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Abstract: The increased development of computer vision technology combined with the increased
availability of innovative platforms with ultra-high-resolution sensors, has generated new
opportunities and fields for investigation in the engineering geology domain in general and landslide
identification and characterization in particular. During the last decade, the so-called Unmanned
Aerial Vehicles (UAVs) have been evaluated for diverse applications such as 3D terrain analysis, slope
stability, mass movement hazard and risk management. Their advantages of detailed data acquisition
at a low cost and effective performance identifies them as leading platforms for site-specific 3D
modelling. In this study, the proposed methodology has been developed based on Object-Based Image
Analysis (OBIA) and fusion of multivariate data resulted from UAV photogrammetry processing in
order to take full advantage of the produced data. Two landslide case studies within the territory of
Greece, with different geological and geomorphological characteristics, have been investigated in order
to assess the developed landslide detection and characterization algorithm performance in distinct
scenarios. The methodology outputs demonstrate the potential for an accurate characterization of
individual landslide objects within this natural process based on ultra high-resolution data from
close range photogrammetry and OBIA techniques for landslide conceptualization. This proposed
study shows that UAV-based landslide modelling on the specific case sites provides a detailed
characterization of local scale events in an automated sense with high adaptability on the specific
case site.

Keywords: landslide assessment; UAV photogrammetry; remote sensing; object-based image analysis
(OBIA); mass movements; surface deformation; SfM processing

1. Introduction

Natural hazards pose a major threat in multiple regions of the world and usually cause crucial
economic dislocation, environmental impacts and fatal injuries. Landslides represent one of the most
destructive natural hazards, and often cause substantial human and infrastructure losses which form
significant obstacles to the sustainable development of a healthy society [1]. Landslides and rockfalls
constitute one of the most widespread geo-hazards which take place every year in Greece and they
have terrible consequences for the overall sustainability. In general, mass land movements are complex
systems, which can be described as the movement of different kinds of sources such as rocks, soil or
debris down a slope, and they are expected to occur most often under similar circumstances to those
that have led to past slope failures. In most of the cases, those failures are linked as indirect post-events
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after heavy rainfall [2] or seismic events [3] and the majority cause considerable losses. These mass
movements are indeed favored along pre-existing instabilities and their timely identification is of
primary importance. The tremendous effects of landslides have serious impacts on the anthropogenic
environment [4] and most of the times the event is abrupt with no warning sign of failure and inability
to collect post-event information due to site inaccessibility [5]. In the past, several multi-organization
collaborative research projects have been carried out for landslide hazard and risk management such as
“Safeland” project. Its main task was to develop informative quantitative risk management strategies for
landslides across Europe at the regional and national scales, but a few studies have been done on a local
scale [6]. In order to enhance landslide and rockfall capacity and preparedness and produce detailed
landslide inventories in a cost and time effective manner, detection and mapping of those events using
“state-of-the-art” remote sensing products has been proved to be a promising approach to provide
susceptibility, hazard and risk maps [7]. The main task of a landslide inventory is to produce detailed
maps that show the landslides’ exact location, extent and movement magnitude [8,9]. The conventional
engineering geological mapping, which is a significant component of site investigation of a particular
landslide or rockfall site, is primarily based on ground survey, which includes field mapping from
experienced experts. Recently, there has been increasing interest in developing automatic and accurate
procedures for landslide and rockfall segmentation and characterization into meaningful hazard
entities, aiming at replacing subjective conventional, expensive manual procedures for delineating and
assessing those catastrophic events in site specific scales.

2. Remote Sensing Evolution in Landslide Monitoring

In the last decades, remote sensing (RS) techniques and geographical information systems (GIS)
have undergone rapid development in among other areas, regarding the investigation in the field of
landslide management [10]. The combination of efficient and precise data acquisition and time-effective,
highly accurate analysis of that data, have made the RS and GIS applications integral parts of landslide
investigations [11,12]. The extended need for automated unbiased landslide recognition procedures
has led to the development of image processing techniques, which can be divided into pixel-based
approaches including unsupervised [13] and supervised classification [14] and lately to object-based
techniques [15,16], object-based image analysis (OBIA) or geographic object based image analysis
(GeOBIA) which have been used for over two decades as a framework for feature extraction, especially
based on the latest advances with very high spatial resolution imagery. In addition, object-based
classification approaches have been proved to result in higher accuracy while simultaneously, they
aggregate pixels into a network of homogeneous objects corresponding to realistic surface patterns
compared with traditional pixel-based methods [17]. A large number of researchers have pointed out
the superiority of object-based procedures over the traditional pixel-based ones [18–21]. The OBIA
approach consists of two distinct phases: a segmentation and a classification procedure. According to
the literature, it is advisable that image objects produced by a segmentation process should be linked
with a relation to the geographic objects of interest which in the current case are landslide features [22].
Thus, segmentation constitutes a crucial step towards obtaining optimal classification results [23]. The
best-fit values of these variables for a specific case site can be estimated by semi-automatic methods
such as the estimation scale parameter (ESP) [24], or optimum scale parameter selector (OSPS) [25],
or through trial and error methods [7,26,27]. Although different classification algorithms have been
evaluated for landslide detection such as random forests (RF) [28], genetic algorithms [26], mathematical
morphology [29], support vector machines (SVM) [30], and artificial neural networks (ANN) [31], these
methods all suffer from limitations regarding site-specific landslide assessment. Additionally, most
studies lack valuable semantic information on landslide- specific elements and how they react with the
surrounding environment, natural and man-made objects [32]. Furthermore, pixel-based techniques
rely solely on the spectral signal of individual pixels which constitutes a disadvantage concerning the
amount of information available today. The development of OBIA has been of particular significance
to ultra-high-resolution land cover mapping [33,34], especially for site-specific scales [35]. As so, it is
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crucial to investigate their distinct elements and their respective behavior in terms of computer vision
sense aiming to neglect as much as possible the human factor which leads to subjective results. It
should be mentioned that specialists understand a landslide case site as a scene of discrete entities such
as the landslide source and deposition area, non-affected regions, multiple assets such as vegetation,
road networks and other scene elements characterized by specific properties such as colour, shape and
spatial patterns.

