and testing data for machine 
learning. 

3.4. Computing Time 

In the step of loading images, we observed a linear relationship between the file size and the 
median of the elapsed time from 100 iterations (Figure 7). For most cases, files smaller than 1 gigabyte 
can be loaded within 5 seconds, and a 2 gigabytes file takes less than 10 seconds to load in our testing 
environment. In terms of computing speed stability, which refers to the potential for differences in 
elapsed time from one iteration to another, loading a larger file may result in a greater variation in 
elapsed times. In addition, plot number is another factor that can limit computing speed. In the step 
of plot searching, we found that every extra 50 plots takes another 0.2 seconds to compute. With 200 
plots, only 1 out of 100 iterations may take more than 3 seconds to finish the search. The boundary 
bargaining step takes a little more time than plot searching. On average, an image with 200 plots 
takes 2.8 seconds to finish the bargaining process, and 4 out of 100 iterations may take more than 3.5 
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seconds. Thus, we observed that the computation time for both crucial steps, plot searching and 
boundary bargaining, also increases linearly with the number of segmented plots. 

 

Figure 7. Linear computing complexity over file size and the number of plots. The total running times 
in seconds (s) were divided into times (s) for loading images (a), searching plot centers (b), and 
defining boundaries (c). The image loading time is linear to the image size. The running times for both 
searching plot centers and defining boundaries through bargaining between adjacent plots are linear 
to number of plots. 

4. Discussion 

4.1. Advantages of Using GRID 

GRID can be applied to a variety of plot layouts. These layouts include not only rows and 
columns arranged perpendicularly, but also rhombus patterns (i.e., rows and columns offset at 60-
degree angles) and zigzag patterns (i.e., rows and columns are offset at angles less than 60 degrees). 
Two design features explain GRID’s wide adaptability relative to plot layout. First, GRID allows rows 
to intersect with columns at any angle, which leads to the more accurate placement of plot centers 
close to or at the actual center of the plots. Second, GRID’s segmentation process is tolerant of 
estimated plot centers that are less accurate, as long as the actual plot centers are within the POI of 
the plots. For example, the wheat plots in the satellite image were offset at a very narrow angle 
between the rows and columns. When GRID applied straight rows and columns at 90 degrees, some 
of the plots centers were placed at the center of plots, and some were placed at the end of plots. The 
bargaining process proceeded all the way to the other side of plots. As a result, GRID performed 
satisfactory segmentation for both types of plots, whether the plot center was located at the center or 
at the end of the plots (Figure 5b). 

4.2. Operation Parameter File and Batch Processing 

GRID stores operation parameters in a file named GRID.grid, which was designed for batch 
processing. However, conducting satisfactory analyses through batch segmentation remains 
challenging. In practical scenarios, users may have a series of images taken across different seasons. 
Parameters used in one image cannot be guaranteed to reproduce the same quality of outcomes when 
applied to another image taken in a different season. One reason for the different outcomes is that 
field management practices vary according to different crop growth stages. For example, herbicides 
are rarely used in the early growing stage, so both weeds and seedlings will look similar in terms of 
their color when observed in an image. This fact may cause difficulties for our algorithm when it 
attempts to differentiate two objects based solely on imagery channels. The current workaround is 
that instead of detecting POI via pixel-based clustering, GRID allows users to manually specify plot 
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locations and sizes. Since we expect plots to remain in the same locations over time, anchoring their 
coordinates and expected sizes ensures better plot segmentation compared with spectral signals, 
which can change dramatically over time. 

4.3. GRID-Based Vegetation Indices Output Versus User-Defined Output 

GRID outputs the plot averages and standard deviations of six vegetation indices that are 
calculated pixel-wise from the channels of the original images. However, other indices may be of 
particular interest to specific researchers. Some researchers may even be interested in defining their 
own indices. With the output of plot averages and standard deviations, GRID users can derive other 
vegetation indices of interest. Calculations are slightly different for indices derived by the users 
compared to the indices of GRID’s output. For GRID’s output, the indices are calculated pixel-wise 
first, and then the averages and standard deviation are calculated. For the indices derived by users, 
the averages of the image channels must be used to calculate plot averages, which can offer relatively 
good approximations. However, the derivation of the standard deviation within a plot for user-
defined indices is not straight forward because pixel-wise data are unavailable. 

