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Abstract: Grasslands cover one third of the earth’s terrestrial surface and are mainly used for
livestock production. The usage type, use intensity and condition of grasslands are often unclear.
Remote sensing enables the analysis of grassland production and management on large spatial scales
and with high temporal resolution. Despite growing numbers of studies in the field, remote sensing
applications in grassland biomes are underrepresented in literature and less streamlined compared
to other vegetation types. By reviewing articles within research on satellite-based remote sensing
of grassland production traits and management, we describe and evaluate methods and results
and reveal spatial and temporal patterns of existing work. In addition, we highlight research gaps
and suggest research opportunities. The focus is on managed grasslands and pastures and special
emphasize is given to the assessment of studies on grazing intensity and mowing detection based
on earth observation data. Grazing and mowing highly influence the production and ecology of
grassland and are major grassland management types. In total, 253 research articles were reviewed.
The majority of these studies focused on grassland production traits and only 80 articles were about
grassland management and use intensity. While the remote sensing-based analysis of grassland
production heavily relied on empirical relationships between ground-truth and satellite data or
radiation transfer models, the used methods to detect and investigate grassland management differed.
In addition, this review identified that studies on grassland production traits with satellite data often
lacked including spatial management information into the analyses. Studies focusing on grassland
management and use intensity mostly investigated rather small study areas with homogeneous
intensity levels among the grassland parcels. Combining grassland production estimations with
management information, while accounting for the variability among grasslands, is recommended
to facilitate the development of large-scale continuous monitoring and remote sensing grassland
products, which have been rare thus far.

Keywords: pasture; use intensity; grazing; mowing; productivity; biomass; yield; satellite data;
optical; SAR

1. Introduction

1.1. The Role and Importance of Grasslands Worldwide

Grasslands cover about one third of the earth’s terrestrial surface [1,2] and they occur on every
continent apart from Antarctica [3]. In total, 70% of the global agricultural area consists of grasslands [1].
Their usage for livestock production and accompanying products such as milk, wool and leather serve
as a basis of existence for many people [3]. For almost a billion people worldwide, livestock directly
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contributes to the livelihoods and food security [4]. In developing countries and low-income households,
livestock production is particularly important. In the Sahel, pastoral systems account for 30% to around
80% of national GDPs [5]. For multiple countries in South America, Africa and Asia, livestock was
estimated to constitute on average 12.3% of the total household income [6].

Apart from providing forage for livestock production, grasslands fulfill several functions and
ecosystem services, which make them essential. The most important ones are carbon storage,
biodiversity, water purification, erosion control and recreation [2,3,7]. In the light of global climate
change, carbon sequestration and storage play increasing roles. Globally, grasslands store about 50%
more carbon than forests due to the large area they cover [8]. In future climates, the role of grasslands
as carbon sinks might further increase in some regions, as grasslands are assumed to be more resilient
towards higher temperatures than forests, for example [9]. Within grassland ecosystems, carbon is
mostly stored below ground and building a stable pool takes several years [10]. Therefore, the age of the
grassland has an influence on the carbon storage. When grasslands are turned to croplands, carbon is
released [11]. Extreme climate conditions, in particular droughts, can harm grasslands severely and
reduce their productivity [12]. In terms of biodiversity, less intensively used grasslands (i.e., with low
mowing frequency) can be high in plant species richness and endemism rate, especially compared to
agriculturally used sites [13]. In addition, they provide valuable habitats for many bird species and
insects [13–15].

1.2. The Definition of Grasslands

Grasslands worldwide are relatively heterogeneous, which makes a general definition difficult (see
a compilation of definitions in [3]). In contrast to forests, grasslands cannot be easily described by the
occurrence or absence of tree species. Grasslands do not only consist of grass species (Poaceae), but also
contain other herbaceous vegetation, such as herbs, shrubs and trees to a certain degree [2,16]. They are
the “in-between” class [16] and are often defined by the absence of other features [3]. In particular,
it was proposed that for grasslands the bush cover should not exceed 25% and the tree cover has to be
smaller than 10% in temperate and 40% in tropical regions, respectively [16,17].

Apart from these visible features, grasslands are also defined by specific growth conditions:
there is “sufficient moisture for grass growth” and “environmental conditions, both climatic and
anthropogenic, [which] prevent tree growth” [18]. The occurrence of grasslands is therefore coupled
to recurrent disturbances, which lead to an advantage and the establishment of grassland species.
The most important disturbances in this regard are herbivory and fire [19].

Due to a global distribution and heterogeneity, there are various terms used for grasslands.
Widely used terms, which are associated with grassland management, are rangeland and pasture(land).
Rangelands are usually used for grazing livestock and pasture(land)s for forage production and
harvest by grazing, cutting or both [20]. A bit more separated from these two terms are meadows,
which are usually used to produce hay and silage [20]. There are other terms associated with
grassland, which emerged locally, that are associated with local legal connotations [17] or require
certain geographic site conditions, such as campos, cerrados, llanos, pampas, prairies, savannas and
steppes [20]. However, these are not necessarily only covered by grassland and other forbs. For example,
savannas are often a transition area between grassland and forest. Apart from that, savannas are a
specific vegetation type, characterized by tropical or sub-tropical climates [16]. Therefore, savannas are
not included within the review of grassland production and management using remote sensing data.

Another widely used differentiation occurs between natural and non-natural grasslands. Natural or
native grassland is understood as being influenced naturally by climate, fire and native grazers [16,19].
Non-natural, managed or cultural grassland is influenced and shaped by human action [16,19].
However, most grasslands are somehow influenced by humans and the degree can vary strongly.
This differentiation should therefore not be considered as strictly separable classes, but rather as a
transition range. At the end of this range might be the planted grassland, which is used comparable to
an agricultural crop [16].
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Within this review, the focus is on managed grasslands, pastures and meadows.

1.3. The Distribution of Grasslands

The world’s grasslands range from cold continental climate to tropical climates at the Equator
and occur in various altitudes (Figure 1 and, e.g., [16]). As mentioned above, there are various
types of grasslands globally, which are heterogeneous in their composition and physiognomy. It is
therefore a difficult task to draw boundaries around grasslands and map them globally. Ramankutty
et al. approached this by combining Moderate Resolution Imaging Spectroradiometer (MODIS) and
Satellite Pour l’Observation de la Terre (SPOT) vegetation sensor data with agricultural inventory
information [21]. The resulting map shows managed grasslands and pastures for the year 2000
(Figure 1). This map includes areas covered by savanna, which are not included in the review due to
their large difference to other grasslands. Excluding the savannas, the pasture map [21] well with the
focus on managed grasslands and pastures of this review. Large, continuous grasslands can be found
in North America (known as the Great Plains), some parts of South America, in Europe, at parts in
central and in the south of Africa, in southeastern and southwestern Australia and New Zealand and
in large parts of Central Asia (Figure 1 and, e.g., [16]).