Manned aircraft can sometimes offer high spatial resolution data for landslide study purposes, but
those systems have some serious drawbacks such as their operating costs for flying over large areas.
Lately, close-range remote sensing technology such as unmanned aerial vehicle (UAV) photogrammetry
and terrestrial laser scanning (TLS) surveys have been extensively applied in the geoscience domain
due to their effectiveness in rapidly collecting precise and accurate terrain morphology data [36]. UAVs
or remotely piloted aircraft systems (RPAS, commercially named drones) have shown tremendous
growth in the field of landslide mapping due to their effectiveness and efficiency in gathering valuable
data throughout the affected areas [37,38]. The term UAV, which is more common in the literature,
covers all vehicles flying in the air with no person on board with the capability of controlling the
aircraft [39]. The main principle is that a UAV takes aerial images, incorporated with spatial data
based on global navigation satellite system (GNSS) and an inertial measurement unit (IMU), over
an area to produce a very high resolution 3D point cloud [40]. Advantages such as the repetitive
measurement capability and low cost, while still being able to provide very high spatial data resolution
in comparison to satellite and aircraft data capture systems, are positioning UAVs in a very promising
data acquisition platform for multidimensional purposes [41]. Thus, in recent times, the use of UAVs
in landslide monitoring has shown an extreme growth [42] and the future seems promising in terms
of sensor capability. Those platforms are able to fly and collect datasets over disaster areas where
human access for in situ studies is impossible [43]. Most of the studies are focusing in the delineation
of the affected area from UAV orthophotos and the classification of the hazardous area based on
a number of factors [44]. On the contrary, some researchers such as [45] choose to follow a more
topographical approach by using as main input a high-resolution digital surface model (DSM) of
the landslide area in order to identify the affected area based on multitemporal topographic factors
such as slope and aspect. Geological formations such as fault and rupture zones have been identified
in [46] by applying feature detection with a UAV platform immediately after the event. Lately [47] has
reported the execution of several flights using a micro-UAV to investigate the DSM generation in the
Super-Sauze landslide in France which cost several human lives. The latter provided a detailed analysis
of the Super-Sauze landslide kinematics which can serve as a basis for further protection measures.
Moreover, ref. [48] used a small fixed-wing UAV mounted with a consumer camera to collect data
in order to produce detailed DSMs to monitor and provide an assessment of gully erosion in North
Africa. In addition, ref. [49] displayed the applicability of UAV platforms in landslide monitoring
by incorporating machine learning and computer vision techniques in 3D reconstruction of the Oso
mudslide in Washington for deeper understanding of mass movement mechanism. Also, ref. [50]
described several flights over a large area to delineate landslide displacements with a fixed-wing
platform. In contrary, light detection and ranging (LiDaR) sensors for landslide studies are dealing
with the characterization of the affected area and they are characterized by the advantage of mitigating
the influence of vegetation. In a number of landslide cases, due to the passing of time the vegetation
has restructured well and failure characteristics such as scarp and/or the landslide body are not visible
clear from a passive sensor [51]. Therefore, LiDaR sensors constitute valuable tools in monitoring
and detecting unstable vegetated slopes, but contrary to UAVs, they have higher costs in terms of
operational needs. A great example is presented in [52] where both active and passive sensors are
compared and evaluated in extraction of geomorphological and geological characteristics with high
accuracy rates in a case study occurred in Vorarlberg (Austria).
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In the current study, the proposed method illustrates the effectiveness and efficiency of UAV
platforms to acquire cost-efficient data from difficult environments and complex surface topographies.
The methodology is divided into five main working phases. The first phase includes designing
and execution of an optimal UAV flight planning to collect accurate 3D data depending on the
local morphology of the case site. Structure from motion (SfM) photogrammetry in addition to
high accuracy RTK-GNSS ground control point establishment, is used to provide detailed 3D point
clouds describing the surface morphology of the landslide and rockfall events. During the second
phase, pre-processing and raw data preparation steps such as point cloud filtering and elimination
of ambiguities has been executed. At the next phase, an image segmentation algorithm followed by
detailed classification has been processed using the UAV orthophoto and DSM derivatives. The main
task was focused on identifying the specific landslide elements by using an object-based concept. A
sequence of image-based processes was applied, including multi-scale object segmentation, spectral,
morphometric and contextual information extraction aiming to identify characteristic mass movement
features. The following phase was set up for object characterization in meaningful and homogeneous
landslide classes (e.g., scarp, deposition or tension fissures and cracks) which are spatially connected
by introducing contextual information. Thus, the evaluation of object-based methods on UAV data
for landslide mapping has been investigated in the Greek territory, which includes diverse climatic
and terrain conditions. The present work aims to demonstrate the applicability of UAV sensors as a
cost-effective and efficient solution for semi-automated semantic labeling as initial mass movement
assessment in harsh environments during emergency situations. In the present study, the structure
from motion-multi-view stereo (SfM-MVS) algorithm was applied to generate detailed dense 3D
point clouds, digital surface models (DSMs), and orthophotos of the respective areas. The latter
will be used as primary datasets for the object-based landslide detection and characterization. The
workflow is described as follows: (1) image selection, (2) sparse point cloud reconstruction based on
SfM, (3) dense point cloud reconstruction based on multi view-stereo (MVS) and (4) orthoimage and
DSM generation [53]. It has to be highlighted that the details of SfM and the principles of close-range
photogrammetry will not be covered in any great extent in this work as the main focus is the application
of the platform in slope characterization using computer vision techniques.

3. Data Collection

3.1. Study Areas

Two landslide-prone areas in the Greek territory with different geological and geomorphological
characteristics were selected and investigated as test sites for the development of the presented
object-based mapping approach. The two study areas: (a) Red Beach on the island of Santorini
and (b) Proussos in Evritania prefecture are characterized by great land use/cover diversity,
geo-environmental settings, landslide mechanisms and data acquisition parameterization. The
workflow is comprised of four main phases: (a) pre field work and on-site and data collection;
(b) primary data preparation; (c) landslide object recognition and characterization and (d) data
presentation and visualization. Each phase is explained in detail in the subsequent sections.

