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Abstract: A methodology for the automated identification of building damage from post-disaster
aerial images was developed based on convolutional neural network (CNN) and building damage
inventories. The aerial images and the building damage data obtained in the 2016 Kumamoto,
and the 1995 Kobe, Japan earthquakes were analyzed. Since the roofs of many moderately damaged
houses are covered with blue tarps immediately after disasters, not only collapsed and non-collapsed
buildings but also the buildings covered with blue tarps were identified by the proposed method.
The CNN architecture developed in this study correctly classifies the building damage with the
accuracy of approximately 95 % in both earthquake data. We applied the developed CNN model to
aerial images in Chiba, Japan, damaged by the typhoon in September 2019. The result shows that
more than 90 % of the building damage are correctly classified by the CNN model.
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1. Introduction

Large-scale natural disasters, such as earthquakes, have produced a huge number of building
damage over a wide area. In order to consider the effective emergency response and early-stage
recovery planning, it is indispensable to identify the amount and distribution of the structural
damage immediately after the disaster. Remote sensing has been recognized as a suitable source to
provide timely data for the detection of building damage in large areas (e.g., [1,2]). Although visual
interpretations have been applied to detect building damage from optical remote-sensing images [3–5],
a lot of time and human resources are required to identify the damage over a wide area. Gray level or
texture-based change detection techniques between pre- and post-event images have been introduced in
order to automatically or semi-automatically estimate damage distributions [6–11]. Such change-based
approaches, however, cannot be applied when a pre-event image is not available in the area of interest.
A robust methodology to automatically detect building damage only from post-disaster images needs
to be developed for rapid and effective damage assessment.

Recently, deep-learning and artificial intelligence solutions have been dramatically developing
in the various fields of science and engineering. Convolutional neural network (CNN), one of the
deep-learning techniques, is now recognized as the most suitable approach for image recognition
(e.g., [12,13]). CNN-based approaches have been applied to remote sensing images not only for
scene and land cover classifications [14,15] but also for detecting building damage areas in earthquake
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disasters [16–23]. Duarte et al. [16] demonstrated the CNN-based feature fusion technique for identifying
a damaged region from remote sensing images. Nex et al. [17] examined the transfer-learning technique
for detecting the visible structural damage from satellites, airborne and UAV images. Ma et al. [18,19]
accepted the CNN-based approaches for estimating the block-level damage distribution and extracting
the damaged parts of buildings from satellite images, respectively. Cooner et al. [20] and Ji et al. [21,22]
applied the machine- or deep-learning techniques for creating building-by-building damage maps by
including building footprints in the image analysis. Since building footprint data are available for most
urban areas from open databases such as the OpenStreetMap service [24], the use of building footprints
becomes more feasible for easily delineating locations of individual buildings from an image.

These studies revealed that the CNN-based approaches have worked successfully in building
damage detections by adjusting the CNN architectures suitably for their datasets. Most of the previous
studies, however, classified the building damage into two classes; damaged and non-damaged or
collapsed and non-collapsed. As pointed out in Ci et al. [23], the identification of an intermediate
damage level would be important for actual post-disaster activities including early-stage recovery
planning and disaster waste management. Moreover, most of the previous studies used damage data
visually interpreted from remote-sensing images as reference training data. As pointed out in the
previous validation studies of visual interpretations [3,25], uncertainties and/or mis-classifications
were contained not only in intermediate damage levels but also in no damage and severe damage
levels. In order to develop a reliable damage detection technique, ground truth data obtained in field
damage investigations need to be used as reference training data.

When building damage is identified from vertically observed remote sensing images, a building
roof is an important factor for classifying the damage grade because the damage of building sides
such as walls and columns, and the internal damage, cannot be directly observed from the images.
Since a building roof is one of the most fragile parts in residential houses, residents immediately cover
the building roofs with blue plastic tarps to temporally protect their houses from further damage,
such as water leakage, when the roofs are damaged by natural disasters. Although it is difficult to
determine the detailed damage grade of the buildings covered by blue tarps from remote-sensing
images, the blue tarps on building roofs themselves can be recognized as a sign of damage. Such blue
tarp-covered buildings, however, were rarely considered explicitly in remote-sensing-based damage
detection studies except in limited cases [26,27].

In this study, a CNN-based building damage detection technique was developed to automatically
classify the damage grade into collapsed, non-collapsed and blue tarp-covered buildings by analyzing
post-disaster aerial images and building damage inventories in the 2016 Kumamoto and the 1995 Kobe,
Japan, earthquakes. The building damage inventories obtained in the field investigations by structural
engineers were mainly used as reference ground truth data. Blue tarp-covered buildings were visually
identified from the images, and the damage grades of the blue tarp buildings were discussed based
on the damage inventories. The image patches were extracted from the post-disaster images with
the help of the building footprints in the damage inventories. The CNN-based damage classification
model was developed by the deep-learning of the damage grades of the buildings in the image patches.
The applicability of the developed CNN architecture was discussed by estimating the building damage
from the post-event aerial images observed in a town of the Chiba prefecture, Japan, damaged by the
typhoon in September 2019.