Grasslands are permanently at risk of being converted into cropland, especially in industrialized
areas [2,3]. As a consequence of multiple conversions in the past, grasslands mainly occur in areas
where intensive cultivation is not possible due to unfavorable site conditions, such as waterlogging,
steep slopes or aridity, among others [7,19].
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Figure 1. Global distribution of pastures (Source: NASA Socioeconomic Data and Applications Center (SEDAC) Pasture map [22]). Six climate diagrams showing 
annual mean temperature and precipitation of meteorological stations where grasslands are present (Source: NOAA [23]; the reference periods, from which the 
means are calculated, for all diagrams are around 30 years between 1960s and early 2000s). These are exemplifying climate diagrams, which indicate the high 
diversity of climates enabling grassland biomes but are not exhaustive. Images from the same area as the stations (Source: Flickr (www.flickr.com); more detailed 
information in Supplementary Table S1). 
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are calculated, for all diagrams are around 30 years between 1960s and early 2000s). These are exemplifying climate diagrams, which indicate the high diversity of
climates enabling grassland biomes but are not exhaustive. Images from the same area as the stations (Source: Flickr (www.flickr.com); more detailed information in
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1.4. Grassland Management and its Effects

As there are different types of grasslands, the management practices also differ [19]. The most
widespread use of grasslands globally is livestock production, including cattle, sheep, goats, horses,
water buffalo and camels [3,24]. Livestock production is often conducted via grazing or by harvesting
of the grassland to provide fodder for the livestock either as hay or silage [3]. Grassland harvesting
plays a major role in Europe, but it is also a common management tool in North America, Australia and
China [3,25]. Next to fodder production, mowing is also applied to trigger the growth of grass species
and reduce the number of herbs and woody plants [3]. It cannot be seen as a surrogate to grazing,
as it is non-selective. In addition, there are other management actions applied on grasslands, such as
irrigation, fertilization, seeding and ploughing. Irrigation plays a major role in crop management
globally, and some grasslands are also irrigated [26].

The management of grasslands determines their functioning and ecosystem services, apart from
site conditions. Management actions and use intensity influence biochemical processes and fluxes
between the grassland biosphere, the atmosphere and the hydrosphere. For example, it was revealed
that the carbon storage of grassland soils is reduced through intensive grazing [27,28]. Apart from
carbon, the nitrogen cycle is also majorly influenced by agricultural intensification [29]. One example is
nitrogen leaching, which has strong negative impacts on the environment, such as aquatic eutrophication.
Nitrogen leaching is caused by livestock production in systems with an excess of manure [30]. It was
found that extensively used grasslands show less nitrogen leaching through changes in root and
microbial nitrogen uptake [31]. Various management strategies also influence the biodiversity and
species composition of grasslands [13,32]. Fertilizer application, mowing frequency and timing or
different herbivores favor certain plant species [3,33], which themselves determine the natural animal
species distribution. The productivity of grasslands can usually be enhanced by some management
activities such as irrigation and fertilization [34]. However, these enhancements often lead to a use
intensification, which is possibly followed by a degradation of the grassland [3].

Many grasslands of the world are considered to be degraded [2,19] as soils are depleted and
desertification processes set in. The reason for that is often a highly intensive use of the grasslands.
Intensively used grasslands show additional negative environmental effects, such as nitrogen leaching
or species loss. In many cases the actual state of the grassland and the type and intensity of use are not
known [35]. The expanding evidence for degradation processes within grasslands already triggered
political awareness and the implementation of conservation policies in various countries [36–39]. For the
effective realization and success of sustainable management and production strategies—for example
the Common Agricultural Policy (CAP) in Europe [40]. Thus, large area monitoring and information
on management and agroecological parameters are needed. In addition to the often-unknown
management and state of grasslands, the production of fodder is mostly not quantified, as it is usually
not a sold good, but used in farms directly. Therefore, the production loss due to changing climates,
extreme events, such as droughts, or pest outbreaks is not easily quantifiable.

1.5. The Role of Remote Sensing in Grassland Monitoring

Conventional methods to monitor grassland production and management include field
measurements or statistics, which are usually based on information from farmers. The used field
measurements include biomass harvesting, eddy covariance tower measurements, field spectrometers
and phenocams [41], among others. In addition to these methods, green vegetation can be monitored
continuously using its spectral reflectance properties acquired by remote optical sensors ([42] and
references therein). The utilization of satellite information is of high value in particular when large
and/or remote areas are studied. Thus, expenses for extensive field campaigns can be reduced,
objective datasets can be acquired, and easily reproducible study designs can be accomplished.
Optical sensors can be used to acquire information on the greenness, vitality and density of vegetated
areas. Apart from multi-spectral optical sensors, such as Advanced Very High Resolution Radiometer
(AVHRR), MODIS, the Landsat fleet and Sentinel-2, which are commonly used, there are also
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spaceborne hyperspectral sensors, such as Hyperion or CHRIS/Proba. Hyperspectral data can be
exploited to retrieve biophysical and biochemical variables of vegetation, and has the advantage of
a higher spectral resolution [43–45]. Next to optical sensors, information on vegetation height and
canopy structure [46,47], soil attributes, surface roughness [48] and dielectric properties [46,49] can be
captured by Synthetic Aperture Radar (SAR) sensors (e.g., TerraSAR-X, Sentinel-1), either by using the
backscatter signal, interferometry or polarimetry. The use of remote sensing data therefore enables
gaining information on the quantity and quality of grasslands on large spatial scales, partly in an
automated way. Furthermore, grasslands potentially reveal high intra- and inter-annual variabilities,
especially where human induced intensification occurs. These variabilities are best monitored by using
repeated satellite information with a medium to high temporal resolution. In addition, the spatial
resolution of the sensor plays an important role. There are relatively small grassland parcels (smaller
than 1 ha), especially in intensively used landscapes, and monitoring these requires spatially detailed
satellite information.