The island of Santorini is located in the south region of the Cyclades Archipelago in the
Mediterranean Sea (Figure 1). It is formed completely from volcanic material of dacitic and andesitic
composition formed during the Pre-Minoan eruption era [54]. It should be mentioned that Santorini
has a unique morphology with very steep cliffs susceptible to erosion processes [55]. As a result,
many regions on the west part of the island are prone to landslide and rockfall events. The area under
investigation was named as “Red Beach” due to the oxidation of the lava composition which provides
the characteristic red colour of the scoria formation. It is situated at the southeastern part of the active
volcanic caldera in “Akrotiri” and the area extends for about 1.5 ha and has very high touristic activity
throughout the season. The landscape is very steep, composed of the half remaining part of an old
volcanic cone, with the slopes generally dipping up to 80◦ and up to 40 m to 45 m in height. The
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length of the beach is approximately 300 m and its width ranges between 4–10 m and it is strongly
affected by seasonal coastline displacement. Furthermore, geomaterial of Red Beach is allocated as
medium to well cemented scoria and compact lavas in the lower parts. In detail, it is formed from
coarse grained medium cemented volcanic breccia and thin grained well cemented volcanic breccia.
The latter presents particularly low tensile strength with large open tension fissures and cracks along
the wide area. Moreover, discontinuities trending N-S and NE-SW are present in the area normally in
the slope direction, after recent tectonic activity [56].
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Figure 1. Location of Red Beach case site, Santorini and Proussos case site, Evritania, Greece.

On the other hand, the Proussos site is located in Evritania, which is a mountainous prefecture
located on the Greek mainland. The region is considered to belong to the Pindos geotectonic unit
and is composed mainly of limestones, flysch and Quaternary deposits. Thin-bedded gray limestone
formations are dominant in the area under investigation, with high structural complexity due to intense
orogenetic folding and low strength along its discontinuities. Due to intense morphological relief and
complex rock mass coupled with extreme climatic conditions, Evritania prefecture has been severely
affected by mass movements. Such an example is the test site that is located in the Dipotama area
next to the “Balta” bridge. The site is situated across the unique road network leading to one of the
most visited and famous monasteries in the territory of Evritania prefecture, in central Greece. The
elevation difference of the slope from the top to the toe of the slide is nearly 90 m. The hillslope is
approximately 70◦ steep, facing North–East (NE) and located at 780 m absolute elevation. At the test
site, several complex mass movements and rockfalls events took place in thin—bedded limestone
in the last decade with partial to complete destruction of the road network which results in partial
isolation of the Proussos Monastery. Those events have been identified during February–May and their
dimensions fluctuate from individual rockslides to massive falls of several hundred cubic meters in
volume. The consecutive failures on Proussos’ road network have been caused largely by the creation
of deep excavations as well as erosion at the toe of the slope due to a river crossing underneath, which
in the current case study is not supported by any kind of vegetation or special protective construction
works (Figure 2).
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3.2. Data Planning and Collection

The general workflow of the UAV-based image acquisition follows a concrete structure: (a) pre-field
work planning, (b) on-site data collection, and (c) post-processing [57]. The pre-field work stage
involves an extensive background and literature review of the area in combination with remote
assessment of the area under investigation via satellite imagery and web-based applications. Field
measurements include production of engineering geological observations (strikes and dips), in-situ
tests, interpretative diagrams and a hand-drawn schematic map of the study area. Moreover, the
data collection stage has been conducted by using a commercial mini-UAV quadrotor platform
(Phantom 4 Pro V2.0, DJI, Technology Co., Ltd. (Shenzhen, China)) equipped with a stabilized built-in
camera (1” CMOS-20 megapixel) for capturing and collecting images. The latter were utilized for
the generation of the 3D model and the respective DSMs and ortho-photomosaics of Red Beach and
Proussos. The abovementioned platform is a flight-capable device that can be launched manually
or in a pre-programmed manner to a given area under predefined safety regulations. It uses an
onboard GPS/GLONASS navigation system and has been chosen due to its low cost and relatively
easy operation on site. The aircraft was programmed to follow a predefined flight path composed
from cross-stripes in order to have full coverage of the study areas consisting of steep slopes. The UAV
procedure for data collection was initialized firstly, by hovering at a predefined height and position
while the camera angle has been adjusted at the first configuration of 60◦ using the camera mount and
in a later stage in an alternative configuration of 80◦ for completing the data collection (Figure 3). In
addition, black and white paper signs (15 cm × 15 cm) have been distributed around the area and used
as targets for ground control points (GCPs) to create an arbitrary coordinate system. The latter was
performed within the photogrammetric workflow, based on manual identification on the images and
surveyed during the field work by measuring accurate coordinates and elevation with RTK-GNSS
equipment. During the 3D model production, a small number of GCPs were marked on the images
in the processing step to correctly calibrate the resulted model and ensure high spatial quality. The
campaigns’ quality details are presented in Table 1 with the respective ground sampling distance
(GSD) and the respective root mean square error (RMSE) as outlined from the flight campaigns. The
computed RMSE was less than a single pixel for the areas under investigation, which was considered
satisfactory taking into account the rough terrain and harsh environment.

The magnitude of the Red Beach declivity has been estimated at 300 m in length and 50 m in
height. It features high inaccessibility and a dangerous environment for humans due to the consecutive
failure events. Thus, the latter requires methodical mass movement management by using classical and
up-to-date surveying methods to provide holistic assessment. To achieve the best available coverage of
the area but at the same time keep the spatial resolution to a high standard (submeter) the flights were
performed with a constant predefined flight path with 75% of sidelap and 80% frontlap. Approximately,
180 images from a constant flight attitude of 90 m above ground have been collected following the

https://www.evritanika.gr
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surface topography. In order to preserve optimal matching on the scene, tie points had to be visible in
at least six images. GCPs were distributed along the accessible regions of the site. At each acquisition
time, 1/3 of the GCPs have been used as points to verify the model error propagation. Furthermore, to
derive the final 2D and 3D products, any inconvenient noise due to moving objects (people on the
beach) and shadows from the sun angle during the acquisition time have been removed.
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Table 1. Acquisition parameters for unmanned aerial vehicles (UAV) flight planning.