2. Building Damage Inventories and Aerial Images

2.1. Damage Inventories of the 2016 Kumamoto, Japan Earthquake

In the Kumamoto prefecture of Kyushu Island, Japan (see Figure 1a), urban areas were severely
damaged by the two large earthquakes that occurred on April 14 and 16, 2016, with moment magnitudes
(Mw) of 6.2 and 7.0 (hereafter we refer to them as the 2016 Kumamoto earthquake). Figure 1b shows
the distribution of the seismic intensities in the epicentral area during the Kumamoto earthquake
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on 16 April, calculated from the observed strong motion data [28]. Since the seismic intensity, 7,
the maximum seismic intensity level on the Japanese scale, was recorded during the earthquake in
Matshiki town, Kumamoto prefecture, as shown in Figure 1b, a large number of buildings were severely
damaged, especially in the town.
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Figure 1. (a) Locations of the target areas of this study. (b) Seismic intensity map of the Kumamoto
earthquake on 16 April 2016 [28], in and around Mashiki town, Kumamoto prefecture. (c) Seismic
intensity map of the 1995 Kobe earthquake [29], in and around Nishinomiya city, Hyogo prefecture.
Rectangle in (b) and (c) indicates the areas of interest.

After the earthquakes, the Kyushu branch of the Architectural Institute of Japan (AIJ) conducted
the detailed building damage investigation in the central part of Mashiki town [30]. The damage grades
proposed by Okada and Takai [31] were assigned to more than 2000 buildings by investigating the
conditions of the buildings from the structural points of view in the field survey. Seven damage grades
(here referred to as the AIJ-scale) from D0 to D6 were assigned to each building. Figure 2 illustrates the
relationship of the damage grades between the European Macroseismic Scale (EMS-98) [32], globally used
in building damage investigations, and the AIJ-scale. Typical descriptions for the building damage in
EMS-98 and AIJ-scale are summarized in Table 1. Considering the illustrations and descriptions of the
damage in Figure 2 and Table 1, the damage grades of D0 and D1 in the AIJ-scale almost correspond to
negligible to slight damage (G1) in the EMS-98 because both D1 and G1 damage levels are characterized
as hair-line cracks in walls. D5 and D6 in the AIJ-scale correspond to destruction damage (G5) in the
EMS-98 because G5 includes not only complete collapse but near total collapse.

Figure 3a shows the distribution of the building damage in the central part of Mashiki town.
The broken line area indicates the field survey area by the AIJ teams. Since the original damage
inventory consists of point data, building footprints of the Geospatial Information Authority of
Japan (GSI) [33] were given to the inventory. The building footprints included two structural classes;
normal and substantial buildings. The normal buildings were defined as the timber buildings and
the buildings lower than three-stories, and the substantial buildings were defined as the reinforced
concrete and the steel structure buildings higher than three-stories [33]. Most of the normal buildings
corresponded to one- or two-story residential houses in this area. The Japanese residential houses
generally have gable roofs covered with tiles made from clay, cement, slate or metal materials. On the
contrary, the substantial buildings have a flat roof slab constructed by concrete on the tops. Since the
materials, structural types and failure mechanism of the substantial buildings are totally different
from those of the residential houses, the substantial buildings were excluded from the analysis in the
following steps. Hereafter, we refer to the damage inventory as the AIJ-data.

The building damage in the affected areas by the Kumamoto earthquake were also investigated by
the visual interpretation of the post-event aerial images in Monma et al. [34]. They classified the damage
grade of each building into four categories; major, heavy, moderate and negligible damage, based on
the criteria in Table 1. Hereafter, we refer to these damage data as V (visual interpretation)-data.
Considering the damage descriptions, the damage grades of the V-data can be approximated as shown
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in Figure 2. The boundaries of the damage grades are not aligned with those in the AIJ-scale because
of the difference of the criteria. The major damage almost corresponds to D6, D5 and some of the
D4 buildings, and the negligible damage covers the D0 and some of the D1 buildings. The damage
distribution outside of the field survey area in Figure 3a represents the result of the visual interpretation.
In order to increase the number of the training data, the building damage inventory by the visual
interpretation in Figure 3a is additionally used in this study. As mentioned above, the substantial
buildings were also excluded in the following analysis.
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Figure 2. Comparison of the building damage scales of the Architectural Institute of Japan (AIJ)-scale [31],
the European Macroseismic Scale (EMS-98) [32] and the damage scale in the V (visual interpretation)-data [34]
and the Building Research Institute of Japan (BRI)-data [35]. D0, D1 and the negligible damage levels are
classified into non-collapse, and D5, D6 and the major damage levels are classified into collapse in this study.
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earthquake. (b) Damage distribution of BRI-data in Nishinomiya city affected by the 1995 Kobe earthquake.
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Table 1. Descriptions of the building damage in EMS-98, AIJ-scale, V-data and BRI-data defined in the literature [31,32,34,35].