Here, we focus on quantitative grassland traits and grassland use. Quantitative traits of grassland
production are important parameters to evaluate the state and the ecological and economic value of
grasslands. These are closely interlinked to the management and use strategies applied on grasslands.
These production traits usually include quantitative parameters, such as biomass and yield, and/or a
temporal information of quantitative units, such as productivity, which is defined as mass unit per area
per time [20]. Within the research on remote sensing of grassland production, these quantitative traits
are often not strictly separable, and the terms are not used uniformly. Therefore, grassland production
traits are also assessed combined here.

Figure 2 illustrates the important components of satellite-based monitoring of managed grasslands.
Optical sensors require sunlight (here, for example, Sentinel-2), while SAR systems send out a signal
and receive the backscattered complex information (here, for example, Sentinel-1). Grasslands are
characterized by vegetation growth cycles. These depend on the climate, site conditions, and on
the management. The most prominent management strategies, i.e., grazing, mowing, irrigation and
fertilization, are illustrated within Figure 2. On the right side (Figure 2) quantitative grasslands traits,
such as biomass and productivity, are illustrated. The overarching arrow highlights the importance to
use multi-temporal satellite data to detect the inter- and intra-annual patterns of grasslands.
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1.6. The Objectives and Structure of this Review

The aim of this paper is to review, structure and assess the existing research on the use of satellite
remote sensing to investigate grassland production traits and management of grasslands globally. In the
past, there have already been some reviews on different topics of remote sensing of grasslands [50–58].
The launch of the sensors Sentinel-1 and Sentinel-2 in 2014 and 2015 triggered research activities in
the field of remote sensing of grassland production and management, which has not been covered
thus far in a review. In addition, here, we assess not only the methods used but also the study regions
distribution, the use frequency of sensors and indices and the development of study periods among
the reviewed research. The focus of this review lies on managed grasslands and pastures. Research on
remote sensing of grassland management and use intensity increased in recent years as it became more
feasible due to the availability of higher resolution satellites. Special emphasize is, therefore, given to
the current status of methods and results in this field. This review complements the existing literature
by assessing studies in the field of optical and SAR remote sensing of grassland production traits and
management, and by highlighting gaps in the conducted research.

2. Materials and Methods of the Review

A systematic literature research was conducted using the search engines Google Scholar and
Web of Science. The search engines were checked for research articles on remote sensing of grassland
production and/or management by using these key words and synonyms as search terms. A description
of the search terms can be found in Table 1. In addition, the literature that was cited in the reviewed
papers and literature citing the reviewed articles were also studied and included in the review when
fitting thematically. The literature resulting from the search was screened and only included when it
fulfilled the following criteria:

• The research articles had a clear focus in grasslands.
• The research articles analyzed quantitative traits of grassland production (such as biomass or

productivity) and/or investigated grassland management strategies or use intensities.
• The research articles used spaceborne earth observation data.

Table 1. Indication of terms and search strings used for the systematic literature review.

Search Aspect Synonyms/Search Terms

Management and Use Intensity harvest*, cut*, mow*, irrigat*, fertiliz*, graz*, management,
monitoring, “use intensity,” intensity

Production Traits biomass, production, productivity, quantity, yields

Grasslands grassland*, pasture*, meadow*, steppe*, rangeland*

Remote Sensing “remote sensing,” “earth observation,” satellite*

There were no restrictions made regarding the publishing date, the study area or the type of
journal. This resulted in 253 papers, for which a list is available in the supplementary Supplementary
Table S2.

All papers were reviewed and information on the study period, the study region/site, the used
sensors and parameters, the type of dataset, the methods, the aim and the main findings were
collected. A more detailed review was then conducted of those papers, which investigated the
management of grasslands with remote sensing data. This included studies about the general
management types, the intensity of use and/or the frequency and timing of management action
(i.e., mowing, irrigation, fertilization). These papers were, additionally to the above-mentioned
characteristics, reviewed regarding the size of the study area, conducted field campaigns and detailed
processing, methodological and validation approaches. For this detailed review—in contrast to the
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broad review—conference papers were also considered in order to include all conducted research on
this narrow topic. A total number of 80 papers were reviewed in detail in this respect.

3. Results of the Review

3.1. Overview of Remote Sensing for Biomass, Productivity and Management

Of the 253 papers that were reviewed, 70% investigated grassland production, 18% were dealing
solely with management and use intensities and 12% had more than one of these topics. The most
frequent journals were International Journal of Remote Sensing (35 studies), Remote Sensing (30 studies),
Remote Sensing of Environment (21 studies) and Ecological Indicators (16 studies).

3.1.1. Temporal and Spatial Patterns of the Reviewed Studies

The temporal development of the number of papers is examined along with their topic proportions
(Figure 3). The differentiation of study topics was made according to the main objective of the
study. However, these are often interwoven, as the management intensity is sometimes examined by
certain biomass or productivity patterns, for example. Studies with more than one topic are counted
multiple times.
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Figure 3. Annual counts of the reviewed studies including the proportions of the three main topics.
Years without any studies are not shown. *Only studies published until the end of April 2020
are included.

The global distribution of the location of the study sites is investigated on country level (Figure 4).
Studies with test sites covering more than one country are counted multiple times. There were two
studies investigating Europe and six global analyses. These are not included in Figure 4. In addition,
the varying proportions of the investigated topics are displayed per continent. The most study sites
by far are located in China, which counts 89 studies. Considering the proportions of study topics,
Europe shows a large ratio of studies investigating grassland management strategies and use intensities,
followed by Australia and Oceania. The other continents reveal a large majority of studies on grassland
production traits by investigating remote sensing data (more than two thirds).
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Figure 4. Number of studies per country and proportions of study topics in percent per continent.

The study periods of the reviewed articles are examined by showing the starting year, ending year
and the length of used time series (one or multiple years), as well as multi- and single-image analyses
(Figure 5). Multi-temporal studies are defined as consisting of at least five satellite images covering
the same area. In general, many studies investigated multi-decadal satellite data time series to gain
knowledge on grassland production and management, as there are multiple studies with study periods
reaching back until 1981/1982. Studies focusing on grassland management strategies and use intensities
less often use (longer) time series. Many study periods of all reviewed papers start in 1999, which is
also the launch year of Landsat-7 and the Moderate-Resolution Imaging Spectroradiometer (MODIS)
Terra satellite.

3.1.2. The Used Sensors of the Review Studies

Mostly optical sensors were used in the reviewed studies (Figure 6), also when having a closer
look on the two main topics, production and management. Examining the used sensors and sensor
fleets (Figure 7) reveals that MODIS (Terra and Aqua) and Landsat fleets were mostly applied in the
past with 103 and 70 studies, respectively.