Mission Specifications

Parameters Proussos Red Beach
Number of images 112 180
Flying altitude (m) 60 90
Sidelap-Frontlap 75%–80% 75%–80%

Ground Resolution (m) 0.3 0.5
Coverage area (km2) 0.132 0.143
Number of tie points 832,147 1,776,246

Overall error in XY (m) 0.1 0.2
Overall error in Z (m) 0.23 0.4

Orthomosaic resolution (m) 0.5 0.5
Digital surface model resolution (m) 0.5 0.5

Following the acquisition concept, at Proussos survey, 112 images have been collected from a
constant flight attitude of 60 m above ground with careful attention to keep the frontlap at 75% and
sidelap in 80% to guarantee optimal configurations for tie point matching and camera alignment.
Following the predefined configuration for optimal scene representation, the landslide scene’s tie
points were chosen to fulfil the condition to be visible at least in six images. Later, both datasets have
been processed using Pix4D S.A. (Lausanne, Switzerland) [58], a commercial structure from motion
(SfM) photogrammetric software to produce the DSM, the orthophoto and the 3D point cloud and mesh
model of the area under investigation. The SfM procedure produced a dense point cloud constructed
from up to 20 million points and the resulting accuracy was 0.5 m for Proussos. For Red Beach, the
dense point cloud included more than 35 million points and the resulting accuracy was also 0.5 m.

4. Object-Based Image Analysis (OBIA) Methodology

The stages applied in this study for “intelligent” site-specific landslide assessment based on UAV
and object-based approach were composed of four distinct working steps (Figure 4). Accordingly, data
collection and model preparation are applied at the initial phase, followed by a SfM-MVS procedure to
generate the 3D dense pointcloud which serves as the basis for the orthophoto and DSM derivatives.
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The third phase includes the main working stage of data processing in OBIA and the final phase
visualization of the results. In this part, information about the OBIA procedure implemented for
landslide detection and classification is given and evaluation about the accuracy of the assessment
methods is presented in detail. The reference inventories for the case sites are mostly based on field
work supplemented by visual interpretation of aerial photographs, orthoimages and satellite imagery.
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The conceptualization of the current methodology has been built up on the basis of human
cognition and how professional experts perceive landslide recognition and its morphodynamics. Based
on the existing knowledge, specific features exist that usually are precursor signs of landslide activity
and they present distinct zones for further investigation. Such typical topographic features could be
the scarp and deposition zone, main and minor fissures or cracks, ridges, alterations of the drainage
system [59]. The area affected by a mass movement usually has higher surface roughness than the
surrounding stable terrain and the deposition zone has a convex profile shape. In addition, the scarp
zone is usually steep (i.e., sharp-steep areas located close to very flat ones, significant changes in
slope, etc.) and concave in shape with its main direction-flow being the same as the respective aspect.
Scarps are significant features that form hazardous parts of landslides and their respective runout
zones. On the contrary, concerning the non-landslide zone, the upper healthy part indicates higher
elevation than the affected part, while the downslope is less clear with higher dissimilarity values
due to the physical processes of landslide failure. The procedure is built on cognitive perception,
which starts from scratch level of pre-field work and remote analysis, in situ experiments and data
collection, specific landslide feature detection, OBIA modelling and detailed feature analysis and the
final outcome of a characterization scheme with the respective statistics.

4.1. Pre-Processing

The initial phase includes the mission planning and execution, followed by 3D point cloud
and relative products (orthophotos, DSM) creation and refinement. The latter supplies data for the
object-based analysis phase. For each of the case sites, a semi-automated object-based characterization
algorithm has been developed to detect and characterize landslide and non-landslide objects. From the
orthophoto the mean values of red–green–blue (RGB) spectral indices have been used as individual
spectral layers. In addition, four thematic datasets were created from the DSM data as input auxiliary
layers in order to define the landslide hazard features: Hillshade, Curvature (profile), Slope Angle
and Aspect. The final spatial level of detection (LoD) based on our data process was 0.5 m. LoD is the
smallest entity that can feasibly be identified using the proposed method. As a result, all the features
with dimensions larger than the LoD are recognizable and valid.

4.2. OBIA for Landslide Assessment

This section presents the proposed object-based approach for the detailed characterization of the
landslide site exploiting the semantic relationships among the landslide objects as it is defined by
Varnes categorization [60]. The integrated mapping of landslide elements necessitates segmenting
continuous topographical surface information into discrete, morphologically representative objects.
We used OBIA to semi-automatically extract the landslide hazard areas. The overall framework
included a multiresolution segmentation (MLS) with an expert rule-based (RB) feature extraction and
classification at the object level based on deep learning. In the first step, multiple layers were fused, in
order to be split into smaller regions and form the object primitives. The latter are used as entities for
further classification.

Usually spectral information is employed to segment an image scene in a pixel-based approach. In
the current study, spectral information is fused with auxiliary data resulted from the DSM to represent
the 2.5D morphometric features information in order to use advanced objects’ variables as classifiers on
later stage. Orthomosaic (spectral information) and digital surface model (elevation information) plus
four thematic layers (Slope angle and aspect, Curvature and Hillshade) (Figure 5) were partitioned into
image objects using the cognition network language (CNL) programming language incorporated in
the eCognition® Developer 9.0 software package (Munich, Germany) [61]. Generation of image objects
was achieved through an image segmentation procedure in eCognition® termed multiresolution
segmentation (MLS). Multiresolution segmentation partitions an image into homogeneous multi-pixel
regions based on several user-defined parameters. The latter is extensively used in landslide studies
as best-fitted segmentation algorithm [62–64]. The user can influence the output of the segmentation
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process through specification and weighting of input data and definition of parameters affecting the
size, spectral homogeneity, spatial homogeneity, and shape of the resulting image objects. The MLS
segmentation algorithm is described as a region-merging procedure in which individual pixels are
merged into primitives, followed by successive iterations in which small objects are incrementally
merged into larger ones in such a way that heterogeneity of the image objects is eliminated. The
merging process continues until a threshold derived from the user-defined parameters is reached [65].
Subsequently, the proper choice of segmentation scale is a tricky task for an accurate and optimal
classification stage and most of the times, this is site dependent. Dragut presented the ESP tool
and recently its updated version, which builds on the idea of local variance of object heterogeneity.
In the current study, the ESP2-tool has been applied and delivered three statistically representative
segmentation levels that have been evaluated through visual interpretation by multiple experts. At the
same time trial and error segmentations showed that the different levels created during ESP2 were
very close to the ones resulting from visual tests. As a result of an appropriate segmentation approach,
three levels (40–80–160) of segmentation scales were defined. At the same time, shape factor and
compactness factor remained constant at 0.4 and 0.5 respectively, for all the levels of information as
they have been defined as the most representative values to represent landslide objects.Remote Sens. 2020, 12, x FOR PEER REVIEW 10 of 23 
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The second phase includes the precise RB classification of the resulted segments into landslide
hazard categories according to several spectral, textural and morphometric parameters (Table 2).
Rule-based classification basically means combining the optimal features of different data sources
(RGB, DSM, etc.) to extract specific classes based on the case under investigation and the desired
task by using certain rules to regulate the different attributes. An exploratory analysis of the image
segments’ properties determined the selection of thresholds. Two initial classes at the Level-3 were
defined which represents the basic (coarser) level: (a) Landslide and (b) Non-Landslide with further
Level-2 «child» classification in (ai) Landslide—-Source area, (aii) Landslide—-Deposition area and (bi)
Non-Landslide—-Vegetation. In a different level of hierarchy (Level-1) but at the same time connected
with the above levels (Landslide—-Non-Landslide), cracks and fissures were identified as engineering
geological information concerning the landslide hazard. Finally, the derived classes of OBIA phase
were validated against a reference inventory from the investigated sites. Statistics were applied to
assess their respective accuracy and precision of classification process. Excess green index [66] has
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been used for vegetation identification in our test sites which constitutes one of the most widely used
indices in the visual spectrum.