Damage Scale/Damage
Inventory Damage Grade Typical Damage Descriptions Reference

EMS-98

G1 Hair-line cracks in very few walls; Fall of small pieces of plaster only

[32]
G2 Cracks in many walls; Falls of fairly large pieces of plaster

G3 Large and extensive cracks in most walls; Roof tile detach; Failure of
individual non-structural elements

G4 Serious failure of walls; Partial structural failure of roofs and floors
G5 Total or near total collapse

AIJ-scale/AIJ-data

D0 No damage

[31]

D1 Hair-line cracks in walls
D2 Falls of plaster of walls; Detachment of roof tiles
D3 Failure of columns; beams and walls; Serious failure of roof
D4 Significant incline of columns; Serious failure of beams and walls
D5 Partial collapse (Collapse of ground floor or upper floor)
D6 Complete collapse

V-data

Negligible No visible damage

[34]Moderate Detachment of roof tiles
Heavy Serious failure of roof; Failure of walls
Major Complete or partial collapse

BRI-data

Negligible No visible damage

[35]Moderate Hair-line cracks in walls; Falls of plaster of walls; Detachment of roof tiles
Heavy Incline of columns; Serious failure of roof; Significant cracks in walls

Major Complete collapse; Significant incline of columns; Serious failure in
columns and frames
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2.2. Damage Inventory of the 1995 Kobe, Japan, Earthquake

The Kobe city area in Hyogo prefecture, Japan (see Figure 1a), was destructively damaged
by a Mw 6.9 earthquake on 15 January 1995 (hereafter we refer to it as the 1995 Kobe earthquake).
Nishinomiya city, Hyogo prefecture, was heavily damaged because the seismic intensity 7 was observed
in the area as shown by the seismic intensity map [35] in Figure 1c. After the earthquake, the structural
damage database was constructed in Nishinomiya city [36]. Among the building damage data included
in the database, we analyzed the building damage inventory investigated by structural engineers of
the AIJ and the City Planning Institute of Japan, and compiled by the Building Research Institute
of Japan (BRI) [35]. They classified the damage grades into four levels (major, heavy, moderate and
negligible damage) based on the criteria in Table 1. Hereafter, we refer the damage inventory as
BRI-data. Although the criteria of the damage grades of the BRI-data are not perfectly consistent
with those of the V-data, the major damage almost corresponds to the D5, D6 and some of the D4
buildings, and the negligible damage corresponds to the D0 and some of the D1 buildings in the
AIJ-scale as shown in Figure 2. The damage inventory included building use such as residential,
commercial and industrial in each polygon. Whereas the residential buildings almost corresponded to
one- or two-story timber houses, most of the commercial and industrial buildings were constructed
by reinforced concrete frames or steel frame structures. The residential houses were analyzed in the
following steps by excluding the commercial and industrial buildings from the inventory because
the materials, structural types and failure mechanism of those buildings were totally different from
residential houses. Figure 3b shows the distribution of the damage for the residential houses in the
1995 Kobe earthquake.

The number of buildings in each damage inventory is summarized in Table 2. Approximately 2100,
8000 and 46,000 building data were included in the inventories, respectively. Approximately 15% of
the buildings were classified as D5–D6/major damage in the AIJ-data and BRI-data. About 45–70%
of the buildings were classified as D0–D1/negligible damage in the three inventories. In this study,
the D5–D6 damage in the AIJ-data and the major damage in the V-data and the BRI-data were defined
as collapse as shown in Figure 2, and the D0–D1 damage and the negligible damage were defined as
non-collapse for the following damage identification.

Table 2. Numbers of buildings in damage inventories.