3.2. Methods and Results of Remote Sensing of Grassland Production

3.2.1. Investigating Grassland Production Using a Vegetation Index as Proxy

Vegetation indices based on optical sensors were used as proxies to investigate spatial and
temporal patterns of grassland production among many studies. Several indices, which usually rely
on the near-infrared and red band among others, were calculated and visually inspected [59–68].
The Normalized Difference Vegetation Index (NDVI) was by far the mostly used index in that regard.
By investigating vegetation indices of multiple time-steps trends and long-term patterns, for example
the effects of conservation plans were derived.

3.2.2. Mapping Grassland Production Using a Vegetation Index and Ground-Truth Data

Apart from a qualitative and visual examination, vegetation indices were often compared
and correlated to ground-truth datasets to investigate their relevance for grassland production.
Typical ground truth-datasets of grassland production analyses were biomass samples or eddy
covariance tower measurements [41]. Zhou et al. [69] correlated several vegetation indices based
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on MODIS data to eddy covariance measurements and found a high significance of the Enhanced
Vegetation Index (EVI) when the vegetation cover was high. For low vegetation cover, the Soil-Adjusted
Vegetation Index (SAVI) showed the best correlation to the eddy tower measurements [69]. In addition,
it was revealed that the relationship between a satellite-based greenness index and eddy covariance
measurements was not constant among various timescales [70]. The greenness index seems to react
slower than the production measured with eddy covariance towers at short timescales.
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In order to map grassland production, empirical relationships between ground-truth data and
vegetation indices were investigated and empirical models were built. Based on eddy covariance
measurements and other biophysical variables, grassland production was estimated per week by using
a regression tree approach [71], which revealed the potential of grasslands to serve as a carbon sink.

Apart from eddy covariance measurements as ground-truth variable, biomass samples were
often used to train an empirical model in order to map grassland production. In 62% of the studies
investigating grassland production using biomass samples and remote sensing data, the NDVI was
at least one of the indices tested as model input. The EVI (15%), the SAVI (9%) and the Leaf Area
Index (LAI) (8%) were also utilized often within satellite data-based biomass models. The empirical
relationship was mostly created by using a simple linear or multiple linear regression (60% of studies
using biomass samples) [72–74]. In addition, in some cases machine learning-based regression methods
were tested to estimate biomass, such as Random Forest [75–78], Support Vector Machines [79],
Generalized Linear Models [80], Gaussian process regression [81], Artificial Neural Networks [82–88]
and Adaptive Neuro-Fuzzy Inference Systems [83]. The biomass models among the reviewed papers
show a high range of accuracies with R2-values of 0.4 to 0.97 (Figure 8). The highest R2-values (above
0.95) were reached when restrictions were made to reduce the temporal or spatial heterogeneity of the
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target variable. For example, the investigated area was pre-filtered according to grassland cover types
or only a certain time in the year was investigated [89,90].Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 33 
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3.2.3. Using a Modelling Approach to Estimate Grassland Production

Radiative transfer models were usually used to estimate quantitative, bio-physical parameters of
grasslands, such as biomass or productivity. Based on the LAI, derived from the radiation transfer
model PROSAIL, biomass was estimated in [86]. The PROSAIL model is a combination of a leaf optical
properties (PROSPECT) and a canopy bi-directional reflectance (SAIL) model and is frequently used to
derive bio-physical properties of vegetation [91]. Another example of a modelling-based derivation of
grassland yield is the application of the crop growth model STICS (Simulateur mulTIdisciplinaire pour
les Cultures Standard), e.g., [92].

A large majority of the studies investigated grassland productivity, usually a mass unit per
area per time, based on satellite data using a light use efficiency (LUE) model [93–96]. The variant,
which was mostly used among the reviewed studies, is the CASA (Carnegie-Ames-Stanford Approach)
model, e.g., [97,98]. Within the CASA model and generally within LUE models, the productivity
is calculated as a function of absorbed photosynthetically active radiation (APAR) and the LUE.
The APAR can be derived from optical sensor-based vegetation indices for certain vegetation types [99].
Another LUE-based model used by the reviewed articles is the Vegetation Photosynthesis Model (VPM),
e.g., [100], which is relatively similar to the CASA model, but differs in the approach of estimating
the LUE [101]. Other process-based models, which were used to estimate productivity of grasslands
with remote sensing data are the BIOME-BGC [102], C-Fix [103], DeNitrification-DeComposition
(DNDC) [104], Global Production Efficiency Model (GLO-PEM) [105], Temperature and Greenness
(TG) model [106], Greenness and Radiation (GR) model [106], Eddy Covariance-Light Use Efficiency
(ECLUE) model [106], Vegetation Production and Respiration (VPRM) model [106] and the Organizing
Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) model [107]. While comparing some of
these models for estimating grassland productivity in China, Jia et al. [106] found the LUE-based model
ECLUE to perform best. These model-based grassland production estimations were often validated by
comparing them with eddy covariance tower measurements [107–112].

3.2.4. Analyses of the Influencing Factors on Grassland Production

Various regional and temporal patterns and trends of grassland production were analyzed, and the
effect of climate was studied. Precipitation showed to be a major determining factor for grassland
production [60,113–116]. Especially during early and mid-growing season, positive correlations were
found between precipitation and grassland production. However, the timescales of sensitiveness
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of grassland production to precipitation varied among different grasslands from daily to monthly
and seasonal [117]. Temperature was mostly negatively correlated to grassland production [118,119].
In addition, the influence of temperature on grassland production was found to change during the
season, with the highest effects at the beginning of the growing season [120]. For some grasslands,
the effect of temperature on grassland production was dependent on recent precipitation [60] or soil
moisture content [121]. When plant available water was sufficient, higher average growing season
temperature showed a positive effect on grassland production [121]. When comparing census data,
which is related to human activity (e.g., stocking rate) and grassland production, in most cases an
existing relationship was revealed [97]. Compared to the influence of climate, human activity was
found to have a larger [119] or a smaller [115,122,123] influence on grassland production.