Table 2. Attributes used in the study for landslide object-based detection and characterization.

Parameterization

Attribute Information Purpose Landslide conception

Spectral attributes

Layer (min, max,
average, Standard

deviation)

The value of pixels comprising the region
in band Red, Green, Blue Classifier

Colour values used to distinguish
eroded surfaces or specific class

discrimination due to their individual
spectral signatures

Brightness The value is defined as the mean of all
spectral bands. Classifier

High brightness values in landslide
affected areas, due to loss of vegetation

and exposure of the rockmass

EGI (Excessive
Greenness Index) Vegetation index, EGI = (2 x g – r – b) [66] Classifier Spectral index used for vegetation

classification

Spatial attributes

Convexity Measures the object’s convexity
or concavity. Classifier Scarp/Source zone: concave

Downslope are mostly convex

Roundness
Measure that compares the area of the
object to the square of the maximum

diameter of the object.

Classifier -
Refinement

Deposition zones are presented as
round shaped areas of
accumulated material

Area Total area of the objects, minus the area of
the holes.

Classifier -
Refinement

Refinement of different classes based on
their coverage

Main direction Direction across the main polyline. Classifier
Deposition: Diffused direction

Scarp: main direction-flow in relation
with aspect

Length/Width The length of an object divided by
its width. Classifier Cracking features present elongated

features with high values of L/W

Lineness Skeleton polylines which serve as surface
discontinuities. Classifier Crack/fissure identification based on

skeleton polylines

Texture attributes

GLCM
Homogeneity

GLCM is a tabulation of how often
different combinations of pixel brightness

values (gray levels) occur.
Image homogeneity, the value is high if

GLCM is concentrated along the diagonal.

Classifier
Higher values at the failure material
(Landslide zones) than stable terrain

(Non landslide)

GLCM
Dissimilarity

Texture measurement of the amount of
local variation. It increases linearly and is

high if the object has a high contrast.
Classifier

Higher values at the failure material
(Landslide zones) than stable terrain

(Non landslide)

Topological attributes

Mean diff to
neighbors

For each neighboring object, the layer
mean difference is computed and

weighted with regard to the length of the
border between the objects.

Refinement Topological rules applied for classes
refinement

Relative border to Object’s common border percentage with
neighboring ones. Refinement Topological rules applied for classes

refinement

Elevation Location of sharp-steep areas close to very
flat ones. Classifier Stable part has higher elevation than

landslide zone

Slope Gradient: 0–90◦, significant slope change. Classifier

Scarp: Steep with its main
direction-flow in relation with aspect

Stable zones: Low values,
small variations
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Moreover, for the discontinuity surface detection, researchers [67] developed a semi-automated
top-down object-based methodology for extracting lineaments from airborne magnetic data. In the
current study, the aforementioned algorithm has been used for crack and fissure identification. The
so-called object-based lineament detection (OBLD) line extraction algorithm used the line extraction
tool in CNL language to produce a ‘lineness’ raster from the data used in the segmentation phase.
In the current study, the resulted lines have been imposed a detailed refinement to reduce potential
noise such as shadows and misalignments. The result has been vectorized into skeleton polylines with
the respective object’s properties which serve as surface discontinuities (crack and/or fissure) after
the classification.

4.3. Accuracy Assessment

The proposed methodology and results were examined in order to assess their efficiency and
quality in properly detecting and classify objects. In the current study the validation procedure has
been done in two distinct steps. Initially, a qualitative validation was applied by visual interpretation
of the achieved classes; the second step was to assess the OBIA classification against a reference
inventory of the wide area in order to quantify the spatial agreement of the compared datasets. As well
mentioned in [34], the term “agreement” instead of “accuracy” is better fitted in landslide mapping
procedures. Two types of error can be found in the validation procedure: the omission errors which
represent areas where the reference suggests a landslide that is not present in the OBIA classification
result and the commission errors occurring in areas where the OBIA classification suggests a landslide
that is not present in the reference. Finally, user’s accuracy value expresses the correctly classified area
as a share of the classification area that includes errors of commission.

5. Analysis and Results

For the landslide sites, the developed characterization algorithms followed similar pattern
(uniform classifiers used), but segmentation classification rules had to be adapted to each individual
case site. The object-based approach includes two main steps which interlink with each other: (i) the
segmentation of the fused datasets, and (ii) scene classification on the developed knowledge-based
ruleset. The initial phase encompasses the determination of appropriate input layers for segmentation,
determination of the optimum parameters for the MLS. The second phase entails the appropriate
extraction of “landslide hazardous regions” and “non-landslide” information with the optimal image
object metrics in order to be used for further landslide risk management procedures.

