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Abstract: Optical complexity and various properties of Case 2 waters make it essential to derive
inherent optical properties (IOPs) through an appropriate method. Based on field measured data of
Lake Chaohu between 2009 and 2018, the quasi-analytical algorithm (QAA) was modified for the
particular scenario of that lake to derive absorption coefficients based on the moderate-resolution
imaging spectroradiometer (MODIS) bands. By changing the reference wavelength to longer ones and
building a relationship between the value of spectral power for particle backscattering coefficient (Y),
suspended particulate matter (SPM), and above-surface remote-sensing reflectance (Rrs), we improved
the accuracy of the retrieval of total absorption coefficients. The absorption coefficients of gelbstoff

and non-algal particulates (adg) and absorption coefficients of phytoplankton (aph) in Lake Chaohu
were also derived by changing important parameters according to Lake Chaohu. The derived aph

tend to be bigger than measured aph in this study, while derived adg tend to be smaller than measured
data. We also used the corrected MODIS surface reflectance product (MOD09/MYD09) to calculate
the aph(443), aph(645), and aph(678) by the model proposed in this study. It shows that in summer
and autumn, aph tended to be higher in the northwestern part of Lake Chaohu, and were relatively
lower in the spring and winter, which is similar to previous studies. Overall, our study provides an
algorithm that is effectively used in the case of Lake Chaohu and applicable to the data obtained by
MODIS, which can be used for further study to investigate the change law of absorption coefficients
in long time series by applying MODIS data.

Keywords: inherent optical properties (IOPs); absorption coefficients; quasi-analytical algorithm
(QAA); MODIS; Lake Chaohu

1. Introduction

The inversion of water color involves the derivation of inherent optical properties (IOPs) from
apparent optical properties (AOPs). As a result, information about water constituents is retrieved
from derived IOPs, such as concentrations of chlorophyll-a (Chl a), suspended sediments, and colored,
dissolved organic matter (CDOM).

Recent studies have emphasized the importance of retrieving IOPs through remote sensing.
Variations in IOPs can precisely indicate changes in water constituents and mass. AOPs refer to the
parameters that vary with the change of illumination conditions, including water-leaving radiance
(Lw), above-surface remote-sensing reflectance (Rrs), and so on [1]. The IOPs and light field together
determine the AOPs. The inversion of the IOPs can be achieved by using the related algorithms from
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the AOPs. Rrs is one of the most important AOPs, which is determined by the IOPs of the water
body and the geometric structure of the underwater light field. Through the IOPs (absorption and
scattering), inherent nonlinear intrinsic correlations exist between the concentration of each component
and the remote-sensing reflectance.

Solutions to accurately derive the optical properties remotely have been studied for many years,
and scientists have proposed algorithms related to this subject. Empirical algorithms use certain
regressions between the IOPs and the ratios of below-surface remote sensing reflectance (rrs) or
Rrs. The main advantage of such an algorithm is that data processing is simple and rapid, which is
essential in retrieving information from satellite sensors. However, due to the lack of a certain physical
foundation, empirical models often rely too much on field-measured data, which are limited by time
and region. Therefore, the applicability of those algorithms may be limited and may result in errors in
different areas [2]. A semi-analytical model is based on the radiative transfer equation between the
water composition, IOPs, and AOPs. These algorithms are suitable for various water types and are
much more accurate than empirical algorithms [3,4]. Based on the basic theory of optical properties and
the spectral model of water bodies, the quantitative relationship between the substance concentration
in water and the optical properties of the water body can be established, which is called an analytical
model. This model can be used for the large-scale and long-term monitoring of water color and quality.
However the theoretical research and data measurement in different waters have not reached a perfect,
applicable level.

Extensive work has been conducted on the inversion of IOPs in China and abroad, and the
inversion model has gradually progressed from the traditional empirical model to the semi-analytical
model. Carder et al. [3,5] presented a moderate-resolution imaging spectroradiometer (MODIS)
semi-analytical algorithm, which can use Rrs to retrieve IOPs including absorption and backscattering
coefficients. Hoge and Lyon [6,7] created a linear matrix inversion model by using Rrs at 412, 490,
and 555 nm and retrieved the IOPs of the water body. Doerffer built a retrieval procedure of suspended
particulate matter (SPM), chlorophyll, and gelbstoff concentration based on neutral network [8].
Lee et al. [9] investigated a quasi-analytical algorithm (QAA) that can retrieve IOPs by using multi-band
Rrs data. This algorithm is applicable to hyperspectral data and multi-band satellite sensor data
that have been or will be launched, such as the coastal zone color scanner (CZCS), the sea-viewing,
wide field-of-view sensor (SeaWiFS), and MODIS [9]. It is derived from the analytical, semi-analytical,
and empirical formulas for oceanic and coastal waters. It was updated to QAA_v6 in the following
years [10].

