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Abstract: We investigated the spatio-temporal variability of chlorophyll-a (Chl-a) and total suspended
matter (TSM) associated with spring–neap tidal cycles in the Ariake Sea, Japan. Our study relied
on significantly improved, regionally-tuned datasets derived from the ocean color sensor Moderate
Resolution Imaging Spectroradiometer (MODIS) Aqua over a 16-year period (2002–2017). The results
revealed that spring–neap tidal variations in Chl-a and TSM within this macrotidal embayment
(the Ariake Sea) are clearly different regionally and seasonally. Generally, the spring–neap tidal
variability of Chl-a in the inner part of the Ariake Sea was controlled by TSM for seasons other than
summer, whereas it was controlled by river discharge for summer. On the other hand, the contribution
of TSM to the variability of Chl-a was not large for two areas in the middle of Ariake Sea where TSM
was not abundant. This study demonstrates that ocean color satellite observations of Chl-a and TSM
in the macrotidal embayment offer strong advantages for understanding the variations during the
spring–neap tidal cycle.

Keywords: chlorophyll-a variability; spring–neap tides; Ariake Sea; MODIS-Aqua; total suspended
sediment; river discharge

1. Introduction

The spring–neap tidal cycle is an important factor for the variability of chlorophyll-a (Chl-a) in
macrotidal ecosystems [1–4]. During a spring–neap tidal cycle, which is about 15 days long, sea level
increases (decreases) and tidal mixing is enhanced (weakened) during spring (neap) tide. In some
macrotidal embayments, it has been suggested that the concentration of total suspended sediment
(TSM) increases (decreases) in spring (neap) tide, which consequently influences the variability of
Chl-a during a spring–neap tidal cycle. This may be explained by the phenomenon whereby strong
tidal mixing during spring tide induces the resuspension of sediments in shallow water, causing
high turbidity, which reduces light availability for the growth of phytoplankton. On the other hand,
the stratification that occurs during neap tide reduces the resuspension of sediments, which increases
light availability and thus promotes phytoplankton growth [3,5,6]. However, most previous studies
were primarily based on in situ data from only a few observation stations and on short-term time scales,

Remote Sens. 2020, 12, 1859; doi:10.3390/rs12111859 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-0205-8121
https://orcid.org/0000-0003-0398-1572
http://dx.doi.org/10.3390/rs12111859
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/11/1859?type=check_update&version=2


Remote Sens. 2020, 12, 1859 2 of 19

which makes it difficult to understand the mechanisms of spring–neap tidal variability of Chl-a for a
whole embayment and for longer time scales. Satellite ocean color products are now routinely used
to investigate variations in phytoplankton biomass and productivity, both in coastal and open ocean
systems. One significant advantage of satellite remote sensing over traditional shipboard measurements
is their broad synoptic coverage and frequency of observations. Thus, satellite ocean color products
have been used extensively for the detection and monitoring of phytoplankton biomass indicated by
Chl-a as well as water turbidity and TSM concentrations in coastal waters [7–10]. However, at present,
only a few studies have focused on the variation in satellite ocean color during the spring–neap tidal
cycle. One example is the study by Shi et al. [11], which investigated the spring–neap tidal effects on
Moderate Resolution Imaging Spectroradiometer (MODIS) Aqua-derived normalized water leaving
radiance spectra (nLw(λ)), water diffuse attenuation coefficient at 490 nm (Kd(490)), and TSM in
Bohai Sea, Yellow Sea, and East China Sea between 2002 and 2009. Another example is the study by
Su et al. [12], which investigated the relationship between variation in net phytoplankton growth and
tidal resuspended events using the daily Medium Resolution Imaging Spectrometer (MERIS) data
from 2003 to 2004 in the German Bight. The authors proposed that spring–neap tidal resuspension
supplied nutrients and thus enhanced phytoplankton growth, which was different from the findings
in the above-mentioned studies [3,5,6], indicating that the effect of spring–neap tidal cycle on the
variability of Chl-a varies in regions with different characteristics.

The Ariake Sea is a macrotidal embayment (~20 km wide and 10 km long) located in the Kyushu
Island of Japan (Figure 1). It is a shallow bay with an average depth of ~ 15 m and a depth of ~5 m in
the onshore area. The range of spring–neap tides in the Ariake Sea is the largest among the Japanese
coastal waters, and it can reach to ~6 m during the spring tide in the inner part of the bay [13]. The large
tidal range produces strong tidal currents and large tidal flat areas. As a result, strong tidal currents
lead to high turbidity zones around the tidal flat areas. Some rivers also discharge into Ariake Sea and
supply large amounts of nutrients and suspended sediments to the Sea [14]. The largest river (143 km
long and 2860 km2 in area) that empties into the Ariake Sea is the Chikugo River which connects to the
northern part of the bay (Figure 1). The spring–neap tidal range and tidal mixing varies in different
regions, and they are largest off Saga, located in the northern part of Ariake Sea. Isahaya Bay, which is
the small bay at the western side of the Ariake Sea, used to be known as one of the largest tidal flats in
Japan, but its topography was changed following the Isahaya Reclamation Project (Figure 1) [15,16].
For the off-Kumamoto area, which is in the middle and eastern part of Ariake Sea, is surrouded by the
two main rivers discharge (Figure 1), and the tidal flat is mostly sandy [13].
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Figure 1. Location of Ariake Sea, Japan (a). The water depth of the bay is shown in light to dark blue (b).
The seven main rivers, Rokkaku, Kase, Chikugo, Yabe, Kikuchi, Shira, Midori, and Kuma, are indicated
by the arrows. The three regional areas—i.e., off Saga, Isahaya Bay, and off Kumamoto—are highlighted
by the red boxes. The dike and the reclamation area within Isahaya Bay are represented by the brown
line and meshed lines, respectively. The observation station for tidal level data of Ariake Sea, named
Oura, is represented by the magenta filled circle.