5.1. Data Analysis

Regarding the segmentation stage, the ESP tool has been used to estimate the local variances
along the generated objects from the multiresolution segmentation. The latter serve to identify the
topographical variations to determine whether the object boundaries represent distinct morphological
features in agreement with the natural process under this study. Three different segmentation
parameters were selected and represent the three intercorrelated levels of the objects’ hierarchy with L1
to be the finest level, L2 to be the moderate level and L3 the coarser level. Regarding the compactness
factor, it has been kept at 0.5 for the three levels and for the shape factor was set at 0.4 respectively. In
detail, Landslide—-Non-Landslide category (L3) represents the parental category, whilst L2 category
represents the object levels such as scarp, deposition and vegetation and L1 category represents
cracks/fissures and assets such as road, coastline etc. Both L2 and L1 correlate as “child” levels of L3
and in the same way L1 has a “child” relationship with L2. Based on the segmentation result and the
object creation, the following step was to provide a knowledge-based ruleset of the selected categories
on each respective level. The appropriate selection of samples has been constructed either based on the
field work experience mostly and visual assessment. In order to assess the metrics to be used for each
category a quality assessment has been provided for best-fit class attribute for each case site (Figure 6).
The latter has aided the proper classifier choice as best class descriptor. It was decided that if a classifier
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rate was above 0.51 confidence level, it should then be used in the detection phase. In the current
study, the evaluation of the image object metrics for Red Beach and Proussos sites revealed that the
EGI index used for detecting the vegetated areas was an effective metric for excluding vegetated areas
(unaffected zone) from landslide ones. Meanwhile, for crack and fissure identification the “lineness”
layer played a vital role in successfully identifying morphological discontinuities in both cases. Slope
information was crucial for landslide recognition and the related categories of scarp and deposition
areas and excluding unwanted flat areas (road network, assets). In the end, a significant refinement of
the related objects has been taken with the neighborhood relation between classes in order to optimize
the class borders.
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5.1.1. Red Beach Site, Santorini

The specific area of Red Beach suffers from multiple failure zones due to erosion induced by wave
action and the low tensile strength of the scoria formation which result in deconfinement of the rock
masses and the formation of extensive tension cracks. The toppling of rock blocks due to vertical
tensile and multiple joints represents the main mechanism of failure in combination with planar sliding
of well-cemented scoria along the upper parts of the red cliffs since the planes of the volcanic material
daylight with regard to the slope face and present low strength along them. Moreover, small to medium
sized volcanic bombs are present due to differential erosion and wave undermining. Consequently,
geological and structural conditions are playing a vital role in transforming those slopes in landslide
prone areas. Three landslide areas have been revealed from the proposed methodology in Red Beach
site, namely Zone 1, Zone 2 and Zone 3 (Figure 7, Table 3). For each landslide zone the identical OBIA
procedure has been followed. The maximum widths of the source and deposition areas are 35 m and
50 m, respectively. The average dip angle is 41◦ and the main sliding direction is N78◦. The projected
area of the landslide zones is approximately 37,355 m2, the maximum sliding distance is 30 m, and the
height is about 55 m.
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Table 3. Segmentation and classification parameters.

Segmentation Parameters Classification Parameters

L1
Scale: 40

Shape: 0.4
Compactness: 0.5

Lineness,
Brightness,

Slope,
Elevation
Lineness

L2
Scale: 80

Shape: 0.4
Compactness: 0.5

RGB, GLCM,
Convexity,

Roundness, Length-width

L3
Scale: 160
Shape: 0.4

Compactness: 0.5

Slope,
EGI,

Direction

For the segmentation stage three different scale values have been used based on the respective
level of information. For L3 a scale factor of 160 has been chosen to fulfil the basic level of information
(Landslide vs. Non-Landslide). For L2 a scale factor of 80 has been chosen to represent the «child»
classes of Landslide (Scarp, Deposition) and Non-Landslide (Vegetation). In the finest level, L1
the lowest scale factor has been chosen (40) in order to detect the minor and major cracks of the
landslide site and exclude unwanted information. In the initial classification step, test site’s segments
have been classified as landslide or non-landslide objects, according to the Level 3 segmentation.
In the second step, a new level (Level-2) was created and directly linked with the super objects
(Landslide—-Non-landslide) with categories such as vegetation for Non-landslide (super-object) and
scarp and depositional sediments for Landslide (super-object) category. In the most detailed assessment,
(Level-1) categories such as coastline and physical assets for Non-landslide and cracks and fissures
for both main categories have been identified based on numerous parameters. In the current study
site, there are vegetated regions which due to its low heights, have similar reflectance and geometric
properties as the landslide category. These areas were classified as landslides in the first classification
step and refined later as vegetation. Vegetation refinement has been based on local roughness low
values in combination with EGI in order to recognize unaffected area with vegetation. Figure 8
presents the specific levels of OBIA procedure regarding the case site in Red Beach. The respective
parametric and non-parametric attributes have been extracted and stored in a geodatabase, since the
initial classification level. For the derived crack/fissure objects along with their information such as
width, length and main direction they have been exported as specific layer but at the same time linked
with interrelationships with the super categories (Landslide—-Non-Landslide).
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Figure 8. Red Beach object-based detection results. (a) Initial segmentation, (b) Detection of Vegetated
areas and Non-Landslide candidates, (c) Identification of Landslide candidates and Non-Landslide has
been excluded for next step, (d) L3 segmentation zone 1, (e) L2 segmentation zone 1, (f) L1 segmentation
zone 1, (g) Initial segmentation zone 1, (h) Identification of Non-Landslide candidates (vegetation &
assets) zone 1, (i) Identification and final classification of Landslide and Non-Landslide classes zone 1
(Purple: scarp zone, Yellow: deposition zone, Green: Vegetation, Grey: Coastline (Asset)).

5.1.2. Proussos Site, Evritania

The Proussos slide (Figure 9, Table 4) has a narrow-inclined scarp and narrow lower portion as
accumulated deposits. The main difference is that the current mass movements are behaving as a
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rockfall mechanism with specific planar slides along the bedding planes but at the same time providing
large number of rockfall events due to toppling, after the intense folding along the height of the slope.
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Table 4. Segmentation and classification parameters.