QAA is one of the mainstream models at present. It has the characteristics of high precision and
fast operation speed and can be used to process large quantities of data. In recent years, many scholars
in China have conducted research on the application of QAA in coastal waters in the country [11–13].
For inland Case 2 waters, whose optical properties are significantly influenced by mineral particles,
CDOM, or microbubbles [14], Le et al. [15,16] validated and improved the QAA algorithm in Lake
Taihu; the results showed that the reference wavelength has to be longer in turbid waters. Xie et al. [17]
applied the QAA to the inversion of the IOPs of Lake Kuncheng. Domestic research on IOPs mainly
focuses on the inversion of ocean IOPs and the backscattering coefficient of inland water, but the
inversion of the absorption coefficient of inland water is less studied [18]. Although QAA is widely
used, there are still many uncertainties in deriving optical properties for optically complex Case 2
waters [16,19,20]. Specifically, the reference wavelength and the empirical formulas do not work for
inland Case 2 waters, especially for the case of Lake Chaohu, which is a lake of high turbidity, Chl a
concentrations, and complicated optical properties.

This study aimed to provide a solution to derive IOPs of Lake Chaohu by applying MODIS data.
The time resolution of MODIS is effective for further study to investigate the change law of IOPs of
Lake Chaohu in the long time series. In this paper, the derived absorption coefficients and measured
absorption coefficients were compared and analyzed. Thereafter, some test data were used to measure
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the accuracy of this algorithm. We hope that this algorithm can provide a viable solution by applying
remote sensing to the inversion of water color in Lake Chaohu or other turbid lakes.

2. Data

2.1. Study Area

Lake Chaohu (31◦25′–31◦43′N, 117◦17′–117◦51′E, Figure 1) is an eutrophic and turbid shallow
lake in Anhui Province, in the east of China, with an acreage of 770 km2 and an average depth of
3.0 m [21]. This lake is an important source of fish and drinking water for Hefei, a city under a
subtropical monsoon climate (Figure 1). Lake Chaohu has a volume of 32.3 × 108 m3 during the rainy
season for approximately five months and only 17.2 × 108 m3 during the dry season for approximately
seven months [22]. Around 9 million people live around the lake, in which the main contamination
sources are agricultural, industrial, and municipal pollution [23,24]. Lake Chaohu has had poor water
quality and frequent algal blooms, particularly cyanobacteria blooms, over the past few decades [25].
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Figure 1. The study area and samples in Lake Chaohu, China, during 11 cruise surveys from October
2009 to July 2018.

2.2. Sampling and Data Collection

We conducted 11 cruise surveys, with 119 surface samples from October 2009 to July 2018 to
measure optical properties in Lake Chaohu in this study (Figure 1). From this, 94 samples were used to
build models and 25 samples were used as test data. We measured Rrs data at the sites. The water
samples were kept at 4 ◦C in the dark before experiments of SPM, Chl a, dissolved organic carbon
concentration (DOC), and absorption coefficients.

Measurements of Relevant Parameters

A handheld ASD (analytical spectral device) under the NASA Ocean Optics protocols was used
to obtain Rrs [26]. Applying the method described by Mobley et al. [27], the viewing direction was
40 degree from the nadir and 135 degree from the Sun.

We filtered the water samples by Whatman GF/C glass-fiber filters with a pore size of approximately
1.2 µm and extracted pigments with a reference of 90% acetone. We used a Shimadzu UV-2600 (Kyoto,
Japan) to measure the absorbance then achieved Chl a data [28]. We pre-combusted Whatman GF/F
glass-fiber filters with a pore size of 0.7 µm at 450 ◦C for 6 h and pre-weighed them. We then filtered
the water samples and dried them at high temperature (105 ◦C) for approximately 4–6 h for the
measurement of SPM concentrations. Suspended particulate inorganic matter (SPIM) was similarly
measured through weighing the filters before and after burning organic matter for 6 h [29].
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The absorption coefficients of total particulate matter, absorption coefficients of non-algal
particulate (ad), and absorption coefficients of phytoplankton (aph) at 350–800 nm were obtained by
using the same machine with GF/F filters [26]. The baseline was obtained by a blank filter with distilled
water [2]. The ad was measured after the pigments were bleached with sodium hypochlorite, and then
aph were derived. The absorption coefficient of CDOM (ag) was measured using the same machine
with Milli-Q water as the reference from water filtered by filters with a 0.22-µm pore size from 280 to
700 nm (1-nm interval) [2,30,31].