4.4. Boundary Bargaining Between Adjacent Neighbors 

Although each plot has eight potential adjacent neighbors, boundary bargaining is only 
conducted with the neighbors in the same rows and columns, having no boundary overlap between 
them. That is, no bargaining occurs between the neighbors on the diagonals and not in the same rows 
or columns. As a result, a plot has the potential to share the same area with neighbors on the 
diagonals, which means that the total plot area may exceed the total image area. For plots with layouts 
in straight rows and columns, this problem is negligible. However, for other plot layouts, this 
problem could be severe. 

4.5. Limitations 

Currently, GRID only provides two options, either 0 or 90 degrees, when choosing rows or 
columns as the major axis of the field plot layout. When rows are chosen as the major axis, the 
columns are defined as the minor axis, and vice versa. In contrast, the minor axis can be optimized 
or adjusted to any angle degree that matches the layout. This approach works for images with either 
rows or columns that align with either the vertical or horizontal direction of the image. For images 
that do not have such properties, users can crop the images to satisfy the requirement. In such cases, 
the area of interest will be partially removed if near image edges, especially if near the corners. 

GRID assumes the first three channels are the visible channels (RGB) and uses their average to 
control shade and noise. Thus, this assumption is invalidated for some multispectral images that 
capture other wavelengths. This assumption can also cause problems for calculating vegetation 
indices. GRID does not allow users the flexibility to define the channels and derive the vegetation 
indices accordingly. Users must arrange the channels based on the assumption of GRID. Otherwise, 
the adjustments on shade and noise should be conducted with caution. The output of vegetation 
indices should be interpreted accordingly or calculated from the values of channels. 

Certain situations make it difficult for GRID to select POI or to segment. One situation that 
affects the selection of POI is a field filled with weeds that look very similar to the crop of interest. In 
many cases, weeds are distinguishable from crops so that weeds can be assigned to a cluster different 
from crops. Consequently, weeds are considered as background and will not affect layout detection 
and boundary determination. However, if weeds are nearly identical to the vegetation of interest for 
all channels, including RGB and other multispectral channels, GRID is unable to accurately select 
POI. Another situation that affects the segmentation is a field that contains a significant number of 
missing plots or a field layout of plots that is barely visible to human eyes. In these cases, GRID will 
have problems detecting the layouts automatically. Users must manually conduct the segmentation 
by defining the number of rows and columns. 
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GRID uses a pixel as the unit in its outputs, including the area of vegetation. Results from 
different images are comparable only if they have the same resolution. To compare images with 
different resolutions, users have to set reference objects in each image and transform the original 
GRID outputs accordingly. 

5. Conclusion 

GRID is a user-friendly tool that automatically produces segmentation for images with minimal 
human involvement. GRID is capable of detecting different types of field layouts, including plots 
arranged in grid or rhombus patterns. As a result, GRID produces more precise outcomes compared 
to other software programs that can only define AOI by drawing polygons. In terms of computing 
speed, GRID can handle data larger than 1 gigabyte and more than 100 test plots within one minute. 
The computing time is linear to the file size and plot number. This feature allows users to scale up 
their analyses to larger areas of field plots. Moreover, GRID is implemented with an interactive GUI. 
With a real-time preview panel in the interface, users are expected to experience a smooth learning 
curve using GRID. Since any change made in the software options during the plot segmentation 
process can be previewed before exporting the final results, users can compare the outcomes from 
different configurations intuitively. GRID is expected to be an effective tool for extracting field plot 
features, which can then be used directly for high-throughput phenotyping and further analyses in 
agricultural research. 

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/12/11/1697/s1, 
Figure S1: Segmentation of plots in perpendicular rows and columns distanced equally. Figure S2: Segmentation 
of plots in perpendicular rows and columns with variations. Figure S3: Extraction of pixels of interest (POI) on 
images orientated in perpendicular, diagonal, and rhombus shapes. Figure S4: Scatter plots of plot features 
extracted from an alfalfa drone image. Table S1: Vegetation indices exported from GRID. 

Availability and implementation: The GRID executable file, user manual, tutorials, and example datasets are 
freely available at GRID website (http://zzlab.net/GRID). GRID is released as an open-source software on GitHub: 
https://github.com/Poissonfish/photo_grid. 
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