There have been previous attempts to study the influence of the spring–neap tidal cycle on Chl-a
variability in Ariake Sea. For instance, in the study by Tanaka et al. [17], the variation forced by the
spring–neap tidal cycle in phytoplankton biomass was measured by Chl-a fluorescence and turbidity
data at four stations in the northern part of inner Ariake Sea. The authors reported that phytoplankton
biomass increased during the neap tide and decreased during the spring tide. They also suggested
that the increase and decrease was the result of changes in available light by tidally resuspended TSM.
However, it is not known whether the impact of spring–neap tides is significant over the larger area of
Ariake Sea and over the whole year.

Additionally, river discharge was reported to be an important factor for the seasonal variability
of Chl-a for the whole Ariake Sea based on the standard Sea-Viewing Wide Field-of-View Sensor
(SeaWiFS) Chl-a data from May 1998 to December 2001 [10]. However, the standard in-water algorithms
of satellite ocean color sensors, such as SeaWiFS and MODIS-Aqua, for this region are prone to errors,
and the remote sensing blue band reflectance (Rrs) values are inaccurate. In a previous study [18],
we showed that the accuracy of MODIS-Aqua Rrs and Chl-a for the Ariake Sea could be significantly
improved by a Rrs recalculation method and a local Chl-a switching algorithm. The Rrs recalculation
method first estimated the value of MODIS Rrs(412), from which the standard MODIS Rrs(412) was
subtracted to obtain the error in MODIS Rrs(412). Then, the errors in MODIS Rrs(λ) (λ = 443, 488 nm)
were calculated based on the assumption that they were linear to the error in MODIS Rrs(412) between
412 and λ nm. Finally, the error in MODIS Rrs(λ) was added to the standard MODIS Rrs(λ) to obtain the
recalculated MODIS Rrs(λ). This Rrs recalculation method is simple and effective to reduce the errors in
the standard MODIS Rrs(λ) (λ = 412, 443, 488) and therefore Chl-a. In addition, a local Chl-a switching
algorithm was developed, which was based on the in situ Chl-a and the maximum blue-to-green
band ratio with Rrs(443), Rrs(488), and Rrs(547), for the turbid (Rrs(667) > 0.005 sr−1) and non-turbid
(Rrs(667) <= 0.005 sr−1) waters of the Ariake Sea. The local Chl-a switching algorithm significantly
improved the Chl-a estimates over that possible by the standard MODIS-Aqua in-water algorithm
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(OC3M). Moreover, it was superior to the near-infrared to red band ratio [19] and the red-to-green
band ratio [20] algorithms in terms of the accuracy of the estimated Chl-a.

In this study, we hypothesized that there were regional and seasonal differences in the
spring–neap tidal variability of Chl-a associated with TSM and river discharge for Ariake Sea.
Therefore, we investigated the spring–neap tidal variability of MODIS-Aqua Chl-a for the three
regional areas—i.e., off Saga, Isahaya Bay, and off Kumamoto—as well as the whole Ariake Sea, from
2002 to 2017. The impact of TSM and river discharge on the spring–neap tidal variability of Chl-a was
quantitatively evaluated using locally tuned MODIS data.

2. Materials and Methods

2.1. Satellite Data and Preprocessing

For our study, reprocessed (2018.1) MODIS-Aqua level 2 products (July 2002–December 2017)
were downloaded from the NASA Ocean Biology Processing Group data portal at https://oceancolor.
gsfc.nasa.gov/. The spatial and temporal resolution was 1 km and daily, respectively. Before data
processing, data quality control was carried out to exclude some of the questionable data. The data
flagged by LAND, HIGLINT, HILT, HISATZEN, CLDICE, HISOLZEN, LOWLW, MAXAERITER,
and NAVFAIL, (https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/), were discarded. We also eliminated
the data at the edge of satellite view because it is known that they are influenced by a long atmospheric
path and that they form a larger pixel size. Besides, we did not use the coverage of less than 20% of
the study area because of the possible noise from the cloud edge. With this data quality control and
filtering approach, all available daily MODIS-Aqua images (1582) were reduced to 899 images, which
were then processed by the Rrs recalculated method and the local Chl-a switching algorithm [18].
Following the reprocessing, pixel values of Chl-a which were spotty and more than three times higher
than the adjacent pixel values were defined as outliers and were masked. Then, pixel values of Chl-a
more than 100 mg m−3 were set to be 100 mg m−3 because the maximum in situ Chl-a for the algorithm
development was around this value.

Finally, the data frequency and number of observations in each pixel based on all the daily data
from 2002 to 2017 were calculated to evaluate the spatial distribution of all the data. The data number
was lower inshore and increased to the middle of the bay (Figure S1). This different distribution of
data numbers may cause bias for the later data analysis, and thus the areas where the data number
was less than 450 were masked.