2.3. Satellite Image Data Preprocessing

In this study, MODIS data were selected as input data. MODIS has high spectral and time
resolutions. It is set on Terra and Aqua and has five levels of data products. MODIS provides
continuous global remote sensing data that have a wide range of applications in ecology and geography
research. The MODIS data preprocessing in this study mainly refer to the geometric correction and
atmospheric correction of the MODIS surface reflectance product (MOD09/MYD09) in Lake Chaohu.

2.3.1. The MOD09/MYD09 Product

The MOD09/MYD09 surface reflectance product can be used in the calculation of the Earth’s
surface albedo [32,33]. It belongs to the terrestrial product and corresponds to the Terra and Aqua
satellites, respectively. MOD09/MYD09 has reflectance data with 250-m resolution of Bands 1 and
2 (620–670 nm and 841–876 nm), 500-m resolution of Bands 1–7 (620–670 nm, 841–876 nm, 459–479
nm, 545–565 nm, 1230–1250nm, 1628–1652 nm, and 2105–2155 nm), 1-km resolution of Bands 1–16
(620–670 nm, 841–876 nm, 459–479 nm, 545–565 nm, 1230–1250 nm, 1628–1652 nm, 2105–2155 nm,
405–420 nm, 438–448 nm, 483–493 nm, 526–536 nm, 546–556 nm, 662–672 nm, 673–683 nm, 743–753 nm,
and 862–877 nm), multi-resolution pixel state QA (quality assessment) data, and 1-km observation
statistics. In the QA data, the type of ground cover is indicated. MOD09/MYD09 data (hereinafter
referred to as MOD09) are based on Level1B data, which are corrected for the effects of low atmospheric
gases and aerosols. Atmospheric correction aims to remove the impact of Sun glint, residual aerosol
scattering, and so on. Given the requirements of lake water bodies for reflectance data, MOD09 data
are still insufficient for Case 2 water body monitoring. In order to eliminate residual effects, further
correction is needed.

2.3.2. The MOD09 Correction Method

The atmosphere is an important factor affecting the quantitative analysis and application of remote
sensing. Therefore, removing the effects of atmospheric scattering and absorption from the radiance
value received by the sensor has become the premise of remote sensing quantitative analysis. In some
studies, MOD09 reflectance data are used directly [34–36]. Nevertheless, by comparing MOD09 data
and measured data, it has been found that the MOD09 data generally show higher phenomena in some
bands compared with the measured data [37].

In this study, we used a simple correction method based on near-infrared (NIR) and short-wave
infrared (SWIR) bands [37]. The advantage of using this correction method is that it can eliminate
the noise in MOD09 data by simple correction and then convert the surface reflectance to the scale of
remote-sensing reflectance, so that a more accurate Rrs(λ) is obtained and can be more easily applied to
processing. The specific correction method is as follows:

Rrs(λ) =
R(λ) −min(RNIR : RSWIR)

π
(1)

where min (RNIR: RSWIR) refers to the minimum reflectance value of NIR and SWIR bands. Due to the
strong absorption of water in the NIR and SWIR bands, reflectance will generally drop to 0 in the NIR
band in the case of general water, while reflectance will generally decrease to 0 in the SWIR band in the
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case of turbid water [38]. Therefore, the reflectance value of the NIR and SWIR bands is considered as
additive noise. The additive noise can be eliminated by subtracting the value from each band value.

After the correction by this method, there are still some gaps between the corrected Rrs and the
measured values at 748 nm (Figure 2a).Therefore, this study used the least-square method to calibrate
the values at 748 nm, again based on the measured data. The equation between the measured Rrs and
the values derived from MOD09 is constructed to make the values closer to the measured data. The Rrs

after recalibration is shown in Figure 2b (N = 79). Similarly, the Rrs values at 413 and 443 nm were also
corrected again using this method.
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Figure 2. Measured above-surface remote-sensing reflectance (Rrs) and Rrs derived from MODIS
surface reflectance product (MOD09) at 748 nm (a) before recalibration and (b) after recalibration.

3. Improving QAA

QAA is a semi-analytical method for calculating the absorption coefficient and backscattering
coefficient of water proposed by Lee et al. [9]. The inversion process of QAA has two parts. The first
one is deriving the total absorption coefficient and backscattering coefficient. The second, utilizing
the coefficient of the total absorption obtained from the first part, is decomposing the total absorption
coefficient into different elements. The QAA algorithm is proposed for open ocean and coastal waters;
accordingly, some empirical formulas are used for specific research areas, which cannot be directly
applied to the inversion of the absorption coefficients for inland Case 2 waters.

3.1. Inversion of Total Absorption Coefficients

In the first part of QAA, a relationship between Rrs and total absorption coefficients was established.
Similarly in this study, a new relationship needs to be established according to Lake Chaohu by changing
some parameters and formulas as follows.

