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Abstract: Hyperspectral image (HSI) acquisitions are degraded by various noises, among which
additive Gaussian noise may be the worst-case, as suggested by information theory. In this paper,
we present a novel tensor-based HSI denoising approach by fully identifying the intrinsic structures
of the clean HSI and the noise. Specifically, the HSI is first divided into local overlapping full-band
patches (FBPs), then the nonlocal similar patches in each group are unfolded and stacked into a new
third order tensor. As this tensor shows a stronger low-rank property than the original degraded HSI,
the tensor weighted nuclear norm minimization (TWNNM) on the constructed tensor can effectively
separate the low-rank clean HSI patches. In addition, a regularization strategy with spatial–spectral
total variation (SSTV) is utilized to ensure the global spatial–spectral smoothness in both spatial and
spectral domains. Our method is designed to model the spatial–spectral non-local self-similarity and
global spatial–spectral smoothness simultaneously. Experiments conducted on simulated and real
datasets show the superiority of the proposed method.

Keywords: hyperspectral image; image denoising; tensor weighted nuclear norm minimization;
alternating direction method of multipliers (ADMM)

1. Introduction

For various hyperspectral image (HSI) applications, it is important to fully exploit useful
spatial–spectral features of HSI. However, because of the limitations of the hyperspectral imaging
system and the influence of the atmospheric environment and other transmission factors, the captured
HSIs are always contaminated by various noises during image acquisition, among those the Gaussian
noise is the most common and most challenging [1]. This makes HSI denoising a necessary preprocessing
step for HSI applications, including classification [2], super-resolution [3,4], compressive sensing [5,6],
and so forth.

Traditionally, HSI can be denoised by a vector method [7] or matrix method [8–12]. Unfolding all
of the bands in HSI to a long vector is done by the vector method [7]. This kind of method has a high
processing speed at the cost of destroying the spatial structure and spectral correlation. The matrix
method can be divided into the following two categories: band-by-band method and tensor-matrixing
method [8]. The former is a natural generalization of the procession of a gray-level image. However, as it
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ignores the correlation between the adjacent spectral bands, such a method cannot provide satisfactory
results. Tensor-matrixing is conducted by unfolding each band into a vector, and all of the vectors
are cascaded into a matrix. Although this kind of method considers spectral correlation, the spatial
structure could still be destroyed. Given the shortcomings of such methods, more effective strategies
and methods have been proposed targeting the correlation in both the spatial and spectral domains.
For example, a spatial–spectral wavelet shrinkage method has been proposed by the authors of [9]
in order to utilize the difference in both the spatial and spectral domains of HSI. To simultaneously
utilize the spatial and spectral dependences in a unified probabilistic framework, Yuan et al. [10]
proposed a spectral–spatial adaptive total variation model. Some advanced techniques in traditional
image processing have also been adopted for HSI denoising, such as nonlocal similarity [11] and
anisotropic diffusion [12].

Low-rank (LR) is an important property and common characteristic of HSI, and various approaches
based on the LR constraint have been proposed for HSI denoising [13–18]. One of the popular approaches
for the LR constraint is rank minimization [19,20], in which a nuclear norm [21] is applied in order
to estimate the rank of a matrix. However, shrinking the singular values of the nuclear norm (NN)
equally will lead to over-estimating or under-estimating the matrix rank. To overcome this problem,
Gu et al. [19,20] proposed a weighted nuclear norm minimization (WNNM) model. From a physical
point of view, each singular value has a special physical meaning—WNNM considers that larger
singular values signify more physical information. Therefore, each singular value should be treated
differently. In particular, the large singular values of a clean image carry more physical information,
they should be assigned larger weights, and small singular values should be assigned smaller weights.
For better denoising results, WNNM is always combined with total variation (TV); the advantage of
TV regularization is that it removes noise while keeping the edge texture of HSI. In the literature [22]
and [23], TV-regularized WNNM was proposed for HSI denoising combined with spatial low-rankness
and spectral piecewise smoothness. Although these methods improve the denoising performance,
they still have some disadvantages. Firstly, they deal with spatial domain and spectral domain
separately, which may have adverse effects on noise removal. Secondly, these methods fail to fully
exploit the prior knowledge on the intrinsic structures of HSI. The recent development of tensor
technologies can tackle the aforementioned problem. For example, our previous work [24] enhanced
the denoising performance by considering the global and nonlocal low-rank property. The method in
the literature [25] integrated the structure tensor TV [26] into the WNNM model, and outperformed
the band-by-band TV-regularized WNMM method.