Regarding the estimation of TSM, an empirical TSM algorithm was developed based on the
relationship between in situ TSM and Rrs(667)/Rrs(547) [21] (Figure 2a). The in situ data were the
same as those used in [18]. MODIS-derived TSM was obtained by applying the TSM algorithm to the
recalculated MODIS-Aqua Rrs, and then validated by comparing it with matching in situ TSM data
which were different from the data set used for the development of the TSM algorithm. The matches
were derived with the same matching criteria as that used in [18]. The formulas of RMSE and bias
were the same as those for Chl-a in [18]. Besides, we also calculated the mean absolute percentage
error (MAPE) for the estimated TSM, and the formula was expressed as follows:

MAPE =
1
N

N∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (1)

where N is the data number and At and Ft represent the in situ and estimated TSM concentrations (in
log-scale), respectively.

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/ocl2flags/
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Figure 2. (a) Regression of the total suspended matter (TSM) algorithm based on the in situ TSM
and Rrs667:Rrs547, and (b) the comparison between the in situ and Moderate Resolution Imaging
Spectroradiometer (MODIS)-derived TSM data. The red lines are the regressions of the data in each plot,
and the red dashed line represents the regression of the TSM algorithm. Equations of each regression
and error statistics are also shown.

2.2. Tidal Level Data

The hourly tidal level data (cm) over the same time period as the whole satellite data set was
downloaded from the Japan Oceanographic Data Center (2002–2010; https://www.jodc.go.jp/jodcweb/

JDOSS/index_j.html) and the Japan Meteorological Agency (2011–2017; https://www.data.jma.go.jp/

gmd/kaiyou/db/tide/suisan/index.php). We used the data from observation station Oura (Figure 1).
Based on the tidal level data, the time periods of each tidal cycle from 2002 to 2017 were identified,
and each spring–neap tidal cycle was divided into four tidal stages—namely spring to neap (SN), neap
(N), neap to spring (NS), and spring (S) tide—by the tidal range. The tidal level decreased during SN
tide, decreased further during N tide, then increased during NS tide, and further increased during S
tide. Therefore, N and S tides were the trough and peak of the tidal range, respectively, and SN and NS
tides were the transitional tides during each spring–neap tidal cycle.

2.3. Satellite Composite Data

The Chl-a and TSM composites were initially made for the four tidal stages (SN, N, NS, and S
tides) for all the individual events of spring–neap tidal cycles (2002-2017). Subsequently, composites
of the four tidal stages were made for the annual and seasonal climatology data. The procedure of
producing the satellite composite data is described in a schematic flow (Figure 3) following steps 1 to
4 below.

(1) From the daily data, composites were made for each tidal stage of each individual spring–neap
tidal cycle to derive all the individual spring–neap tidal cycle data (four tidal stages (per tidal
cycle) × two tidal cycles (per month) × 12 months × 16 years).

(2) The individual spring–neap tidal cycle data was averaged for each month of each year, and then
the data in the same month were averaged for all the years to obtain the monthly climatology
data of each tidal stage (four tidal stages × 12 months).

(3) Meanwhile, the individual spring–neap tidal cycle data were averaged for each year first, and then
the data were averaged for all the years to derive the annual climatology data of each tidal stage
(four tidal stages).

(4) An average of the annual climatology of each tidal stage’s data was made to obtain the annual
climatology data (one data point).

https://www.jodc.go.jp/jodcweb/JDOSS/index_j.html
https://www.jodc.go.jp/jodcweb/JDOSS/index_j.html
https://www.data.jma.go.jp/gmd/kaiyou/db/tide/suisan/index.php
https://www.data.jma.go.jp/gmd/kaiyou/db/tide/suisan/index.php
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Figure 3. Schematic flow of satellite composite data processing. The individual spring–neap tidal
cycle, monthly and annual climatology of chlorophyll-a (Chl-a) and TSM were obtained from the
MODIS-Aqua data set (2002–2017). Data of interannual and monthly, and interannual tidal cycle were
the intermediate data. SN: spring to neap; N: neap; NS: neap to spring; S: spring.

Furthermore, the spatially-averaged Chl-a and TSM were calculated and compared over the
spring–neap tidal cycle for the whole sea (Figure 4), and the three regional areas; i.e., off Saga, Isahaya
Bay, and off Kumamoto (Figure 1). The accuracies of the MODIS-Aqua Chl-a were discussed in [18].
To understand the resuspension mechanism of Chl-a and TSM over the spring–neap tidal cycle for the
Ariake Sea, the ratio of Chl-a to TSM (Chl-a:TSM) was analyzed [8,22]. In [22], the authors proposed that
TSM was phytoplankton-dominated when the ratio was between 1:600 and 1:275 and was suspended
sediment-dominated when the ratio was lower than 1:600 for Tokyo Bay, which was once applied to
the East China Sea (ECS) to study the seasonal and interannual dynamics of Chl-a and TSM [8].

Figure 4. Satellite imagery of annual climatology of chlorophyll-a (Chl-a) (a) and total suspended sediment
(TSM) (b). The whole sea, where spatially-averaged Chl-a and TSM were calculated, is marked in red.
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2.4. River Discharge Data

Daily river discharge data was downloaded from the website of Water Information System
of the Japanese Ministry of Land, Infrastructure, Transport and Tourism (http://www1.river.go.jp/).
Twelve rivers were selected for the seven main river systems, namely Chikugo, Yabe, Rokkaku, Kase,
Kikuchi, Shirakawa, Midori and Kuma Rivers (Figure 1). In addition, total daily and monthly river
discharge data were calculated. The total daily river discharge data were derived as the sum of the daily
data from all the rivers, and then they were averaged for each month of all years from 2002 to 2017 to
obtain the total monthly river discharge data. Missing daily data for a certain river were estimated
based on the correlation between the daily river discharge from that river and that from the other
rivers (0.891 < R2 < 0.998). However, for several years (2005, 2007, 2013, 2014 and 2016), large amounts
of missing data diminished the usefulness of this data, and these years were therefore excluded from
further analysis. Interannual variations of the monthly river discharge were quantified by the variation
bars (Figure S2), and they were small in terms of the standard deviation of the interannual monthly
river discharge except for June and July.