3.1.1. Values of g0 and g1

u(λ) =
−g0 + [(g0)

2 + 4g1rrs(λ)]
1/2

2g1
(2)

The ratio of backscattering coefficient to the sum of absorption and backscattering coefficients
(u(λ)) is calculated by rrs and g0, g1. Gordon et al. [39] found the values of g0 = 0.0949 and g1 = 0.0794
for oceanic Case 1 waters, whose optical properties are determined primarily by phytoplankton,
CDOM, and detritus degradation products [40]. Lee et al. [9,41] advised that g0 = 0.084 and g1 = 0.17 is
more accurate for higher-scattering coastal waters. In fact, the values of g0 and g1 are different because
they depend on the particle phase function, which cannot be measured remotely. The values of these
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two parameters have to be estimated before being used in semi-analytical algorithms. Lee [9] used
the averaged g0 and g1 values, which can be applied to coastal and open ocean waters. However,
the values of g0 and g1 have a minimal influence on the inversion accuracy of the total absorption
coefficient. Therefore, in this study, after trying to apply different values, we used the values of g0 of
0.08945 and g1 of 0.1247 as in the QAA original algorithm, which is suitable for more types of waters.

3.1.2. Reference Wavelength

The measurements of absorption coefficients of water constituents include aph(λ), ad(λ), and ag(λ).
The total absorption coefficient a(λ) is the sum of aph(λ), ad(λ), ag(λ), and the absorption coefficient of
pure water aw(λ) [42].

a(λ) = aph(λ) + ad(λ) + ag(λ) + aw(λ) (3)

The principle of selecting the reference wavelength in Step 2 (QAA) is that the absorption coefficient
of pure water is dominant at the reference wavelength, and aw(λ0) can basically replace a(λ0). Table 1
provides examples of reference wavelengths in some relevant studies.

Table 1. Reference wavelengths from different cases of waters.

Reference Wavelength Areas Reference

555 nm oligotrophic waters
mesotrophic waters [9]

640 nm high-absorbing waters [9]
695 nm Lake Kuncheng [17]
715 nm Lake Taihu, Chaohu [15,43]

According to the basic water quality in Lake Chaohu, aw increases and ag and aph tend to decrease
to 0 around 700 nm. Therefore, the reference wavelengths should be around 700 nm [43,44]. In our
study, on the basis of the center wavelengths of MODIS bands, three reference wavelengths (645, 678,
and 748 nm) were used to derive the total absorption coefficients of three different samples (Figure 3),
which represent three kinds of water, namely, turbid, eutrophic, and general water. The turbid water
has high SPM concentration (SPM concentration = 93 mg/L), the eutrophic water has high Chl a
concentration (Chl a concentration = 183.39 µg/L) and the SPM and Chl a concentrations of general
water are not high (SPM concentration = 27 mg/L, Chl a concentration = 17.04 µg/L). As the graphs
suggest, in the case of using 748 nm as reference wavelength, the derived total absorption coefficients
are much closer to the measured total absorption coefficients. We can conclude that, regardless of the
type of water, setting 748 nm as the reference wavelength is most suitable for Lake Chaohu.
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Figure 3. Comparison of measured total absorption coefficients with derived values of different
reference wavelengths in (a) turbid, (b) eutrophic, and (c) general water.

3.1.3. Model to Estimate the Power Value Y

Power value Y is a parameter used to estimate the backscattering coefficients at different
wavelengths. If a(λ0), u(λ0), and backscattering coefficients of pure water at wavelength λ0 (bbw(λ0)) are
available, and the value of Y is estimated, then backscattering coefficients of particulate at wavelength
λ0 (bbp(λ0)) can be efficiently obtained. The values of total backscattering coefficient at wavelength λ

(bb(λ)) at all wavelengths are then derived. As shown in Table 2, different types of waters have different
ranges of Y based on different reference wavelengths. A model to estimate the value of wavelength
exponent Y in the case of Lake Chaohu should be established in this study.

Table 2. Power value Y of different types of waters.

Y Areas Methods Reference

1.32–2.8 Lake Taihu
The initial value of Y is set to 0.1, and the

step size is set to 0.1 for iteration, and then
the data was used in calculation.

[15]

0.61–1.99 Huanghai Sea
East China Sea

The backscattering coefficient is calculated
based on measured data. [45]

3.06 Lake Taihu Measured data are used to calculate the
backscattering coefficient. [46]

1.3–3 Lake Kuncheng

The empirical model of the Y value is
established by simulating the relationship

between the reference Y value and
reflectance ratio rrs(640)/rrs(715).