3.3. Detailed Review of Studies on Remote Sensing for Grassland Management and Use Intensity

3.3.1. Management Type, Study Areas and Parameters of Remote Sensing of Grassland Management
and Use Intensity

The studies investigating the management and use intensity of grasslands with satellite
remote sensing data mostly focused on the management options mowing and grazing (Figure 9).
Studies investigating other strategies, including irrigation and fertilization, were almost not found.
Studies in which multiple management types were investigated were counted multiple times.
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For studies investigating grassland management and use intensity, the extents of the study areas
were examined (Figure 10). For studies in which the exact size of the study area was not specified,
the extent was estimated using the maps from within these studies. Studies analyzing multiple
management types were counted multiple times.
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The NDVI was the most widely used (46%) index within the studies investigating grassland
management with remote sensing data. In 12%, the LAI was investigated and in 11% band reflectance
values were included into the studies. The EVI was analyzed in 7% of the cases and fCover in 5%.
The backscatter information was the most used parameter based on radar systems with an occurrence
of 15% within all of the studies. In total, 6% of the studies looked into the temporal coherence calculated
from interferometry. Less often occurring parameters based on optical satellites included the Fraction
of absorbed Photosynthetic Active Radiation (FAPAR), Tasseled Cap components, the Normalized
Difference Water Index (NDWI), the SAVI and vegetation indices based on the red edge bands of
Sentinel-2. Based on radar systems, polarimetric decomposition parameters, such as alpha angle
and entropy, polarimetric coherence or intensity ratios between different polarizations, were also
investigated to analyze grassland management.

3.3.2. Methods Used in Remote Sensing of Grassland Management and Use Intensity

Various methods were applied in the context of satellite-based grassland management and
use-intensity studies. They can be roughly grouped into the following categories: classifications,
correlations/regression analyses and time series analyses. It was analyzed within which research
focus or for which research aim these methods were applied in the reviewed studies (Figure 11).
Depending on the research aim, these categories were sometimes not strictly separable, and methods
were mixed to derive grassland management information.
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Figure 11. Overview of the methods used in studies investigating grassland management with remote
sensing data, divided by the two main research aims, namely the detection of “Management Type” and
“Use Intensity.”

One of the most often used methods were classifications, whereas the used classifiers and the
specific aims differed. Either various management strategies, such as grazing, mowing or mixed,
were classified [124–126], or the focus was on the intensity and the classification was applied to detect
different degrees of use intensity of the grasslands [127–129]. In studies focusing on mown grasslands,
classifications were applied to detect mowing events during the growing season [130–132].
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Regarding the classifiers, the following were already used for the purpose of grassland
management or intensity classification: decision trees and random forest [127–130,133–135],
K-Nearest Neighbor [124,125,134,136], Support Vector Machine [124,133,136–138], Discriminant
Analysis [124,126], Naive Bayes classifier [124], Neural Networks [132] and empirical decision
rule-sets [124,127,128,134,139,140]. The satellite products used for the classification were based
on both optical and SAR systems (see Figure 6). Besides the classified map result, the influence
and importance of the single explaining variables were often investigated. Mostly, the aim was to
differentiate the influence of human and natural impact factors and to determine the most important
ones, for example precipitation or stocking rate [115,141,142].

Apart from classifications, correlation and regression analyses were undertaken to deepen the
understanding of the relationship between satellite remote sensing indices or estimated biophysical
parameters, such as biomass, and management or use intensity-related grassland characteristics,
such as livestock density or a degradation proxy [143–148]. Multivariate statistics were applied
to estimate the importance of management and use intensity-related parameters for determining
the patterns of satellite-based indices and variables and to separate them from the effects of site
conditions [115,149].

Another important methodological approach was the temporal analysis of satellite-based
information to extract dynamical processes of grasslands, such as mowing events or different grazing
patterns. In more explorative studies, time series of remote sensing parameter were visually examined
and the temporal patterns before, during and after specific events were compared and correlated
to each other and to field data [150–158]. Trends of indices or biophysical parameters derived from
satellite data were analyzed, in particular to reveal grazing intensity patterns [25,64,115,147,159].
For the detection of mowing events, time series data played a crucial role as specific temporal patterns,
usually a change, local/global minimum or deviation, were analyzed [160–163].

In the following, the approaches, results and validation of remote sensing-based studies on
grassland management are outlined according to their main research aim.

3.3.3. Results and Validation of Studies on Remote Sensing of Grassland Management and
Use Intensity

Management Type Detection

One central aim of satellite-based remote sensing of grassland management is the detection of the
applied management type. Mostly, a classification was applied, and three classes were distinguished:
(frequently) mown, grazed or a mixture of these two. The best obtained results using a classification
approach reveal a kappa value of 83% [125] (Time Dynamic Warping, Landsat-TM and SPOT-4).
In order to detect the management types, the LAI—estimated using the PROSAIL model—showed
to be an important input parameter [124]. The incorporation of radar backscatter data did not
improve classification results in two cases [124,126]. In addition, it was revealed that cloud-free
observations in spring and early summer are important to successfully classify the management
types [164,165]. In particular, this can improve the detection of the mixed class, which is in general
not easily differentiated [164]. Thus far, the research focus was on mowing and grazing detection,
and not on other management activities such as irrigation or fertilization. Information on irrigation or
water availability in general is possibly extracted from radar backscatter information as it relates to soil
moisture [143].

Analysis of Grazing Intensity

Studies focusing on grazing intensity patterns used vegetation index time series to conduct
trend analyses and extract regional patterns [64,85,166,167]. The grazing intensity was either
defined as a proxy, e.g., a vegetation index [64], estimated from biomass information [85,168],
approached statistically from livestock census data [147] or was based on field experiments [167,169].
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When grazing intensity was based on livestock data it was usually defined as animal per area [167,169].
In some studies, land allocation algorithms were applied to generate spatial information on livestock
densities from lower resolution census data, e.g., [170].

With the aim to detect grazing intensity, optical sensor-based vegetation indices were in the focus
of investigations [115,150,167,169]. There were significant relationships found between the NDVI and
grazing intensity measures based on field experiments [167,169]. Within these studies, there were
positive and negative trends of grazing intensity and degrading effects revealed and conservation
schemes were found to lead to improvements [147,150,166]. Hotspots of grazing intensity were
detected close to watering ponds [150]. In order to disentangle negative vegetation effects of intensive
grazing from climate impacts, grassland biophysical parameters (canopy cover, biomass) or condition
indicators (NDVI) were correlated with livestock density and meteorological data, or multivariate
analyses were conducted [115,144,147,150,171]. The results of the effect of stocking rate in that regard
were mixed, as both significant and insignificant relationships to grassland characteristics were
detected [115,144,147].