Segmentation Parameters Classification Parameters

L1
Scale: 40

Shape: 0.4
Compactness: 0.5

Lineness,
Brightness,

Slope,
Elevation,
Lineness

L2
Scale: 80

Shape: 0.4
Compactness: 0.5

RGB, GLCM,
Convexity,

Roundness, Length-width

L3
Scale: 160
Shape: 0.4

Compactness: 0.5

Slope,
EGI,

Direction

Due to intense tectonic activity in the wide region the specific case site is showing its tectonism
with tilted rockmass formation and bedding range around 60◦ on site. The scarp has been subject to
continuous retrogressive erosion, as a result, its failure mechanism is behaving as a complex case with
planar slides and rockfalls of diverse magnitudes. The maximum widths of the source and deposition
zones are 26 m and 119 m, respectively. The average dip angle is 60◦ and the main sliding direction
is 70◦. The projected area of the entire landslide is 24,872 m2, the maximum sliding distance is 85 m,
and the height is about 100 m from 0 to 95 m. As in the previous case, in the first classification step,
the application site was classified as landslide and non-landslide objects according to the Level 1
segmentation. The second phase (Level-2) coincides the discrimination of the landslide category to
subclasses of scarp and deposition zones while for the Non-Landslide category the vegetation had to
be identified and excluded from the hazard assessment. Cracks/fissures and multiple assets such as
the road network have been identified at the sub level (Level-3) (Figure 10).
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Figure 10. Proussos object-based detection results. (a) Level_1 Segmentation, (b) Detection of
Vegetated areas and Non-Landslide candidates, (c) Identification and classification of Landslide and
Non-Landslide classes (Purple: scarp zone, Yellow: deposition zone, Green: Vegetation, Grey: Road
network (Asset)).

5.2. Validation

The validation procedure was carried out with two different approaches, firstly in a qualitative
visual assessment and afterwards in a quantitative way based on spatial logic operations. Due
to a priori knowledge of the areas under investigation we provided a stratified random sampling
with representative samples for the quality control. The classification accuracy has been evaluated
using reference data created by experts from visual interpretation of aerial photographs, orthoimages
and satellite imagery as well as intense field work. It has been used to determine whether the
percentage of test data is correctly classified or misclassified in specific predefined classes. It should be
mentioned that conventional methods and expert delineation cannot be significantly more accurate
than a semi-automated OBIA mapping result in local scale since the same reference dataset is used for
mapping. A region-based approach has been processed to calculate the metrics which have been used
for the completeness and correctness assessment via a code-script robustly concerning a buffer zone of
one pixel. The aim of both procedures was to compare the area between the extracted objects from
OBIA against the reference data (Table 5).

Table 5. Accuracy metrics for the two landslide case sites under investigation.

Metrics
Red Beach Proussos

Scarp Deposition Scarp Deposition

Object-based image analysis
classification (m2) 277.75 457.26 1045.51 2198.47

Expert classification (m2) 91.52 428.58 764.27 1286.59
Difference (m2) +186.23 +28.68 +281.24 +911.88

Overlap (%) 74 83 79 86
Producer’s accuracy (%) 78.1 80.8 81.4 80.2

User’s accuracy (%) 75.6 77.4 80.3 77.9
Omission error (%) 21.9 19.2 18.6 19.8

Commission error (%) 24.4 22.6 19.7 22.1

Producer accuracy [68] is defined as the probability of a specific value in a given class will be
classified correctly. On the contrary, user accuracy [68] is defined as the probability that a value
predicted to be in a certain class is certainly in. The latter is based on the fraction of correctly
predicted values to the total number of values predicted to be in a specific class. Errors of omission
refer to reference datasets which have been left out (or omitted) from the correct class in the OBIA
classification stage.
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On the contrary, errors of commission refer to misclassifications included in one category which is
being evaluated. In the site of Red Beach, based on the reference dataset, an overestimation of the
scarp and deposition zones has been outlined from the developed model. OBIA model regarding the
scarp zone, estimated almost one third of the reference dataset. The Proussos site constitutes a more
complex landslide case with multiple failure mechanisms (planar, toppling) in the same case, due to
intense local tectonism and weathering. The latter was an overburden that the model had to cope with.
As a result, model prediction has been underestimated by almost 325 m2 for scarp zone. Same trend
was followed for the deposition zone with a difference of 178 m2.

6. Discussion

Both landslide sites have a presented common trend in the classification scheme which indicates
that the methodological concept is relatively constant and quite objective for the extraction of landslide
classes under similar conditions. In both cases extraction of over 83% of landslide deposition zones
was observed, indicating the successful applicability of the semi-automated OBIA conceptualization
that is presented in this research. On the contrary, the producer’s accuracy for scarp/source zones in
both cases was less than 80%, due to a relatively high number of false negatives. This is because of the
fuzziness of the natural processes’ boundaries in the real world. For example, there is great uncertainty
of the differentiations caused by intermediary transitivity between depositional and scarp zones.
Therefore, it leads to a misclassification of features in the vicinity of the scarp segments which decrease
the accurate separation of landslide classes. The latter indicates that the current approach tends to
underestimate the scarp/source class compared with the deposition one. It should be mentioned that
scarp zone in Red Beach has been under-classified due to the fact that its boundaries were not so clear
as quite extensive shadowing was observed caused by its steepness (80–90◦). The shadowing can
create serious misclassifications in relative studies as in many remote sensing applications. Thus, sun
orientation should be taken into consideration during the data collection stage in order to exclude as
much as possible, shadowed areas caused by topography. Excessive green index has been found ideal
for vegetation identification and it could serve as an alternative solution when the NIR band is not
available. In addition, Red Beach deposition zones have been under-classified with the red zone not
even being classified accordingly as deposit zone (Figure 11). A remarkable difference has been noticed
in Proussos case where OBIA classification identified almost two times the expert mapping extent of
the deposition zone. The latter is a result of the subjectivity which lies on understanding the actual
deposit boundaries which present great fuzziness due to the continuous evolution of natural processes.Remote Sens. 2020, 12, x FOR PEER REVIEW 19 of 23 

 

 
Figure 11. Misclassification errors occurred in the Red Beach case site. Purple dots are representing 
areas of scarp while they have been misclassified as deposits. On the contrary, yellow dots on grey 
background represent areas of deposit zone while they have been misclassified as assets. 