[17]

As no backscattering coefficient was measured in our research, the real Y value cannot be simulated
by the original analytical model. Therefore, our research used the method of iteration [15]. We made Y
iterate from 0.1 to 3 (step size of 0.1). When the minimum average absolute error (MAE) between the
calculated total absorption coefficients and the measured total absorption coefficients at MODIS bands
between 400 and 700 nm was less than 0.3, the best reference Y value of this sample was obtained.
Figure 4 represents reference Y values of three different samples. The accuracy of the calculation results
was greatly improved in the three cases mentioned.

To obtain the reference Y value as accurately as possible, we had to establish a model for estimating
Y. The Y value is related to parameters, such as Rrs, and concentrations of water compositions. First,
we found out that a very good correlation did not exist between the ratio of Rrs and Y by applying
measured data of Lake Chaohu. Thus, the relationships between the reference Y value and certain water
quality parameters were established (Figure 5). As the graphs show, the relationship between SPM
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concentration and Y value had the best correlation. Therefore, this model (Y = 0.0103 * SPM + 1.6386)
(N = 80) was used in our algorithm.
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Even though the relationship between the Y value and SPM is modeled, water quality parameters
cannot be determined from previous calculations. Thus, the model of SPM concentration and Rrs

should be built. Based on several references, the general characteristics of SPM inversion algorithms
are presented in Table 3. In this study, similar methods were used to construct the relationship between
Rrs and SPM concentration. We found that SPM concentration and Rrs(555)/Rrs(748) had the best
correlation (Figure 6).

Table 3. General characteristics of SPM inversion algorithms.

Models Areas Reference

SPM = −1.91 + 1140.25 * Rrs(645) Biloxi Bay [47]
SPM = 9.65 * exp(58.81 * Rrs(645)) Lake Taihu [48]

ln(SPM) = (Rrs(840)/Rrs(545) + 0.9614)/0.3193 Gironde [49]
SPM = 349.83 * Rrs(645) + 2.9663 Muuga Port [50]
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on measured data: (a) chlorophyll-a (Chl a), (b) suspended particulate inorganic matter (SPIM),
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3.2. Decomposition of Total Absorption Coefficient

Deriving aph(λ) and the absorption coefficients of gelbstoff and non-algal particulates (adg(λ))
from the total absorption coefficients (a(λ)) is a major challenge because the total absorption coefficient
is the sum of aw, aph, ad, and ag. Lee has developed an empirical algorithm for the separation [9].
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We should estimate two parameters first: ζ, which is equal to aph(410)/aph(440), and ξ, which amounts
to adg(410)/adg(440). The value of ζ is obtained using the ratio of measured rrs(440)/rrs(555) data in the
QAA algorithm.

3.2.1. The Value of Spectral Slope of adg Spectrum (S)

The spectral slope of adg spectrum (S) can depict the spectral shape of adg(λ), which is the sum
of ag(λ) and ad(λ). In the original QAA process, S was valued at 0.015 nm−1. The measured data of
adg(410) and adg(440) in Lake Chaohu were used to calculate S. We concluded that the average value
of S is 0.01453, and the standard deviation is 0.001129, which means that all the values are basically
distributed around the average. Therefore, we selected the mean, 0.01453, as the value of S in our study.

3.2.2. The Relationship of aph and rrs

The value of aph(410)/aph(440) is calculated from the ratio of rrs(440)/rrs(555) through an empirical
formula in the original QAA algorithm [9]. Considering the research area, we had to rebuild the
relationship between aph and rrs by simulating the relationship between the aph(410)/aph(440) and the
spectral ratio rrs of the center wavelengths of MODIS bands between 400 and 800 nm. The model was
constructed using rrs(645)/rrs(678) with a high correlation, as shown in Figure 7.
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Figure 7. Model of relationship of below-surface remote sensing reflectance rrs(645)/rrs(678) with
absorption coefficients of phytoplankton aph(410)/aph(440).

The specific calculation process of this improved QAA is as follows (Table 4).
To evaluate the performance of this algorithm and the accuracy of the MOD09 data after correction,

three parameters were calculated.
The accuracy evaluation indicators used in this study include average relative error (MRE) [51],

average absolute error (MAE) and root mean square error (RMSE) [52]. The expression equations are
as follows:

MRE =
1
N

N∑
i=1

∣∣∣∣∣ yi − xi

xi

∣∣∣∣∣ (4)

MAE =
1
N

N∑
i=1

∣∣∣yi − xi
∣∣∣ (5)

RMSE =

√√√
1
N

N∑
i=1

(yi − xi)
2 (6)
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where x represents the measured value, y represents the derived value, and N represents the number
of samples. Coefficient of determination (R2) was also used to assess the accuracy of the model.

Table 4. Steps of the improved quasi-analytical algorithm (QAA).