Mowing Event Detection

Another closely related research aim applying remote sensing data for grassland management
studies is the detection of mowing dates. When a classification approach was used, the satellite spectral
or SAR information of the grassland was distinguished between cut and uncut. Siegmund et al. [135]
reached an overall accuracy of 91% for mowing detection using Sentinel-1 backscatter and temporal
coherence data. The recall was however low and the total F1 score was at 55%. Focusing on intensively
used grasslands, Taravat et al. [132] adapted an artificial neural network on SAR-based backscatter and
texture metrics and resulted in an overall accuracy of 85% for two test sites. The texture metrics were
more important input variables than the SAR backscatter signal. A classification of optical sensor-based
vegetation indices resulted in an overall accuracy of 85% for only extensively used grasslands [130].
Rule-based change detection approaches applied on SAR backscatter data lead to successful detections
of cutting events, for example, in Grant et al. [172], 72% of the events were detected. Even though
datasets of the entire growing season were included in the classifications, the temporal information
was usually not considered within these methods.

A time series analysis approach, based on a temporal decision ruleset, led to an R2 of more than
0.9 of successful mowing detection when compared to ground data [160]. The investigated grasslands
in this case were relatively homogeneous and were all characterized by three mowing events per
year. Kolecka et al. [163] reached an overall accuracy of 77% of correctly detected mowing events by
identifying abrupt drops in a NDVI series dataset. Additionally, with the approach of detecting local
minima in a NDVI series, Estel et al. [161] used the detected mowing events to calculate the mowing
frequency, which had an accuracy of 80%. Griffiths et al. [162] approached the detection of mowing
events for Germany, resulting in a heterogeneous compilation of managed grasslands. They only
conducted a qualitative evaluation of their results.

The SAR-based backscattering information showed differences in the amplitude during mowing
events [172], but there was no significant relationship found between the backscatter and biophysical
properties of grasslands [158]. The coherence of an X-band sensor was shown to correlate both with
wet above-ground biomass and vegetation height of grasslands. The expected increase of coherence
after a mowing event could be depicted; however, it was not present at all times [154,157]. In addition,
a strong influence of morning dew was found, especially when the radar images were acquired
relatively early in the morning [154]. Considering polarimetry, the dominant scattering alpha angle
decomposition parameter showed good agreement in detecting cut grass lying on the ground [155].
However, there were no significant correlations between the decomposition parameters and biophysical
grassland variables found and detected patterns were not consistent [156].
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General Use Intensity

The successful detection of mowing events and/or grazing intensity is often taken as the basis
to estimate the general use intensity of the grassland [161–163,170]. With the aim to distinguish
different levels of intensity, classifications were conducted [127–129,133,139]. Barrett et al. [133]
reached an overall accuracy of 96.6% based on different radar sensors while classifying 10 land
cover classes, which include a differentiation between different grassland intensities. Surprisingly,
the ancillary data, such as slope, elevation and soil information, were more important than the satellite
data. Using high spatial resolution optical data, Franke et al. [128] resulted in an overall accuracy
of 85.7% when classifying four classes of different degrees of grassland use intensity. Within this
study, a parameter representing the spectral dynamics was an important input variable for the
classification [128]. Gomez-Gimenez et al. [170] integrated mowing frequency, grazing intensity and
livestock density estimations to analyze grazing intensity in Canton Zurich, Switzerland. In a recent
study, use intensity classes of grasslands were generated based on management events detected with
NDVI time series [173].

4. Discussion

4.1. Global Patterns, Scales and Products of Remote Sensing of Grassland Production and Management

In almost all countries with large continuous grassland areas, there is at least one study on remote
sensing-based production or management traits. Comparing the extent of grasslands (Figure 1) to
the countries, in which grassland studies were conducted (Figure 4), some countries, such as eastern
European countries, are completely missing. In addition, the number of studies varies a lot globally.
There are grasslands for which multiple studies on satellite data-based grassland production exist,
for example, the Xilingol steppe in China. Research in South America and Africa in this regard is
relatively rare, even though there is no lack of grassland covered regions. Differences in the numbers of
studies between grassland regions may be more related to practical issues than to the importance and
value of the grasslands, for example, less research projects and activities were focused on grasslands.
As a consequence, large-scale information and maps of grassland production traits and management
are still not available for some countries with large grassland covered areas.

The earth’s grasslands are very diverse and heterogeneous [174]. This seems to be an obstacle
for the analyses based on remote sensing data. Depending on the method and the research focus,
the spatial scales of the studies vary. Studies on grassland production based on LUE models are
often large-scale to global. Grassland production estimations based on empirical models, which are
dependent on ground-truth data, usually take place on a regional level, and grassland management
and use intensity analyses are often conducted on regional or parcel level. This is probably caused by
rather technical and methodological conditions. Ongoing advancements in this regard, such as model
refinements, advanced machine learning algorithms or time series analyses, might change this pattern
in the near future. In addition, the availability of data from high resolution satellites, such as the
Sentinel fleet, improves grassland monitoring, for which mainly the Landsat and MODIS time series
datasets have been exploited thus far. Apart from missing large-scale products, there is also a lack
of automatized retrieval and monitoring systems of remote sensing-based grassland production and
management traits.

4.2. Assessment of Remote Sensing of Grassland Production

4.2.1. Assessment of the Used Remote Sensing Sensors and Indices for Grassland
Production Estimation

For remote sensing-based grassland production, such as biomass and productivity, research has
been mostly focused on optical systems (compare to Section 3.1.2). The exploitation of SAR data, at least
as accompanying the data source, might be beneficial, especially due to the availability of high-resolution
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SAR time series data with Sentinel-1, which is not constrained by data gaps through clouds. Radar
systems have a long history in forest ecosystem research (see [175]). Moreover, within croplands,
SAR data is already recognized as a valid source, not only for crop type classification, but also for the
retrieval of bio-physical parameters [49]. Depending on the crop, SAR-based temporal backscatter
information has already shown good agreement with the phenology of plant biomass. For example,
soybean biomass was correlated (R-value 0.81) to the HV-backscatter based on C-band [176].