(a) AIJ-data (the 2016 Kumamoto Earthquake)

D0 D1 D2 D3 D4 D5 D6 Total

Number 492 562 245 272 237 224 68 2100
Percentage (%) 23.4 26.8 11.7 13.0 11.3 10.7 3.2 -

(b) V-data (the 2016 Kumamoto earthquake)

Negligible Moderate Heavy Major Total

Number 6014 1402 439 318 8173
Percentage (%) 73.6 17.2 5.4 3.9 -

(c) BRI-data (the 1995 Kobe earthquake)

Negligible Moderate Heavy Major Total

Number 21,005 12,721 5966 6782 46,474
Percentage (%) 45.2 27.4 12.8 14.6 -

2.3. Aerial Images and Extraction of Blue Tarp-Covered Buildings

Aerial images observed immediately after the earthquakes were analyzed in this study. We used
the aerial images in Mashiki town observed on 19 April 2016, three days after the Kumamoto earthquake,
and the aerial images in Nishinomiya city observed on 21 January 1995, four days after the Kobe
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earthquake. The images consist of three visible bands (RGB), and they were ortho-rectified to 8-bit
images with the spatial resolution of 0.2 m.

Figure 4 shows the typical buildings for each damage grade in the 2016 Kumamoto and 1995
Kobe earthquakes. We can clearly identify rubbles in and around the severely damaged buildings
such as D5, D6, and major damage levels in the aerial images. Some of the affected buildings,
such as D2, moderate and heavy damage, are covered with blue tarps on their roofs as shown in the
ground photographs. In order to analyze such blue tarp-covered buildings, buildings whose roofs are
approximately 50% covered with blue tarps are visually identified from the aerial images. Since the
detection of all the blue tarp buildings from whole images is time-consuming and labor-intensive
work, certain numbers of blue tarp buildings were randomly extracted from the images. Table 3
shows the numbers of the extracted blue tarp buildings for each damage grade of the damage
inventories. In the AIJ-data, approximately 65 % of the blue tarp buildings were classified as D2–D4.
In the V-data and BRI-data, 80–90% of the blue tarp buildings were classified as moderate or heavy
damage. These results indicate that the blue tarps on building roofs can be judged as a typical sign of
intermediate damage grade. Furthermore, it is more feasible to extract the blue tarp buildings than to
classify all the intermediate damage grades. Therefore, we tried to classify the damage grades of the
buildings to three categories; collapsed (without blue tarp), non-collapsed (without blue tarp) and blue
tarp-covered buildings.
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Table 3. Damage grades of extracted blue tarp covered buildings.

(a) AIJ-Data

D0 D1 D2 D3 D4 D5 D6 Total

Num. of blue tarp covered buildings 1 64 76 47 16 5 2 211
Percentage (%) 0.5 30.3 36.0 22.3 7.6 2.4 0.9 -

(b) V-data

Negligible Moderate Heavy Major Total

Num. of blue tarp covered buildings 13 287 88 17 405
Percentage (%) 3.2 70.9 21.7 4.2 -

(c) BRI-data

Negligible Moderate Heavy Major Total

Num. of blue tarp covered buildings 176 755 387 147 1465
Percentage (%) 12.0 51.5 26.4 10.0 -

3. Methodology

3.1. Preprocessing

In order to develop a deep-learning-based damage-classification model, training and validation
samples were prepared from the damage inventories. Since even the damage inventories included
over- or under-interpretations in the damage assignment as discussed later, we carefully selected the
building data for accurate classification. Table 4a shows the numbers of buildings selected for the
training and validation data from each inventory. Approximately 1300, 2200 and 5700 buildings were
extracted from the AIJ-data, V-data and BRI-data, respectively. It was difficult to determine an ideal
ratio to divide the data into training and validation sets. Since the total number of samples was limited,
a larger number of samples was given to the training dataset. In this study, 80% of the randomly
selected samples was used as training data in the following hold-out validation, and the remaining
20% were classified as validation data as shown in Table 4a.

Table 4. (a) Numbers of the original training and validation data. (b) Numbers of the training and
validation data after the data augmentation.

(a) Original

AIJ-data V-data BRI-data
TotalTraining Validation Training Validation Training Validation

Non-collapsed 683 171 1270 318 2892 723 6057
Blue tarp covered 169 42 324 81 1171 294 2081

Collapsed 158 39 156 39 466 116 974
Total 1010 252 1750 438 4529 1133 9112

(b) After data augmentation

AIJ-data V-data BRI-data
TotalTraining Validation Training Validation Training Validation

Non-collapsed 683 171 1270 318 2892 723 6057
Blue tarp covered 507 126 972 243 3366 843 6057

Collapsed 1003 250 991 250 2851 712 6057
Total 2193 547 3233 811 9109 2278 18,171