3. Results

3.1. Annual Climatology of Chl-a and TSM

The annual climatology data showed higher Chl-a in the three regional areas—i.e., off Saga,
Isahaya Bay, and off Kumamoto—than that in the middle part of the Ariake Sea (Figure 4a).
However, the difference in the magnitude of the spatially-averaged Chl-a for the areas off Saga
(7.66 mg m−3), Isahaya Bay (7.55 mg m−3), and off Kumamoto (7.59 mg m−3) was small. In contrast,
the averaged TSM was much higher (4.93 g m−3) in the area off Saga than that in Isahaya Bay (2.61 g
m−3) and off Kumamoto (3.06 g m−3) (Figure 4b). In addition, spatially-averaged Chl-a (6.77 mg m−3)
and TSM (3.20 mg m−3) values were calculated for the whole sea by excluding the southern part of the
sea where the validation of the satellite Chl-a and TSM was missing.

Differences in Chl-a and TSM over the spring–neap tidal cycle were observed (Figures 5 and 6a).
For Chl-a, the variability was larger in the three regional areas—i.e., off Saga, Isahaya Bay, and off

Kumamoto—than that in the middle-western areas, and they were slightly higher during NS and
S tide than in SN and N tide. The TSM was also higher during NS and S tide than that during SN
and N tide, and the variability of TSM was larger especially off Saga than in other areas. Note that
the standard deviations of the spatial averages of all the interannual data were calculated to assess
the significance of the difference of the spatial average of the annual data during each tidal stage
(Figure 6a). All the standard deviations were smaller than the difference of the spatial averages of the
annual data, indicating that the differences of the spatial averages were significant.

Furthermore, the relation between annual Chl-a and TSM over the spring–neap tidal cycle was
investigated (Figure 6). For the whole sea, and especially for off Saga (Figure 6a), TSM was low in
SN and N, and then dramatically increased in NS and S tide. In contrast, for Isahaya Bay and off

Kumamoto (Figure 6a), the variability of TSM was not consistent with the spring–neap tidal cycle.
Besides, the ratios of Chl-a:TSM were lower compared over the spring–neap tidal cycle (Figure 6b).
For the whole sea and off Saga, the ratio increased from SN to N, then decreased to NS, and then further
to S tide. Moreover, the ratios were lower than 1:600 except for N tide for off Saga due to the high
concentration of TSM (>4 g m−3) during the spring tide in this area. For the whole sea, the ratios were
all between 1:600 and 1:275. For Isahaya and off Kumamoto, the variability of the ratios was between
1:600 and 1:275 and much smaller than off Saga, and TSM almost linearly increased with Chl-a.

http://www1.river.go.jp/
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Figure 5. Satellite images of annual climatology of Chl-a (a) and TSM (b) over the spring–neap
tidal cycle.

Figure 6. Change of spatially-averaged annual climatology of Chl-a and TSM over the spring–neap
tidal cycle (a) and the scattering plot (b) for the whole sea, off Saga, Isahaya Bay and off Kumamoto.
The vertical lines in (a) represent the standard deviations of the spatial averages, and the dashed and
dotted lines in (b) represent the Chl-a:TSM ratios of 1:600 and 1:275, respectively.

3.2. Monthly Climatology of Chl-a and TSM

The magnitude of Chl-a showed seasonal variations: it was generally lowest in winter (December,
January, February), increased in spring (March, April, May), reached its height in summer (June, July,
August), and then decreased in autumn (September, October, November) (Figure S3). For each season,
the spring–neap tidal variability of monthly Chl-a showed similar patterns. Therefore, the middle
months of each season were chosen as representative months (Figure 7). In winter and spring, Chl-a
was much higher (>7 mg m−3) for the areas off Saga, Isahaya Bay and off Kumamoto, whereas in
summer, high Chl-a expanded to the whole sea, and then began to be restricted to the areas off Saga,
Isahaya Bay and off Kumamoto in October and November. The seasonal variability of TSM was much
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less than that of Chl-a. In addition, TSM was generally much higher (>6 g m−3) off Saga than that in
other areas of the sea (<4 g m−3).

Figure 7. Satellite images of monthly climatology of Chl-a (a) and TSM (b) over the spring–neap
tidal cycle. The four months—i.e., Jan., Apr., Jul., and Oct.—represent winter, spring, summer,
and autumn, respectively.

The relationship between the monthly Chl-a averaged over the spring–neap tidal cycle and the
monthly river discharge were also examined (Figure 8) because river discharge was suggested to be
one of the important factors for seasonal variation [10]. The monthly Chl-a was strongly and positively
correlated with the monthly river discharge from all the rivers for the whole sea, off Saga, Isahaya and
off Kumamoto (R2 = 0.88, 0.89, 0.78 and 0.87; p < 0.05). The magnitude of Chl-a was much higher in
summer and highest in July when the river discharge was highest. This suggests that river discharge
could be one of the important factors for the large seasonal variability of Chl-a in all of the regions.