To overcome the drawbacks, we present a novel model to jointly consider the spatial nonlocal
similarity and high spectral correlation. To summarize, our contributions are as follows.

First, each group of full band patches (FBPs) is collected by nearest neighbor search (NNS) [27],
and the matrix-based WNNM is extended to tensor-based WNNM (TWNNM) so as to keep the
multi-dimensional structure.

Second, to reserve a more refined structure, we use 3D weighted total variation regularization to
exploit the prior local smoothness in spatial–spectral domain.

Third, we propose a novel HSI denoising model by combining low-rank and TV, and the alternating
direction method of multipliers (ADMM) is designed to solve the proposed model. We conduct
experiments on both synthetic and real datasets so as to illustrate the validity and efficiency of the
proposed method.

Figure 1 shows the flowchart of our method. It is noteworthy that the proposed TWNNM-TV
is applied to the constructed HSI from the group of similar patches, not the original degraded HSI.
For the sake of brevity and readability, we omit the continuous summation symbol Σ in the model.
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Figure 1. The flowchart of the proposed method.

2. Notations and Preliminaries

The mathematical symbols and explanations used in this paper are listed in Table 1. For further
information on the tensor algebra, interested readers are referred to [28,29] for more details. For the
three-order tensor X ∈ Rn1×n2×n3 , its block circulant matrix is defined as

bcirc(X) =


X
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. . .
...
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(n3) X

(n3−1)
· · · X

(1)


where X(k) = X(:, :, k) is the k-th front slice of X.

Table 1. The main mathematical symbols used in the paper and their corresponding explanations.

Natation Description

x, x, X, X scalar, vector, matrix, tensor
xi i-th entry of a vector x
xij element (i, j) of a matrix X
Xi jk the element in location (i, j, k) of a three-order tensor X

‖X‖F =
√∑I1

i1=1
∑I2

i2=1 · · ·
∑IN

iN=1 x2
i1i2···iN

Frobenius norm of an N order tensor X ∈ RI1×I2×···×IN

3. Proposed Model

3.1. From WNNM to TWNNM

We consider the extension of NNM to WNNM as follows [19,20]

minX‖Y−X‖2F + ‖X‖w,∗ (1)

where ‖X‖w,∗ =
∑
i

wiσi(X) represents the WNN of matrix X, w = [w1, w2, · · · , wn] (wi ≥ 0) denotes

the weight vector, and σi(X) is the i-th singular value of matrix X. The Problem (1) has a closed-form
solution of X̂ = USw/2(

∑
)VT, where Y = UΣVT is the singular value decomposition (SVD) of matrix Y

and Sw/2(•) is a soft thresholding operator, which is defined as Sw/2(
∑

i) = max(
∑

i −wi/2, 0).
The HSI collected by optical imaging system are always contaminated by Gaussian noise [24].

The HSI data are a three dimensional cube, which can be denoted as a three-order tensor
X =

{
X1, X2, · · · , Xb

}
∈ Rh×v×b, where each matrix Xi

∈ Rh×v(i = 1, 2, · · · , b) represents the i-th
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band of his; h and v represent the height and width in each band, respectively; and the HSI has b
spectral bands. As our degradation model considers only Gaussian noise, the additive degradation
model is

Y = X+N (2)

where X,Y,N ∈ Rh×v×b denotes the underlying clean HSI, observed degraded his, and the Gaussian
noise, respectively. According to our previous work [24], the tensor weighted nuclear norm minimization
(TWNNM) model can be formulated as follows:

1
2
‖Y −X‖

2
F + ‖X‖w,∗ (3)

3.2. Weighted Tensor Total Variation Regularization

Even though the method in the literature [24] can remove most of the noise, there is still room
for improvement. As 2D total variation (TV) has been shown to preserve the local spatial piecewise
smooth structure and suppress noise, it is widely applied to visual processing tasks [8,10]. HSI has
a spatial dimension and spectral dimension. The clean spectral band should be smooth, so it is natural
to use 3D weighted TV to preserve both the spatial and spectral smooth structure. It is defined as