In addition to that, the use of hyperspectral data is most certainly increasing as there are various
hyperspectral sensors launched in the near future, such as EnMap [177]. Thus far, research on
production traits or management with a clear focus on grasslands using spaceborne hyperspectral
data are rare. There are some explorative studies, e.g., investigating the performance of Hyperion
data within a biomass model based on spectroradiometer data and biomass samples [178] or testing
emulated spaceborne sensor data [179]. In contrast to spaceborne data, there are multiple studies
using airborne hyperspectral data to retrieve biophysical variables of grasslands [180–182]. It was
shown that by using both, empirical relationships and radiative transfer models, biophysical variables,
e.g., LAI, can be successfully estimated based on the airborne sensor HyMap, even on heterogeneous
grasslands [181,182]. Based on these results and in the light of the increase in available datasets,
the exploitation of spaceborne hyperspectral data forms a promising research opportunity in the near
future [45,177].

4.2.2. Analyses of Grassland Production Based on Empirical Relationships between Ground-Truth
Data and Satellite Data

Remote sensing data usually has the advantage of enabling large scale and multi-temporal analyses
of the earth surface. However, grassland production estimations mostly require field measurements
as training and validation data. This is still a major obstacle for satellite-based grassland production
investigations due to its financial costs and effort, and it is a source of inconsistency between studies.
In addition, the empirical grassland production models, which were calibrated with local field data
(biomass samples or eddy covariance tower measurements) cannot easily be transferred into other
regions, especially not into completely different grassland systems. The reason for that is a likely
occurring variability in the empirical relationship between the remote sensing parameter and the
grassland production trait. This variability also leads to a reduced accuracy, and thus, the explanatory
power of grassland production models capturing heterogeneous grasslands. This is also reflected by
the large range of R2-values of the reviewed grassland biomass models (Figure 8), which shows that
biomass can be explained well by a remote sensing parameter, but that this is not necessarily the case
under all site conditions and for all grasslands.

Apart from a spatial variability, there might be a temporal inconsistency within the relationship
between the remote sensing parameter and the grassland production trait. This is especially the case
for highly dynamic grasslands. Grasslands that are frequently mown usually show high (intra-annual)
dynamics in the amount of present biomass and the productivity. As European grasslands are highly
managed and often frequently mown, this might be the reason for a relatively small amount of satellite
data-based studies on grassland production there. Information in grassland quantities, such as biomass,
with high temporal resolution might reveal management events, and thus, account for the grassland
dynamics. To build a valid model, this might need multiple field measurements during the year.
This interlinkage might also work the other way around. When more or less exact information on
the management activity exists beforehand, an accurate biomass time series could be built upon this.
Temporal biomass information would be advantageous in order to study the effects of climate and
climate change on grassland production, for example, a drought. In addition, multi-temporal biomass
data would facilitate the analysis of the influence of various management strategies and their separation
from climate-related fluctuations.



Remote Sens. 2020, 12, 1949 19 of 32

4.2.3. Estimating Grassland Production Using a Modelling Approach

In contrast to empirical models of grassland production, which are dependent on ground-truth
data (biomass samples and eddy covariance tower measurements), grassland productivity and biomass
can also be estimated based on physical models. Within these models, bio-physical parameters of
grasslands can be retrieved. In most cases, the grassland productivity is estimated. The productivity
retrieval, mostly based on a LUE model, is more broadly applicable. There are already some global
products, for example the eight-daily/monthly MODIS Net Primary Productivity (NPP) product [183].
The advantage is that analyses of global processes and interactions, such as the influence of climate
on productivity, are possible with such large-scale products. Productivity and biomass estimations
based on physical models do not need field measurements as model input. However, due to the
heterogeneity and temporal variability of grasslands at small scales, field data-based calibration,
for example with eddy covariance tower measurements, is often necessary to achieve reasonable
production estimations [184–186].

4.2.4. Analyzing the Influencing Factors on Grassland Production and Productivity with Remote
Sensing Data

A major research focus of studies on grassland production is the investigation of the influence of
climate. This is especially important for the realization of optimal mitigation strategies for climate
change. A high importance of precipitation as major influencing factor of grassland production was
shown, e.g., [60,113–115,187]. The influence of precipitation and temperature on grassland production
is relatively complex as it can change through the growing season, vary among different grasslands
and determine and depend on each other [117,120,121]. When compared to the influence of human
activity, both larger [119] and smaller [115,122,123] influence on grassland production were found.
The information on human activity in analysis on larger scales is usually census-based, such as stocking
rate, and is therefore not a spatial information. Spatially explicit management and use intensity
information, which has been mostly left unconsidered thus far, would improve the assessment of
influencing factors on grassland production, and therefore enhance conservation plans.

Extreme weather events, such as droughts, also have strong negative impacts on the condition
and production of grasslands, e.g., [188,189]. In societies that are highly dependent on livestock
production on grasslands, extreme weather induced reduction in grassland production can have
severe consequences for nature, economy and humans [190]. In the light of global climate change,
periodic drought events will increase in some regions, and therefore, mitigation strategies are
needed. Grassland resistance and resilience to drought can among other things be dependent on the
management, use intensity and species richness [191].

4.3. Assessment of Remote Sensing of Grassland Management

4.3.1. Assessment of the Used Remote Sensing Sensors and Indices of Grassland
Management Analysis

Considering the used satellite data for remote sensing of grassland management and use intensity,
the reviewed studies revealed a high relevance of time series and especially of high-quality acquisitions
in spring and early summer for temperate grasslands [165]. In this time of the year, the productivity of
the vegetation and plant growth rate before and after mowing or grazing events are high. Consequently,
the changes in amplitude of the spectral and backscatter signal are large, improving the detectability of
management events. The majority of studies that used optical satellite data as vegetation indices, such as
NDVI and EVI, showed that they represent the condition of the grasslands well [167,169,170]. Based on
SAR data, the HH/VV ratio related well to grassland phenology [136]. In semi-arid regions, the SAVI
possibly improves the analysis of the grassland condition and use intensity [145,192] due to larger
amounts of soil backscattering. Even though the current grassland condition might be well monitored by
these indices, data gaps due to clouds are a problem, as for all optical satellite data products. In contrast
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to that, discrete time series can be obtained using parameters derived from SAR data. As described
in Section 3.3.3, several studies already investigated the performance of radar-based parameters,
mainly backscatter amplitude, interferometric coherence and polarimetry-based decomposition
parameters mostly for mowing event detection [155,156,158,172]. Especially the temporal coherence
seems to be able to detect mowing events successfully [154,158]. However, its performance on larger
scales, including a heterogeneous set of grasslands, still needs to be investigated. Apart from that,
a combined use of optical and SAR data, for example by fusing Sentinel-1 and -2, will probably
improve the analysis of grassland management [193–195].