Step Formula Approach

0 rrs = Rrs/(0.52 + 1.7Rrs) Semi-analytical

1 u(λ) = −g0+[(g0)
2+4g1rrs(λ)]

1/2

2g1
Semi-analytical

2 a(748) = aw(748) Empirical

3 bbp(748) = u(748)a(748)
1−u(748) − bbw(748) Analytical

4 Y = 0.0103 ∗ exp[0.0121(Rrs(555)/Rrs(748))2
− 0.3452(Rrs(555)/Rrs(748)) + 4.7784] + 1.6386 Empirical

5 bbp(λ) = bbp(748)
(

748
λ

)Y Semi-analytical

6 a(λ) =
[1−u(λ)][bbw(λ)+bbp(λ)]

u(λ)
Analytical

7 ζ =
aph(410)
aph(440) =

2.8395
rrs(645)/rrs(678) − 1.2933 Empirical

8 ξ =
adg(410)
adg(440) = exp[S(440− 410)] Semi-analytical

9 adg(440) = a(410)−ζa(440)
ξ−ζ −

aw(410)−ζaw(440)
ξ−ζ

Analytical
10 aph(440) = a(440) − adg(440) − aw(440) Analytical

4. Results and Validation

4.1. MODIS Corrected Data Accuracy Evaluation

Compared with the measured Rrs data, the errors of the Rrs derived from MOD09 product were
evaluated in this paper. Before correction, as shown in Figure 8a, most of the 79 points of Rrs were
above the 1:1 line, indicating that, on the same scale, the data at 413, 443, 469, 555, 645, 678, and 748
nm were generally larger than the measured data; after using this correction method, as shown in
Figure 8b, the Rrs of the points generally had a good linear correlation. The scatterplots were mostly
distributed near the 1:1 line. At the wavelength 748 nm, the corrected values were still a little higher
than the measured data. Tables 5 and 6 show the statistics of the errors before and after correction.
The MRE at 413 nm was reduced from 76.46% to 30.02%, and the RMSE was from 0.012 sr−1 to 0.005 sr−1.
The MRE value before correction at the 555-nm band was 13.83%, while the MRE value after correction
was only 9.23%. The MRE of 748 nm before correction was as high as 84.66%, while the MRE after
correction was 31.23%, and the RMSE also decreased from 0.009 sr−1 to 0.006 sr−1. Compared with
the original MOD09, the RMSEs and MREs of the corrected MOD09 at all bands were significantly
reduced. This shows that the correction method we used in this study can obtain more accurate Rrs.
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Figure 8. Scatterplots of Rrs derived from (a) original and (b) corrected MOD09 compared with
measurements in different bands.
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Table 5. Error statistics of Rrs derived from the original MOD09.

Wavelength (nm) MRE (%) RMSE (sr−1)

413 76.46 0.012
443 68.35 0.012
555 13.83 0.005
645 21.24 0.006
678 34.95 0.008
748 84.66 0.009

Table 6. Error statistics of Rrs derived from the corrected MOD09.

Wavelength (nm) MRE (%) RMSE (sr−1)

413 30.02 0.005
443 24.15 0.005
555 9.23 0.004
645 11.50 0.005
678 17.51 0.005
748 31.23 0.006

4.2. Inversion of Absorption Coefficients in Different Water Types

The measured data of Rrs of Lake Chaohu were applied to this model to obtain absorption
coefficients. The wavelengths of input Rrs were at center wavelengths of MODIS bands between 400
and 700 nm, including 413, 443, 469, 488, 531, 551, 555, 645, 667, and 678 nm. The retrieved IOPs
included aph(λ) and adg(λ) of these wavelengths. Figure 9 shows the comparison of retrieved and
measured aph and adg of the three different types of water. The concentrations of SPM and Chl a are
shown in the graphs.
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Figure 9. Comparison of derived and measured aph and adg of three different types of water: (a)/(b)
turbid water, (c)/(d) eutrophic water, and (e)/(f) general water.

As shown in Figure 9, this model tends to be more suitable for general waters as it is more effective
in obtaining aph when applied to general water than eutrophic water. The values of obtained adg are
closer to those of measured adg than aph. Thus, the accuracy of derived aph in all water conditions
needs to be improved especially in the case of turbid waters.

4.3. Derived Values at Typical Wavelengths

To present a general description of the performance of this algorithm, we used 25 field-measured
test samples to derive a(λ), aph(λ), and adg(λ) at 410 nm, 440 nm, and center wavelengths of MODIS
bands between 400 and 700 nm, then compared them with measured data. Table 7, Figures 10 and 11
show the results of this analysis.

Table 7. Evaluation of the errors between measured and derived values.