Before applying the CNN-based classification, image patches of the buildings were generated
from the aerial images and the building inventories. Figure 5 shows the flow of the preprocessing
adopted in this study. The building locations were identified from the building footprints in the
inventories. Square-shaped image patches created from the images with the guide of the building
footprints by adopting a larger length for the north–south or east–west directions of the buildings.
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A buffer area with the length of 15 pixels (3 m) was given to the both sides of the patches as shown
in Figure 5, because gaps are sometimes found between the building outlines in the images and the
building footprints.
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Since image patches with fixed numbers of pixels were analyzed in the following CNN-based
approach, the size of the image patches needed to be normalized. To determine the size of the image
patches, the building size in the inventories was analyzed. Figure 6 shows the relative and cumulative
frequency distributions of the building size in a square meter derived from each damage inventory.
The most frequent building size was around 100 square meters in the AIJ-data and V-data, and 50 square
meters in the BRI-data. The sizes of approximately 95 % of the buildings were smaller than 300 square
meters. The equivalent length and width of a building with the size of 300 square meters were about
17 m, corresponding to 87 pixels in the aerial images. Considering the orientation of the buildings on
the images, the size of the image patches needs to be larger than 87 pixels. Excessively large image
sizes should not be used to suppress the over-enlargement of the image patches. A power of two has
been widely adopted for image dimensions in traditional image processing such as texture analysis.
We determined the size of the image patches as 128 × 128 pixels, because 128 was a number of two
to the seventh power and nearest larger number to 87 pixels. All the extracted image patches were
normalized to 128 × 128 pixels by digitally enlarging and reducing the sizes for the following analysis.

1 
 

 

Figure 6. (a) Relative frequencies of the building size. (b) Cumulative frequencies of the building size.
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3.2. Development of Convolutional Neural Network (CNN) Model

In this study, the CNN architecture and hyperparameters developed in the previous damage
detection study by one of the authors [37] were tuned and improved by checking the applicability of
the models to our datasets through trial and error. Figure 7 shows the CNN architecture adopted for
damage classification in this study. Table 5 shows the adopted kernel size and size of shape in each
layer. The basic convolution block consists of a convolution layer, a nonlinear layer and a pooling layer.
The input to the convolutional layer was a three-dimensional array with two-dimensional feature maps
of size m × m and the number of spectral bands r (here, m × m × r = 128 × 128 × 3). The convolutional
layer has k trainable filters of kernel size l × l, which connects the input feature map to the output
feature map. In the nonlinearity layer, a rectified linear unit (ReLU) was chosen to compute the feature
maps. The pooling layer served to progressively reduce the spatial size of the features, to reduce the
number of parameters and the amount of computation in the network, and hence to also control the
overfitting. The Max pooling was adopted in the layers. Four basic convolution blocks were included
in the CNN model, and consequently the original image patch was transformed into a feature map
with a size of 3 × 3 × 128.
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Figure 7. Convolutional neural network (CNN) architecture adopted in this study.

Table 5. Kernel and shape size adopted in the CNN model.

Layer Kernel
Size

Shape (Length ×
Width × Bands) Layer Kernel

Size
Shape (Length ×
Width × Bands)

Input 128 × 128 × 3 Convolution 4 2 6 × 6 × 128
Convolution 1 6 62 × 62 × 16 ReLU 4 3 × 3 × 128

ReLU 1 31 × 31 × 16 Max Pooling 4 2 3 × 3 × 128
Max Pooling 1 2 31 × 31 × 16 Dropout
Convolution 2 2 30 × 30 × 32 Affine 1 1152

ReLU 2 15 × 15 × 32 Affine 2 576
Max Pooling 2 2 15 × 15 × 32 Batch normalization
Convolution 3 2 14 × 14 × 64 ReLU 5 576

ReLU 3 7 × 7 × 64 Affine 3 3
Max Pooling 3 2 7 × 7 × 64 Softmax 3

Dropout and batch normalization (BN) were also employed in the fully connected layers.
Dropout was introduced in the fully connected layer in order to suppress overfitting by removing the
randomly selected neurons with the probability of 0.5 at the training stage [38]. The BN was recognized
as a powerful tool for suppressing overfitting and accelerating convergence speed [39]. In the BN,
the input values within a mini-batch are normalized to the mean of zero and the variance of 1 to correct
the distribution of each layer input. In the affine layers, the contained feature maps were transformed
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into output nodes by the linear combination of the nodes of the previous layer with an added bias.
After the affine transformations and BN in the fully connected layers, the final output dimension was
converted into three classes for the softmax function as shown in Table 5. The size of the mini-batch
was set to 100 to control the number of training samples in an epoch. Since we confirmed that the loss
functions for the training and validation samples were not significantly reduced under the number of
epochs larger than 1000 in our preliminary analysis, the number of epochs of 1000 was adopted in the
training process.