The relationship between monthly Chl-a and TSM over the spring–neap tidal cycle was separately
investigated for the four areas (Figure 9; Figure 10; Table 1). All the standard deviations were smaller
than the difference of the spatial averages of the monthly data, suggesting that the differences of the
spatial averages were significant. The variability of monthly Chl-a showed clear seasonal differences
for all the four areas. The magnitude of Chl-a over the spring–neap tidal cycle was much higher
(Figure 9) in July, which represented summer, than in other months, which corresponded to a higher
river discharge in summer, especially in June (Figure 8). The Chl-a peaks within each tidal cycle
occurred at SN or NS tides for summer, whereas the Chl-a peaks generally occurred at N or NS tides
for other seasons, for all areas (Table 1). In contrast, the Chl-a peaks all occurred at N or NS tides for the
annual climatology data. For the variability of monthly TSM over the tidal cycle, seasonal differences
were relatively small compared with the regional difference as well as the monthly variation in Chl-a
(Figure 9), and the TSM peaks all occurred at NS or S tide (Table 1).
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Figure 8. Monthly climatology of Chl-a averaged over the spring–neap tidal cycle against the monthly
climatology of river discharge. The data in winter, spring, summer, and autumn are represented by red,
green, blue, and yellow markers, respectively. The lines are regression lines.

Figure 9. The time-series of monthly climatology of spatially-averaged Chl-a over the spring–neap
tidal cycle for (a) the whole Araike Sea, (b) off Saga, (c) Isahaya Bay, and (d) off Kumamoto. The vertical
lines in each plot are standard deviations of spatial averages of all the interannual data.
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Figure 10. Scatter plots of monthly climatology of Chl-a and TSM over the spring–neap tidal cycle
for the whole Sea (a), off Saga (b), Isahaya Bay (c) and off Kumamoto (d). The data for the four tidal
stages—SN, N, NS and S tides—are represented by yellow, purple, magenta and light blue markers,
respectively. The dashed and dotted line represents the Chl-a:TSM ratios of 1:600 and 1:275, respectively.

Table 1. Statistics of the peaks within the spring–neap tidal cycles made for the monthly climatology of
Chl-a and TSM for the whole sea, off Saga, Isahaya Bay, and off Kumamoto. A value of “1” indicates
the occurrence of peaks.

Chl-a Peaks Whole Bay Off Saga Isahaya Bay Off Kumamoto

Month SN N NS S SN N NS S SN N NS S SN N NS S

Dec. 1 1 1 1
Jan. 1 1 1 1
Feb. 1 1 1 1
Mar. 1 1 1 1
Apr. 1 1 1 1
May 1 1 1 1
Jun. 1 1 1 1
Jul. 1 1 1 1

Aug. 1 1 1 1
Sep. 1 1 1 1
Oct. 1 1 1 1
Nov. 1 1 1 1

TSM Peaks Whole Bay Off Saga Isahaya Bay Off Kumamoto
Month SN N NS S SN N NS S SN N NS S SN N NS S

Dec. 1 1 1 1
Jan. 1 1 1 1
Feb. 1 1 1 1
Mar. 1 1 1 1
Apr. 1 1 1 1
May 1 1 1 1
Jun. 1 1 1 1
Jul. 1 1 1 1

Aug. 1 1 1 1
Sep. 1 1 1 1
Oct. 1 1 1 1
Nov. 1 1 1 1



Remote Sens. 2020, 12, 1859 12 of 19

The variability of the Chl-a:TSM ratios also showed seasonal and regional differences (Figure 10).
For summer, the ratios were much higher and were almost above 1:600 for all areas, which was due
to the high Chl-a (7.74~41.08 mg m−3). For other seasons, the ratios were generally highest at N tide
and lowest at S tide and were almost below 1:600 for the whole sea and off Saga (Figure 10a,b), which
was due to the high TSM (2.02~9.51 g m−3); in contrast for Isahaya and off Kumamoto (Figure 10c,d),
the variability of the ratios over the tidal cycle was small, and the ratios were mostly between 1:600 and
1:275 due to the lower TSM.

3.3. Individual Events of Spring–Neap Tidal Cycle Variability of Chl-a

The annual and monthly composite analysis indicated that there were strong spring–neap tidal
cycles in Chl-a variation, which further varied regionally and seasonally. Therefore, the individual
events of spring–neap tidal cycles from 2002 to 2017 were investigated. Because much of the Chl-a
data were missing over the spring–neap tidal cycles, only 10 individual events had data available for
all spring–neap tidal stages (Table 2). The data were missing in some of the three target regional areas
(Figure 11); thus, spatially-averaged Chl-a and TSM values were only calculated for the whole sea
(Table 2).

Figure 11. Composite Chl-a (a) and TSM (b) images of the spring–neap tidal stages for the ten selected
individual tidal cycles, i.e., TC-1 to TC-10. TC-1 to TC-3 were from winter, TC-4 to TC-5 were from
spring, TC-6 to TC-7 were from summer, and TC-8 to TC-10 were from autumn.
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Table 2. Statistics of the spatially-averaged Chl-a and TSM values from the individual events of spring–neap tidal cycles, and river discharge during all ten tidal cycles.
SD stands for standard deviation.