Values MRE (%) RMSE (sr−1)

a(λ) 18.96 0.88
aph(λ) 102.04 0.52
adg(λ) 30.33 1.09

Figure 10 shows the total absorption coefficients of typical wavelengths such as 440, 488,
and 555 nm.
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Figure 10. Comparison of improved QAA-derived total absorption coefficients a(λ) versus the measured
total absorption coefficients a(λ) for wavelengths at 440, 488, and 555 nm.
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Figure 11. Comparison of derived (a) aph(λ) and (b) adg(λ) versus measured values at 440, 488, and
555 nm.

For these wavelengths, the MRE values of test data were 17.68%, 19.10%, and 18.71%, and R2

values were 0.74, 0.75, and 0.88, which indicate a good correlation at the aforementioned wavelengths
(Figure 10). Some points were distributed below the 1:1 line, which shows that the derived total
absorption coefficients were slightly higher than the measured total absorption coefficients. It was
due to the errors between the estimated values of Y and the reference values of Y varying at different
conditions. The selection of a reference wavelength may also have had some impact on this situation.
Additionally, the errors in measurement of field data can also be responsible for the observed differences.
As a result, the accuracy of this model to derive total absorption coefficients needs improvement in
these aspects.

The MRE values of derived aph at 440, 488, and 555 nm were 55.08%, 126.59%, and 184.72%, and the
R2 values were 0.76, 0.78, and 0.72, while the MRE values of adg were 24.64%, 27.52%, and 32.20% and
the R2 values were 0.38, 0.36, and 0.43 (Figure 11). Comparison and analysis showed that the derived
adg were moderately smaller than the measured values, but more errors were found at the retrieval of
aph. When we compared the inversion of aph at three wavelengths, we easily concluded that the MREs
of values at longer wavelengths were bigger than those at shorter wavelengths. The derived aph were
mostly distributed below the 1:1 line, which means that the calculated values were larger than the
measured values. Gelbstoff and detritus contribute substantially to the total absorption coefficients
at 410 and 440 nm. In the direct decomposition of total a(λ) to aph(λ) and adg(λ), values of ζ and ξ

were estimated. The errors in these sectors were transferred to the estimated values of adg(440), which
then influenced the final inversion of this model. Thus, different wavelengths can be used in future
studies to improve the accuracy of decomposition of total absorption coefficients. As this test included
a limited range of water samples, it cannot represent the accuracy completely. Further detailed tests
with measured data are desired and needed to improve this model to derive aph and adg optimally.

5. Discussion

5.1. Error Propagation

Error propagation means errors that may occur at each step have varying effects on the analysis
results. The errors in each step propagate to the next step in the step-by-step process. We analyzed the
error propagation of some steps of this algorithm by using modeling data (Table 8). This part shows
the performance assessment of absorption coefficients at wavelengths 410, 440 nm, and the center
wavelengths of MODIS bands between 400 and 700 nm.
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Table 8. Error propagation of steps of the improved QAA.

Step Formulas Approach Relative
Errors Range MRE RMSE

(sr−1)

2 a(748) = aw(748) Empirical −14.26%
~12.61% 3.68% 0.12

4
Y =

0.0103 ∗ exp[0.0121(Rrs(555)/Rrs(748))2
− 0.3452(Rrs(555)/Rrs(748))+

4.7784] + 1.6386
Empirical −34.14%

~129.31% 19.31% 0.72

a 26.36% 1.09

7 ζ =
aph(410)
aph(440) =

2.8395
rrs(645)/rrs(678) − 1.2933 Empirical −25.91%

46.19% 12.62% 0.15

8 ξ =
adg(410)
adg(440) = exp[S(440− 410)] Semi-analytical −8.19%

~8.12% 2.74% 0.05

adg440 28.25% 1.50
adg 35.07% 1.22
aph 133.10% 1.07

As the table suggests, all the errors were from the empirical and semi-analytical algorithms.
Through the steps to retrieve the total absorption coefficients, the MRE between calculated Y
values and reference Y values was approximately 19.31%, which was due to the relationship of
Rrs, SPM concentration, and the value of Y. Therefore, this step consequently led to the errors of the
calculated total absorption. The retrieval of aph(410)/aph(440) and adg(410)/adg(440) had errors of
12.62% and 2.74%, respectively, which showed that the main source of the errors of adg was due to
the calculation of adg(440) and then extended to adg in the full wavelength range. Also, the errors of
derived total absorption coefficients affected the accuracy of aph and adg. At the same time, because
the values of measured aph at longer wavelengths and some samples were small, the MREs increased,
thereby influencing the total MRE of aph.

5.2. Comparison with QAA

As mentioned, QAA did not function well when applied to Lake Chaohu (Figure 12). In the case
below, especially at a wavelength longer than 600 nm, the values of aph are almost less than zero, which
was impossible for Lake Chaohu. Therefore, improving this algorithm is necessary.
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Figure 12. Comparison of QAA-retrieved a (aph) versus measured data and the improved QAA-retrieved
a (aph) versus measured data.