Since the number of training data was limited as shown in Table 4a, data augmentation was
performed by horizontally and vertically flipping, rotating and adding contrast to the original image
patches. The number of training and validation data is shown in Table 4b. The convergence of
the loss function for the training and validation data by the developed CNN model is illustrated in
Figure 8. We confirmed that overfitting was not observed during the learning process and the learning
is successfully performed by the developed model. The classification accuracy for the validation data
is represented in a confusion matrix shown in Table 6. The numbers in the shaded cells indicate
the number of buildings correctly classified by the model. The precisions and recalls for all the
damage grades are higher than 97%, indicating that the damage grades were successfully classified by
the model.
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Table 6. Classification accuracy for the validation data.

Damage Inventory
Recall (%)Non-Collapsed Blue Tarp Covered Collapsed Total

Estimated

Non-collapsed 1184 14 3 1201 98.6
Blue tarp covered 7 1190 4 1201 99.1

Collapsed 21 8 1205 1234 97.6
Total 1212 1212 1212 3636

Precision (%) 97.7 98.2 99.4

Overall accuracy (%) = 98.4

4. CNN-Based Building Damage Estimations

The developed CNN model was applied to the whole building data. Figure 9a,b show the
distributions of the estimated building damage for the Mashiki town and Nishinomiya city, respectively.
Compared with the damage inventories shown in Figure 3a,b, the D5–D6/major damage buildings
were mostly detected as the collapsed buildings by the CNN model. However, the distribution of the
collapsed buildings seems to be overestimated since the D0–D1/negligible damage buildings were
falsely classified to the collapsed buildings. The blue tarp-covered buildings were distributed mainly
between the collapsed and non-collapsed building areas. A similar trend was also confirmed in the
damage inventory because the D2–D4, moderate and heavy damage buildings, were located around
the D5–D6/major damage buildings in the damage inventories.
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Figure 9. Damage distributions estimated by the CNN model for (a) Mashiki town in the 2016
Kumamoto earthquake and (b) Nisinomiya city in the 1995 Kobe earthquake.

Table 7 shows the summaries of the CNN-based classifications. The numbers of the cells indicate the
number of buildings classified to each class by the CNN model. For the accuracy assessment, the colors
of the cells were classified into three categories; underestimated (light blue), correctly estimated
(light green) and overestimated (pink) as shown in the table. The precisions and recalls were calculated
for each damage class. The precisions for the non-collapsed and collapsed buildings were higher than
75% in the AIJ- and V-data. Whereas the recalls for the non-collapsed buildings were higher than
70% in the AIJ- and V-data, the recalls for the collapsed buildings were lower than 40% in the three
inventories, indicating that the overestimations were found in the collapsed building classification.
Although the blue tarp-covered buildings do not perfectly correspond to moderate or heavy damage,
the precision and recall were indicated with brackets. The recalls for the blue tarp buildings were
higher than 65%, but the precisions were lower than 30 %. This is because not all of the intermediately
damaged buildings were covered with blue tarps on the roof, whereas the blue tarp buildings were
typically assigned to the intermediate damage level.

The spatial distribution of the difference between the estimations and the inventories is visualized
in Figure 10a,b. The colors of the polygons indicate the results of the accuracy assessment classified in
Table 7. For the 2016 Kumamoto earthquake shown in Figure 10a, the correctly estimated buildings were
dominantly distributed in the area. It indicates that the building damage was accurately estimated by
the proposed model. For the 1995 Kobe earthquake, shown in Figure 10b, on the other hand, not only
the correctly estimated buildings but also the underestimated buildings were widely distributed. This is
mainly because the numbers of the moderately damaged buildings were classified as non-collapsed as
shown in Table 7. As indicated in Figure 2, moderate damage in the BRI-data included slight damage
levels, such as hair-line cracks in walls. Since it is very difficult to detect such slight damage from the
aerial images, these buildings were underestimated in the proposed model. Considering the limitation
of the remote-sensing-based damage detection, these underestimations would be acceptable for a quick
damage assessment.