Tidal
Cycle ID

Chl-a (mg m−3) TSM (g m−3) Chl-a:TSM River Discharge (m3 s−1)

Time Period Month SN N NS S Mean SD SN N NS S Mean SD SN N NS S Mean Peak Peak/Mean

TC-1 11/27/2003-12/11/2003 Dec. 6.06 7.72 7.85 6.53 7.04 0.88 3.07 2.64 5.27 4.58 3.89 1.41 1:472 1:365 1:511 1:495 198.43 311.33 1.57

TC-2 1/26/2004-2/10/2004 Feb. 8.06 3.73 8.66 4.04 6.12 2.60 2.45 2.29 2.27 2.78 2.45 0.10 1:304 1:613 1:262 1:689 138.46 161.54 1.17

TC-3 2/11/2004-2/23/2004 Feb. 2.73 3.36 3.23 3.49 3.20 0.33 3.59 2.52 3.34 4.79 3.56 0.56 1:1316 1:750 1:1034 1:1373 130.77 173.24 1.32

TC-4 3/26/2012-4/10/2012 Apr. 8.45 7.38 5.51 4.10 6.36 1.94 3.87 3.88 5.84 3.19 4.19 1.13 1:457 1:526 1:1059 1:777 429.34 1359.58 3.17

TC-5 4/28/2005-5/10/2005 May 3.98 7.39 11.29 8.19 7.71 3.00 4.15 3.17 3.15 5.83 4.07 0.57 1:1042 1:429 1:279 1:711 426.58 1533.01 3.59

TC-6 8/14/2010-8/28/2010 Aug. 30.81 20.96 12.54 12.20 19.13 8.78 2.64 3.29 2.57 3.97 3.12 0.40 1:86 1:157 1:205 1:325 255.59 428.56 1.68

TC-7 7/24/2008-8/5/2008 Jul. 17.58 12.78 17.89 32.97 20.31 8.76 2.26 2.68 4.98 3.47 3.35 1.46 1:129 1:210 1:278 1:105 289.92 639.89 2.21

TC-8 9/29/2003-10/12/2003 Oct. 4.94 8.17 6.07 6.67 6.46 1.35 5.11 3.55 5.58 5.49 4.93 1.06 1:1036 1:435 1:918 1:824 186.76 200.17 1.07

TC-9 10/13/2003-10/27/2003 Oct. 5.37 6.22 7.45 5.82 6.21 0.89 3.41 2.62 6.47 4.65 4.29 2.03 1:634 1:421 1:869 1:800 174.64 226.01 1.29

TC-10 11/16/2004-11/28/2004 Nov. 5.42 8.20 7.37 8.51 7.37 1.39 3.56 2.93 3.70 3.08 3.32 0.41 1:656 1:357 1:502 1:362 257.59 428.62 1.66
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The individual events of the spring–neap tidal cycles also suggested the seasonal variability
of Chl-a over the spring–neap tidal cycle (Figure 11). In other words, the magnitude of Chl-a was
generally low in winter (TC-1 to TC-3), spring (TC-4 to TC-5), and autumn (TC-8 to TC-10) and high in
summer (TC-6 to TC-7); higher Chl-a (>7 mg m−3) generally occurred in the area off Saga, Isahaya Bay
and off Kumamoto in winter and spring, expanded to the whole sea in summer, and was reduced to
the area off Saga, Isahaya and off Kumamoto in autumn. This seasonal variability of Chl-a over the
spring–neap tidal cycle was similar to that of the monthly climatology data.

The spring–neap tidal cycle variability of Chl-a and TSM was observed for the whole area
(Figure 12; Table 2). In general, the spring–neap tidal variation was much smaller in winter, spring,
and autumn than that in summer for Chl-a in terms of standard deviation. Daily river discharge data
from two weeks before the first tidal stage (SN tide) was also used to investigate its influence on Chl-a
(Figure 12). To quantify the variation of the river discharge, the ratio of the maximum:average of
river discharge was calculated for each tidal cycle (Table 2). For TC-1 to TC-3, and TC-8 to TC-10,
the river discharge peaks were low (ratio < 1.67), and Chl-a generally increased from SN to N or NS
tide, and decreased during S tide; TSM was generally low during SN and N tide, and increased during
NS or S tide. This variability of Chl-a and TSM was similar to that of the spatially-averaged monthly
climatology data for the region off Saga and for the whole sea except for summer.

For the other tidal cycles, i.e., TC-4 and TC-7, the river discharge peaks were high (ratio > 1.67),
and the river discharge peaks occurred before SN tide for TC-4, TC-6, and TC-7, while a peak occurred
between NS and S tides for TC-5. For TC-5, the temporal variability of Chl-a and TSM was similar to
that for TC-1 to TC-3, and TC-8 to TC-10, and the high river discharge had no influence on the Chl-a
variation during the tidal stages before S tide. On the other hand, for TC-4, TC-6, and TC-7, after the
high river discharge peak, Chl-a decreased continuously from SN to S tide except for TC-7. This may
be due to the increase of Chl-a associated with high river discharges before the SN tide. TSM increased
slightly from SN to N tide, then peaked at NS or S tide, which was similar to that exhibited for other
tidal cycles. Furthermore, for TC-6 and TC-7, the Chl-a:TSM ratios (Table 2) were much higher than
for other tidal cycles, indicating the dominance of phytoplankton in TSM for these two tidal cycles.
These results indicate that high river discharge (ratio > 1.67) influenced the variation of Chl-a and TSM
after during summer (TC-6 to TC-7), and that the occurrence of high river discharges can also influence
the individual tidal cycles of Chl-a for other seasons (TC-4).