7. Conclusions 

During the last decade, UAVs and computer vision have enabled landslide studies to introduce 
new ways of data representation. Specifically, real-time application, in combination with the 
elimination of human risk constitute the UAVs as highly effective and efficient tools for data 
collection in terms of cost and extent. New methodologies in remote sensing are leading to 
incorporating artificial intelligence and deep learning on ultra-high spatial resolution datasets to 
classify a scene according to human perception, closing the gap between machines and humans. 
Furthermore, the use of UAV platforms presents a significant advance in the field of landslide and 
rockfall management. In mountainous environments, field investigation for landslide detection and 
characterizations can be challenging. In this context, the results illustrate that detection of landslide 
hazard zones from ultra-high-resolution imagery for capacity management can be performed with 
relatively high accuracy in a semi-automated sense and at the same time, cost-effectively. The 
proposed OBIA semi-automated landslide mapping procedure developed within the scope of the 
study, resulted in a most realistic scheme for natural process detection and characterization compared 
with pixel-based methods. It should be mentioned that landslide elements that do not present 
sufficient topographic signatures can cause misclassification errors in OBIA procedure. Such a 
homogenization by means of spectral, spatial, and topological information accompanied by the 
monitoring of the evolution of areas of specific homogeneity degree (i.e., scarp, deposition zone, etc.) 
at different stages of the landslide process may be eventually used as a guide toward the 
establishment of solid and quantitative definitions of those landslide elements. 

The current study has introduced a novel semi-automated approach for the detailed detection 
and characterization of landslide elements from UAV ultra high-resolution products. The aim of this 
work was to indicate the use of UAV photogrammetric techniques combined with object-based 
approaches to derive a more informative analysis of “real” landslide features. Moreover, systematic 
identification using OBIA tracking of displacements may be helpful in cases of detailed semantic 
labelling of landslide information in order to propose detailed remedial and protection measures in 
site-specific scenarios. Our results have demonstrated that the use of ultra high-resolution 
overlapping imagery can be adopted as an effective tool for landslide mapping and identification in 
site-specific scales, while the challenges it poses will be tackled in future authors’ work. Also, a 
significant challenge was to test the effectiveness of collecting accurate measurements against any 
critical issues such as bad weather conditions, occlusions, and exposure issues. As in many cases of 
landslide prone areas around the world, the occurrence of local events without any post assessment 
report is frequent. Following the proposed study, a cost-effective and efficient solution could be 
adapted for local authorities in order to enhance mass movement capacity and preparedness. 

Figure 11. Misclassification errors occurred in the Red Beach case site. Purple dots are representing
areas of scarp while they have been misclassified as deposits. On the contrary, yellow dots on grey
background represent areas of deposit zone while they have been misclassified as assets.



Remote Sens. 2020, 12, 1711 19 of 23

One of the identified limitations for the current method lies in the fact that expert mapping does
not provide sufficient and coherent validation for local scale mass movement events due to biased
exports and, most of the times, the subjectivity towards expert’s perception. In addition, we should
indicate that deposit class in the current study represents areas of accumulated sediments and rockfall
materials resulted from mass movement processes, weathering and erosion. The aforementioned
material, in case of Red Beach, has been wiped out almost instantly due to coastal dynamics while in
the Proussos case, local authorities have cleared the road network in order to be functionable straight
after the event. As a result, the OBIA “depletion zone” class includes a large part of the washed bedrock
layer. Consequently, for deeper understanding of the failure mechanism, field investigations and in
situ studies are mandatory procedures. The latter becomes more crucial when engineering geological
investigations are needed in order to comprehend the sliding surface with kinematic analysis when
multiple failures surfaces and mechanisms are impacting in the area under investigation. In this
context, the authors are continuously working to cover the precise identification of different kind of
mass movement mechanisms (rockfall, rotational, translational) and incorporate engineering geological
assessments with computer vision and OBIA techniques.

7. Conclusions

During the last decade, UAVs and computer vision have enabled landslide studies to introduce new
ways of data representation. Specifically, real-time application, in combination with the elimination of
human risk constitute the UAVs as highly effective and efficient tools for data collection in terms of cost
and extent. New methodologies in remote sensing are leading to incorporating artificial intelligence
and deep learning on ultra-high spatial resolution datasets to classify a scene according to human
perception, closing the gap between machines and humans. Furthermore, the use of UAV platforms
presents a significant advance in the field of landslide and rockfall management. In mountainous
environments, field investigation for landslide detection and characterizations can be challenging. In
this context, the results illustrate that detection of landslide hazard zones from ultra-high-resolution
imagery for capacity management can be performed with relatively high accuracy in a semi-automated
sense and at the same time, cost-effectively. The proposed OBIA semi-automated landslide mapping
procedure developed within the scope of the study, resulted in a most realistic scheme for natural
process detection and characterization compared with pixel-based methods. It should be mentioned
that landslide elements that do not present sufficient topographic signatures can cause misclassification
errors in OBIA procedure. Such a homogenization by means of spectral, spatial, and topological
information accompanied by the monitoring of the evolution of areas of specific homogeneity degree
(i.e., scarp, deposition zone, etc.) at different stages of the landslide process may be eventually used as
a guide toward the establishment of solid and quantitative definitions of those landslide elements.

The current study has introduced a novel semi-automated approach for the detailed detection
and characterization of landslide elements from UAV ultra high-resolution products. The aim of
this work was to indicate the use of UAV photogrammetric techniques combined with object-based
approaches to derive a more informative analysis of “real” landslide features. Moreover, systematic
identification using OBIA tracking of displacements may be helpful in cases of detailed semantic
labelling of landslide information in order to propose detailed remedial and protection measures in
site-specific scenarios. Our results have demonstrated that the use of ultra high-resolution overlapping
imagery can be adopted as an effective tool for landslide mapping and identification in site-specific
scales, while the challenges it poses will be tackled in future authors’ work. Also, a significant challenge
was to test the effectiveness of collecting accurate measurements against any critical issues such as bad
weather conditions, occlusions, and exposure issues. As in many cases of landslide prone areas around
the world, the occurrence of local events without any post assessment report is frequent. Following the
proposed study, a cost-effective and efficient solution could be adapted for local authorities in order to
enhance mass movement capacity and preparedness.
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