The causes of other serious false classifications are discussed by carefully checking the images and
the building damage data. Figure 11a shows examples of D5 buildings in the AIJ-data falsely classified
to non-collapse by the CNN model. The buildings were assigned to collapse in the inventory because
soft-story collapse was confirmed in the field investigation. In the aerial images, however, failures were
not found on the building roofs. When we carefully see the images, we can find rubbles of columns
and walls distributing around the buildings. It is difficult to detect such soft-story collapse of buildings
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without failure of roofs from vertical images even by visual interpretation since the building roofs seem
to be intact in the images. Therefore, the damage grades were underestimated by the CNN model.
On the other hand, Figure 11b,c shows examples of D0–D1 buildings falsely classified as collapsed
by the CNN model. We can see that the roofs of the buildings in Figure 11b are seriously damaged.
Considering the criteria of the damage grades in Table 1 and Figure 2, the damage level for the buildings
should be classified to D3 or higher. This suggests that the damage was probably falsely labeled in the
field investigation due to missing the damaged parts. Due to the increase in solar energy generation in
residential houses in Japan, solar panels have been installed on the roofs of many buildings. Figure 11c
shows the examples of the building roofs with solar panels that were not seriously damaged by the
earthquake and assigned to D0 or D1 in the damage inventory. The damage of the buildings, however,
was classified to collapse by the CNN model. As shown in Figure 11c, the color and contrast of the
solar panels were totally different from those of the roof materials. The damage of such buildings was
overestimated as collapsed, probably because the solar panels were falsely interpreted as damage in
the CNN model. These results show the limitation of the proposed damage-identification method
especially for buildings subjected to soft-story collapse and buildings with solar panels of the roofs.
Although it would be difficult to accurately detect soft-story collapse from the remote-sensing images,
the overestimation caused by the presence of solar panels would be reduced by increasing training
samples in our future researches.

Table 7. Result of the CNN-based damage classification for each damage inventory. The colors of the
cells indicate the labels of the classification; correctly estimated (light green), underestimated (light blue)
and overestimated (pink). Accuracies for the blue tarp-covered buildings are shown by brackets since
the blue tarp does not perfectly correspond to D2–D4/moderate, heavy damage levels.

(a) AIJ-data

Damage inventory
Recall (%)D0 D1 D2 D3 D4 D5 D6 Total

Estimated

Non-collapsed 465 444 98 115 102 32 3 1259 72.2
Blue tarp-covered 4 74 89 55 20 6 2 250 (65.6)

Collapsed 23 44 58 102 115 186 63 591 42.1
Total 492 562 245 272 237 224 68 2100 -

Precision (%) 86.2 (21.8) 85.3 - -

(b) V-data
Damage inventory

Recall (%)Negligible Moderate Heavy Major Total

Estimated

Non-collapsed 5049 752 126 47 5974 84.5
Blue tarp-covered 118 387 124 20 649 (78.7)

Collapsed 847 263 189 251 1550 16.2
Total 6014 1402 439 318 8173 -

Precision (%) 84.0 (27.8) 78.9 - -

(c) BRI-data
Damage inventory

Recall (%)Negligible Moderate Heavy Major Total

Estimated

Non-collapsed 18,154 9335 3798 3527 34,814 52.1
Blue tarp-covered 634 1914 1057 556 4161 (71.4)

Collapsed 2217 1472 1111 2699 7499 36.0
Total 21,005 12,721 5966 6782 46,474 -

Precision (%) 86.4 (15.9) 39.8 - -
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Figure 10. (a) 2016 Kumamoto earthquake; (b) 1995 Kobe earthquake. Distributions of the difference of
damage classes between the estimation and the inventory. The green regions indicate the buildings
correctly classified by the CNN model. The blue and red regions represent the under- and overestimated
areas by the CNN model, respectively.
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Figure 11. Close-ups of the images falsely classified by the CNN model. (a) Soft-story collapsed
buildings (D5). (b) D1 buildings with seriously damaged roofs. (c) D0–D1 buildings with solar panels
on the roofs.

5. Application to Buildings Damaged by a Typhoon

In 9 September 2019, the typhoon Faxai attacked the eastern part of Japan. Coastal areas in Chiba
prefecture (see Figure 1a) were severely damaged by the strong winds of the typhoon, and the number
of the affected buildings exceeded 65,000 in the Chiba prefecture. Kyonan town, located in the western
coastal area of the Chiba prefecture, was one of the severely damaged areas by the typhoon. Figure 12
shows an aerial photograph captured at the town from a helicopter immediately after the typhoon [40].
Since the building roofs were seriously damaged by the strong winds, we can find numbers of building
roofs being covered with blue tarps.
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Figure 12. Aerial photograph of Kyonan town captured on 14 September 2019 [40].

The damage of the buildings was generated by the vibrations of ground, foundations and
superstructures in earthquake disasters. Buildings are damaged by the unilateral force of winds
in typhoon disasters. Whereas most elements of buildings including foundations are affected by
earthquakes, the outer parts of buildings, including roofs and walls, were mainly damaged by typhoons.
Although the failure mechanism of wind-induced building damage was slightly different from that of
an earthquake-induced damage, the damage classification of the BRI-data shown in Table 1 has been
widely used in Japan, also for building damage assessments in typhoon disasters. This means that
the proposed damage-identification method would be applicable, not only for earthquake disasters,
but also for typhoon disasters.