Figure 12. Time series of whole area-averaged Chl-a and TSM, and the daily river discharge for the ten
representative individual events of tidal cycles: TC-1 to TC-3 (winter), TC-4 to TC-5 (spring), TC-6 to
TC-7 (summer), and TC-8 to TC-10 (autumn). Chl-a and TSM in the four tidal cycles were represented
by red and green markers, respectively. The river discharge, from two weeks before the tidal cycle to
the end of the tidal cycle, is represented by the blue marked line. The average data was the average of
all the daily data in each tidal stage. For each tidal cycle, the four Chl-a and TSM data from left to right
were for SN, N, NS and S tides, respectively.
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4. Discussion

4.1. Use of Satellite Data to Investigate the Spring–Neap Tidal Variations in Chl-a and TSM

Previous studies of the variability of Chl-a and TSM over spring–neap tidal cycles have primarily
relied on in situ observations [3,4,17,23], and there are few studies based on satellite data [11,12,24].
In addition, previous studies of the Ariake Sea were only focused on the area off Saga, where the tidal
range is larger than in other regions of the sea. Because of the observation method, those studies were
limited to a few stations and a few spring–neap tidal cycles. Our study is different in that it relies on
ocean color satellite data (MODIS-Aqua) to investigate the variability of Chl-a over the spring–neap
tidal cycle, and we examine the tidal impacts on Chl-a for the whole Ariake Sea and specifically
focus on three regional areas; i.e., off Saga, Isahaya Bay, and off Kumamoto. We used ocean color
data from 2002 to 2017 to understand the annual and seasonal climatology as well as some events
corresponding to spring–neap tidal cycles. This approach reveals that there are significant regional
and seasonal differences in the Chl-a variability influenced by spring–neap tidal cycles. One of the
known difficulties in using the standard MODIS Chl-a product for shallow coastal waters, such as the
Ariake Sea, is the inadequacy of atmospheric correction schemes for obtaining accurate satellite-based
Rrs that can be used to calculate Chl-a. It is also known that the present standard in-water algorithms
for Chl-a estimates are biased in turbid waters. Here, we applied the Rrs recalculation method used
in [18,25] and a local switching in-water algorithm for MODIS data to improve Chl-a retrievals in the
Ariake Sea [18]. We also developed a TSM algorithm suitable for this area in this study. We have
shown previously [18] that this recalculation method for Rrs and the improved empirical in-water
algorithm significantly enhance the accuracy of the Chl-a retrievals from MODIS-Aqua. Our results
showed the independent behavior of Chl-a and TSM over the spring–neap tidal cycle, which was
consistent with previous studies for off Saga [13,14,17], suggesting that the influence of TSM on the
satellite estimation of Chl-a was minimal, and the accuracy of our algorithms was adequate for our
objective although imperfect.

To understand the influence of the spring–neap tidal cycle on Chl-a and TSM variability, we divided
the spring–neap tidal cycle into four tidal stages (SN, N, NS and S tides). For each tidal stage,
we produced annual and monthly climatology data and individual events of spring–neap tidal cycles
of MODIS-Aqua Chl-a and TSM (2002–2017). This analysis made it possible for us to understand the
seasonal and regional variations of tidal cycles of Chl-a and TSM, although there were much missing
data in the spatial and temporal scales for many individual events of spring–neap tidal cycles over the
16 years.

4.2. Spatial and Seasonal Variability of the Spring–Neap Tidal Cycle

Tidal currents have been reported to be an important factor for the resuspension and transport of
Chl-a and TSM into macrotidal environments, such as embayments, estuaries and tidal flats [4,23,26–28].
Using in situ data collected at several stations in the inshore area off Saga (October 2002–April 2003),
in [17], the authors reported that Chl-a increased from N to NS and decreased during S tide, whereas TSM
increased during S and decreased during N tide in the northern part of the Ariake Sea. The variability
of TSM was explained by the resuspension of the sediment caused by the strongest tidal current during
the S tide and re-sedimentation due to the weakest tidal current during N tide. The increase of Chl-a
was explained by the increased light availability due to the reduction of TSM for the phytoplankton
growth during N tide and the reduced light availability due to the increase of TSM during S tide [4,17].

Our results showed that the SN tidal resuspension in the Ariake Sea varied in space and time.
Chl-a increased from SN to NS and decreased in S when TSM was high off Saga during fall, winter
and spring when river discharge was low (Figure 7; Figure 8). This tidal cycle of Chl-a and TSM
is consistent with a previous study [17]. The high TSM in this area reduces light availability and
therefore limits phytoplankton growth, specifically during the spring tide when the resuspension of
the sediment increased. This relation between the light availability and TSM is supported in a study by
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Ooshima et al. [29], in which it was reported that the attenuation coefficient in the surface water of
the Ariake Sea was strongly and positively correlated with suspended sediment in winter, suggesting
that light availability declines when the suspended sediment is higher. Moreover, the low Chl-a:TSM
ratio (Figure 10b) during the spring tide indicates that the non-phytoplankton particles in particular
suspended sediments are the dominant TSM during the S tide. In contrast, in [12], the authors reported
that phytoplankton growth was enhanced due to the increased nutrients supplied by the spring tidal
resuspension in German Bight. This suggests that the spring–neap tidal variability of Chl-a varied
by regions. In Isahaya Bay and off Kumamoto also, Chl-a increased from SN to NS and decreased
in S during fall, winter and spring, and the variation was still similar to that in the area off Saga
(Figure 9c,d). However, the variations in TSM in terms of magnitude over the spring–neap tidal cycle
were smaller than off Saga, suggesting that there may not be a large-scale resuspension of the sediment.
This is consistent with the spatial variation of TSM (Figure 4; Figure 5; Figure 7), which shows a high
TSM off Saga, with relatively low values in Isahaya Bay and off Kumamoto. The lower TSM in Isahaya
Bay and off Kumamoto may be related to the reduction of the tidal flat of this area by the construction
of a dike and sandy tidal flat caused by the lower tidal current, respectively [17]. The Chl-a:TSM ratio
was higher than that off Saga, and Chl-a and TSM were highly correlated during the spring–neap
tidal cycles (Figure 10). This indicates that the small variations in TSM were mostly composed of
phytoplankton and that resuspended TSM was not the controlling factor for phytoplankton variation.
Therefore, there might be different mechanisms, such as the advection of phytoplankton, which explain
the spring–neap tidal variation in Chl-a and TSM for those regional areas. For example, in [27], it was
reported that diatom blooms during winter were advected from the estuaries connected to off Saga to
the middle parts of the Ariake Sea. In order to understand the mechanism for the spring–neap tidal
variations in Chl-a for those two areas, further investigations may be required.