4.3.2. Detection of Grazing and Grazing Patterns with Remote Sensing Data

Grazing is the most frequent management type of grassland globally. Many studies use vegetation
indices, biomass or productivity estimations to investigate grazing patterns (for example [85,167,169,196,197]).
Robinson et al. [24] modeled the global distribution of livestock (cattle, pigs, chicken, ducks) based on
polygon statistics and predictor variables including remote sensing data. However, temporal as well as higher
spatial resolution grazing intensity information is needed for grassland management to enable degradation
mitigation and successful conservation. Another major obstacle in grazing intensity analysis is that the effects
from grazing or overgrazing cannot be easily disentangled from climate effects. Conducting multivariate
analysis to gain knowledge on the variable importance, e.g., [115], or intensive tests in the field, might support
separating these influencing factors. To guarantee successful conservation mechanisms both, climate factors
as well as management should be taken into account, as they strongly interrelate [33].

4.3.3. Grassland Mowing Detection with Remote Sensing Data

The detection of grassland mowing dates and frequencies plays a central role in Europe.
Within European grasslands, a high variability of mowing dynamics exists, as managed grasslands
are mown between one to six times per year. All of the reviewed studies analyzing satellite-based
mowing detection investigated grassland sites in Europe. For homogeneously managed grasslands
(e.g., all monitored grasslands are cut three times per year), satellite data based mowing detection led
to satisfactory results [132,160]. When grasslands ranging from extensive to intensive management
are included in the analyses, the percentage of valid mowing event detections is lower. It was shown
that particularly single mowing events on extensively used grasslands are less successfully detected
and that the detection of the fourth to sixth mowing event on intensive grasslands is reduced [162].
Furthermore, the validation of mowing date and frequency detection in grasslands is a critical point,
as independent validation datasets are often missing, or the validation datasets lack a sufficient
temporal and spatial resolution. Validation data for mowing events are acquired on the basis of
visual satellite image interpretation, by regular field site visits where mowing events are roughly
estimated or there is information on the management from farmers available. Higher resolution
(e.g., daily) information on mowing activities would not only improve the validation but could also
optimize the detection algorithm. Furthermore, the validation method of detected mowing events
using classification approaches is an important point, which is usually based on the confusion matrix
of the classification. When grasslands are classified into the two classes ‘cut’ and ‘uncut,’ the overall
accuracy might be biased, as the ‘uncut’ class is much larger, and the successful detection of uncut
grassland is not the main interest. Focusing on the recall (proportion of identified true positives) or
using the more sophisticated F-score would improve the evaluation when the aim is the successful
detection of mowing events. Apart from including heterogeneously managed grassland sites and
the availability of independent validation data on larger scales, there were also other difficulties in
satellite-based mowing detection revealed by the reviewed studies. On the one hand, small parcel
sizes are problematic as edge effects are enlarged. On the other hand, piecewise mowing of grassland
sites is a major difficulty, as the signals are blurred when analyses are conducted on parcel level.
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4.3.4. Remote Sensing-Based Detection and Investigation of Grassland Irrigation and Fertilization

Looking at specific management strategies, it appears that the detection of irrigated grassland
and fertilization activity is underrepresented in the field of satellite remote sensing. The role of
grassland irrigation probably increases due to climate change. Patterns and effects of irrigation should
be investigated as more extreme weather with erratic precipitation events and drought periods can be
expected in many grassland areas globally [198]. There were already some attempts made to explore
the detection of irrigation or soil moisture of grasslands using satellite data [143,199]. Using Sentinel-1
and Sentinel-2 data might improve the research in this field. Fertilization plays a major role for the
nitrogen cycle in grassland ecosystems and the nitrogen status of crop plants is interesting for farmers.
The detection of fertilization and/or nitrogen status of plants, however, seems to be more feasible using
airborne or handheld remote sensing techniques and mainly considering hyperspectral data, at the
moment [200,201].

5. Conclusions

The review and assessment of research in the field of satellite data-based analyses of
grassland production traits, management and use intensity revealed the following patterns and
research opportunities:

• In total, 253 research articles were reviewed, which resulted in a current and comprehensive
overview of remote sensing of grassland production traits and management studies.

• Studies on grassland production and management with remote sensing data have increased
irregularly, but strongly for the last 20 years.

• The frequency of studies of grassland production and management is globally unequally
distributed, where South American (5% of all studies) and African (4% of all studies) grasslands
seem to be underrepresented. Therefore, there are still large grassland areas which should be
further investigated, especially as many people in these countries probably strongly depend on
livestock production on grasslands.

• There is a relatively small amount of studies (30%) on remote sensing of grassland production
in Europe, probably due to the large management activities and consequential high variability
within grassland production. Research towards detection of management strategies and events
and the grassland production on these small and heterogeneously used grassland parcels are
needed for successful yield estimations.

• In total, there were only six studies covering the entire globe for their analysis, and apart from
LUE-model-based grassland productivity analyses, most studies took place locally. Extending the
study area for investigating grassland production and management and including heterogenous
grasslands while—at the same time—accounting for the variability among these is an interesting
future research focus.

• Time series have always played a central role in grassland production and management analyses,
whereby the Landsat and MODIS satellite fleets were in the focus. In the future, the Sentinel fleets
and a combination of optical and SAR satellite data will be of high importance.

• Optical satellite data is used in 92% of research, in particular in research articles focusing on
grassland production. For both grassland production and management related studies, only a few
combined optical and SAR systems (4%).

• Quantitative grassland production estimations, such as biomass products, based on remote
sensing data would improve from adding temporal information to the results. Especially in
highly managed areas, this would facilitate yield estimations. It could also be better to improve
process-based models to retrieve biomass information or to apply more advanced machine learning
algorithms for an empirical relationship-based biomass analysis.
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• While at the moment, within grassland production analyses, the focus lies on the influence of
climate, research would improve from including spatially explicit management information into
the analyses.

• Grassland management and use intensity studies based on satellite data are often conducted on a
relatively small scale (90% of studies under 10,000 km2) or focus on only one intensity level or
homogeneous grassland. Enlarging the study areas and incorporating diverse grasslands to better
account for real conditions would be a valuable direction for future studies in this context.

• More automatized and large-scale grassland products are needed and will enable a continuous
monitoring of grasslands worldwide. Thus, knowledge of the state, production and management
of grasslands and the influence of climate (change) would be generated and allow for adapted
management and conservation plans.

Remote sensing of grassland production traits and management has gained more and more
interest recently. This review shows that there are still multiple advancements necessary in this field
for future research.
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