We apply the proposed CNN model to aerial images in Kyonan town. Figure 13a shows the
aerial image observed eighteen days after the typhoon. The target area covers the length of 3 km for
the north–south direction and the width of 4 km for the east–west direction, respectively. Since the
building damage inventory in this town was not available, the locations and damage grades of the
buildings were visually interpreted by the authors. The damage grades were classified into three
categories; collapsed, blue tarp-covered and non-collapsed. Figure 13a also shows the distribution
of the interpreted building damage. The target area included approximately 2300 buildings in total,
and 18 and 729 buildings were classified as collapsed and blue tarp-covered, respectively.

The image patches were extracted from the aerial images, and the building damage for each
image patch was estimated by the proposed CNN model. Figure 13b shows the distribution of the
building damage estimated by the model. The distribution of the estimated blue tarp buildings show
good agreement with that of the visually interpreted ones. Table 8 summarizes the classification
accuracies of the CNN model. The result shows that more than 90% of the buildings are correctly
classified. The severely damaged buildings, however, were slightly overestimated by the CNN model.
The damage level was overestimated when rubbles or small objects were distributed around the
buildings, and solar panels were installed on the building roof as shown in Figure 11c. Whereas such
overestimations were found in some buildings, we confirmed that the proposed CNN worked well
for the identification of building damage, not only by the earthquakes but also by the typhoon.
The methodology introduced in this study would be useful for the rapid identification of damage
distribution, only from post-disaster aerial images.
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Figure 13. (a) Visually interpreted building damage in Kyonan town. The arrow indicates the approximate
direction of the aerial photograph in Figure 12. (b) Building damage estimated by the proposed CNN model.

Table 8. Classification accuracies of the building damage in Kyonan town.

Visually Interpreted
Recall (%)Non-Collapsed Blue tarp-Covered Collapsed Total

Estimated

Non-collapsed 1469 17 2 1488 98.7
Blue tarp-covered 57 703 1 761 92.4

Collapsed 61 9 15 85 17.6
Total 1587 729 18 2334

Precision (%) 92.6 96.4 83.3

Overall accuracy (%) = 93.7

6. Conclusions

In this study, the convolutional neural network (CNN)-based methodology for identifying the
building damage from post-disaster aerial images was developed using the building damage inventories
and the aerial images obtained in the 2016 Kumamoto, and the 1995 Kobe, Japan earthquakes.
The building damage was classified into three categories; collapsed, non-collapsed and blue tarp-covered
buildings. Considering the damage classification in the inventories, collapse and non-collapse were
defined as D5–D6/major damage and as D0–D1/negligible damage, respectively. We confirmed
that blue tarp-covered buildings predominantly represented an intermediate damage level such as
D2–D3/moderate damage.
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The CNN model was developed based on the training and validation samples extracted from the
aerial images and the damage inventories. The CNN architecture consisted of four feature extraction
steps by the convolutional, nonlinearity and pooling layers. Dropout and batch normalization were
also employed in the CNN model. The result for the validation data showed that more than 97% of the
buildings were correctly classified by the CNN model. The model was applied to all the building data
to estimate the damage distributions in the 2016 Kumamoto and 1995 Kobe earthquakes. Whereas some
discrepancies of damage grades were found between the inventories and the estimations, the estimated
damage distributions showed agreement with those in the damage inventories.

The proposed CNN model was also applied to the aerial images in Kyonan town, Chiba prefecture,
affected by the typhoon in September 2019. The locations and damage grades were visually
interpreted. The estimated damage distribution shows good agreement with the visually interpreted
one. The accuracy assessment revealed that approximately 94% of the buildings were correctly
classified by the CNN model. These results indicated that the proposed CNN model would be useful
for the rapid identification of damage distribution using post-disaster aerial images.

We found the over- and underestimations of our results because it was difficult to discriminate
from small features around the buildings and solar panels on building roofs from building rubbles,
and to identify soft-story collapse from the images. It was also difficult to accurately classify negligible
and moderate damage such as hair-line cracks in walls. Although we confirmed the limitations
of remote-sensing-based damage detections, we intended to develop more a accurate classification
technique by increasing the appropriate training samples such as soft-story collapse and solar panels
on the roofs.

Finally, we proposed a considerable framework for the quick and efficient damage assessment
including remote-sensing-based damage detections. In actual post-disaster responses, firstly obtained
damage information needs to be continuously updated when new damage information was gathered
from other data sources. Our proposed method would be useful in the first phase of the damage
assessment because it can provide damage distribution building by building, more rapidly than visual
interpretation. Estimated damage maps could be updated by visually screening the estimated building
damage and by additionally classifying the moderate/heavy damage levels from visual interpretations
in the second phase. The damage maps could be further updated by including detailed damage
information obtained in field investigations at the third phase. Such multi-phased damage assessment
could provide more reliable damage maps for efficient disaster responses.
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