For the whole sea, the spring–neap tidal variability of Chl-a and TSM was similar to that off Saga
(Figures 9 and 10). This is probably due to the fact that both Chl-a and TSM values were higher off

Saga than that in Isahaya Bay and off Kumamoto as well as in the middle-western areas. The similar
spring–neap tidal variability of Chl-a and TSM between the whole sea and off Saga indicates that the
influence of the tidal cycle-induced TSM was mostly important off Saga, whereas tidal cycle-driven
variations in Chl-a were important over the whole sea. Even in the enclosed bay, it is clear that the
tidal influence of the variability of Chl-a was different in each region.

4.3. Seasonal Influence of River Discharge to the Spring–Neap Tidal Variations in Chl-a

In estuaries and coastal systems, river discharge containing nutrients and suspended sediments
can either positively or negatively influence Chl-a. The positive and negative relationship between river
discharge and Chl-a is largely dependent on the dominant influence of either nutrients or irradiance
on phytoplankton growth [30–35].

Our results showed that the monthly climatology data of river discharge were strongly and
positively correlated with the spatially-averaged monthly climatology data of Chl-a over the
spring–neap tidal cycle for the whole sea and regional areas (Figure 7). River discharge was also an
important factor for the variability of Chl-a over the individual events of spring–neap tidal cycles,
as our results showed that river discharge was probably the major driver of the variability of Chl-a in
TC-4 and TC-6 (Figure 11). This suggests that river discharge promotes high phytoplankton growth in
the Ariake Sea, which is consistent with previous studies [10,13].

The effects of spring–neap tidal cycle on the variability of Chl-a and TSM was not very clear
during summer when the river discharge was high. The variation caused by the high river discharge
during summer can mask the tidal cycle variation of Chl-a and TSM. The high correlation between
Chl-a and river discharge indicates that the increase in Chl-a was caused by the possible nutrient input
from the events of river discharge. We also observed that the Chl-a:TSM ratio was extremely high
after the river discharge, and the values were often higher than 1:275–1:600, which is the range of
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phytoplankton-dominated water in Tokyo Bay [22]. The high ratio also reflects possible differences in
the physiological conditions of phytoplankton after the river discharge.

5. Conclusions

As the spring–neap tidal variability of satellite Chl-a associated with TSM has not been investigated
for a broad area and with a long-term data set, we investigated the spring–neap tidal variability of
Chl-a on the basis of annual and monthly climatology data and individual events of spring–neap tidal
cycles using an improved MODIS-Aqua data set (2002-2017). Spatially-averaged Chl-a and TSM and
daily and monthly river discharge values were calculated to quantify the influence of TSM and river
discharge on Chl-a for the whole sea and three regional areas (off Saga, Isahaya Bay and off Kumamoto).

The errors in MODIS-Aqua-derived Rrs and Chl-a for the Ariake Sea were effectively reduced by
applying the methods in [11]. Therefore, we recalculated the 16-year MODIS-Aqua Rrs and Chl-a data
with the same methods developed for this area used in [11]. Moreover, a local TSM algorithm was
developed in this study, and then it was applied to the improved MODIS-derived Rrs to obtain the
MODIS-derived TSM. The variability of Chl-a and TSM over the spring–neap tidal cycle off Saga was
reasonable and was consistent with the field-based observations in previous studies, suggesting that
the recalculated Chl-a and MODIS-derived TSM were separable.

The results of this study suggested seasonal and regional differences in the factors controlling
the variability of Chl-a over the spring–neap tidal cycle. In general, the variability of Chl-a over the
tidal cycle was controlled by river discharge during summer. In other seasons, it was controlled by
the tidally resuspended TSM for off Saga and possibly by direct tidal transportation and tidal mixing
in Isahaya Bay and off Kumamoto, respectively. In summary, this study suggests that satellite ocean
color data offers an effective means for understanding the mechanisms of seasonal and regional Chl-a
variability in coastal ecosystems that come under the influence of tides and river discharge.

This study also reveals that satellite ocean color data can discern the effects of spring–neap
tidal cycles on Chl-a and TSM. However, we found different correlations between Chl-a and TSM
in the Ariake Sea, confirming that the feature of spring–neap tidal cycles can vary in different areas.
In addition, this is the first study to investigate the spring–neap tidal variability of Chl-a and TSM
using satellite ocean color data in the Ariake Sea. Given the broad coverage and frequent sampling by
satellites, our results reveal that satellite ocean color data can contribute significantly to our knowledge
and understanding of the environmental dynamics caused by spring–neap tidal cycles in the Ariake
Sea. The availability of these datasets offers the potential for the better management of the water
quality of enclosed embayments such as the Ariake Sea.
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