The algorithm in this article was further validated by the measured dataset collected in Lake
Chaohu. The version, QAA_v6, tended to be more suitable for turbid coastal waters, so it was also
applied to the same dataset (Figure 13). The assessment results for retrieved absorption coefficients at
some special wavelengths are summarized in Table 9. The RMSEs and MREs for the algorithm in this
study were in the range of 0.21–1.06 sr−1 and 17.27–54.85%, while those of QAA_v6 were 0.99–4.17 sr−1
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and 56.93–73.51%, respectively. Specifically, the RMSEs and MREs of the QAA_v6 were larger than
those of the algorithm in this study. The values of total absorption coefficients derived from QAA_v6
were much smaller than measured data. The larger RMSEs’ and MREs’ values derived from QAA_v6
were mainly because of a short reference wavelength and inappropriate estimated formulas that do
not work for turbid Case 2 waters. The aph(443) was also retrieved based on QAA_v6 for comparison.
Scatterplots of derived and measured aph(443) are shown in Figure 13, and the evaluation indices
are also demonstrated in Table 9. In general, we can conclude that the algorithm in this research
had smaller errors of RMSE and MRE of 0.60 sr−1 and 54.85%, respectively, compared with those of
1.46 sr−1 and 56.93% from the aph(443) estimated by QAA_v6. However, because the aph derived from
the algorithm in this study tended to be larger than measured data, at some points, aph(443) derived
from QAA-v6 were closer to measured data than those of this study.
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Figure 13. Comparison of measured and derived total absorption coefficients at (a) 443 nm and (b)
555 nm, and aph at (c) 443 nm for applying the algorithm in this study and QAA_v6, respectively.

Table 9. Accuracy assessment of the algorithm in this study and QAA_v6.

Algorithms N MRE R2 RMSE (sr−1)

a(443) this study 25 17.27% 0.75 1.06
QAA_v6 25 73.51% 0.43 4.17

a(555) this study 25 18.71% 0.88 0.21
QAA_v6 25 57.72% 0.37 0.99

aph(443) this study 25 54.85% 0.76 0.60
QAA_v6 25 56.93% 0.60 1.46

5.3. MODIS Data Inversion

We used the algorithm proposed in this study to calculate the aph at 443, 645, and 678 nm of
Lake Chaohu in 2013 by applying corrected MOD09 data (Figure 14). Because of the difference of
bands, we used MODIS bands 8 and 9 data to be the input parameters at 410 and 440 nm. The missing
parts of the image were due to saturation that usually occurs at long wavelengths of 1-km resolution
of this product. Even though there were some problems with this product, we still could verify the
general seasonal changes of Lake Chaohu. Generally, aph varied largely in Lake Chaohu. High aph

was observed in the northwestern parts of Lake Chaohu in the summer and autumn, and aph were
relatively lower in the spring and winter. This pattern is consistent with the known phenomenon.
Cyanobacteria blooms occur mainly in the western area in the summer, and the large amount of
cyanobacteria in the western part is due to the exogenous load of the lakes mainly from the northwest
of the basin. The suitable temperature of 20–34 °C in summer, the higher N and P concentrations,
the higher PH value, the appropriate light intensity, and other environmental conditions provide the
perfect environment for the growth of cyanobacteria. Therefore, aph tends to be higher in the western
part in summer.
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6. Conclusions

Based on the field-measured data of Lake Chaohu, this study improved the QAA algorithm to
provide an effective inversion of the IOPs of Lake Chaohu according to MODIS bands. The appropriate
reference wavelength was shifted to 748 nm according to the measured data from the lake, and the
applicable empirical model of the Y value was established by building models with SPM concentration
and Rrs. The adg and aph were also derived by changing important parameters according to Lake
Chaohu. To test the accuracy of this model, we applied this algorithm to a test dataset. This algorithm
tends to be more suitable for general waters. It works better in the retrieval of total absorption
coefficients in the condition of Lake Chaohu than original QAA and QAA_v6 do. The derived adg

of this algorithm tend to be smaller than measured data and the derived aph tend to be bigger than
measured values at some points. We also used the corrected MOD09 data to calculate aph at 443, 645,
and 678 nm by the model proposed in this study. It shows that, in summer and autumn, aph tend to be
higher in the northwestern part of Lake Chaohu, which is similar to the previous studies.

More independent tests with field measurement are required for validating and improving the
algorithm. This algorithm needs to be improved in several aspects. First, the accuracy of the empirical
model for calculating the Y value can be developed because it is one of the errors of the derived total
absorption coefficients. Secondly, basic wavelengths can be changed to derive accurate aph and adg.
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Combining the measured backscattering coefficients with the derived backscattering coefficients in
future research will help improve the accuracy of this algorithm.
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