‖X‖3DWTV = λ1‖DhX‖1 + λ2‖DvX‖1 + λ3‖DpX‖1 (4)

where λ1, λ2, and λ3 are three weight parameters, and Dh, Dv and Dp are the differential operators
along the spatial horizontal direction, spatial vertical direction, and spectral direction, respectively.
Based on the notations in Section 2, DhX, DvX, and DpX at location (i, j, and k) are given by

DhXi jk =
∣∣∣Xi+1, j,k −Xi jk

∣∣∣, DvXi jk =
∣∣∣Xi, j+1,k −Xi jk

∣∣∣, DpXi jk =
∣∣∣Xi, j,k+1 −Xi jk

∣∣∣ (5)

3.3. Nonlocal Low-Rank Tensor Construction

When constructing the nonlocal low-rank tensor, we use the traditional nearest neighbor search
(NNS). For an individual reference FBP with size m ×m × b, we use NNS to find its k similar patches,
Then, each FBP is unfolded into a matrix with size m2

× 1 × b; all the k + 1 FBPs (including the reference
one) are stacked into a three-order tensor with size m2

× (k + 1) × b. This operation corresponds to the
unfolding and stacking stages in Figure 1. Note that the constructed three order tensor jointly utilizes
the spatial local sparsity, the non-local similarity in the spectral and spatial domains, and spectral high
correlation. All of the FBPs denoised by the proposed TWNNM-TV are split into matrices with size m2

× b; each matrix is folded as a FBP with size m ×m × b, and all of the FBPs are aggregated into final
denoised HSI. This operation corresponds to the splitting and folding stage in Figure 1.

To illustrate that the patch groups have a stronger low-rank property than the original HSI,
we plot the first 40 singular values of the patch groups (blue curve) and the original patch (red curve)
in Figure 2a. For a closer observation, we show the zoomed-in part of the singular value numbers
between 10 and 20, as shown in Figure 2b. It can be seen from Figure 2a that the singular values of the
patch groups are lower than those of the original HSI, and they decrease rapidly. This phenomenon
demonstrates that the rank of the patch group is absolutely lower than that of the original HSI, and the
same conclusion can be drawn from Figure 2b. Therefore, we apply the LR constraints on the patch
group instead of on the original HSI.

3.4. Model Proposal and Optimization

Combined with the low-rank prior (TWNNM) and spatial–spectral smooth prior (TV) of the
image component, the final optimization model for denoising HSI is as follows:

1
2
‖Y −X‖

2
F + ‖X‖w,∗+λ1‖DhX‖1 + λ2‖DvX‖1 + λ3‖DpX‖1 (6)
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The ADMM method [30] is used to solve the proposed model in Model (6). To this end, we introduce
four auxiliary variables, P, D1, D2, D3 to Model (6), and it is equivalent to the following problem:

1
2‖Y −X‖

2
F + ‖X‖w,∗ + λ1‖DhX‖1 + λ2‖DvX‖1 + λ3‖DpX‖1, s.t.X = P, D1 = DhX, D2 = DvX, D3 = DpX (7)

Problem (7) can be rewritten as its augmented Lagrangian form, as follows:

L(X,P, D1, D2, D3, Λi) =
1
2‖Y −X‖

2
F + ‖P‖w,∗ + λ1‖D1‖1 + λ2‖D2‖1 + λ3‖D3‖1

+
µ
2

(
‖X −P+ Λ1/µ‖2F + ‖D1 −DhX+ Λ2/µ‖2F + ‖D2 −DvX+ Λ3/µ‖2F+

∥∥∥D3 −DpX+ Λ4/µ‖2F
) (8)

where Λi (i = 1, 2, 3, 4) are Lagrange multipliers, and µ represents the positive penalty parameter.
For the multivariable optimization problem, the usual way is to fix other variables and optimize them
alternately one by one. The optimization process is collected in Algorithm 1.
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Figure 2. (a) Comparison of the low-rank property between the patch group and the original
hyperspectral image (HSI). (b) Zoomed-in comparison of (a) when the singular number is between 10
and 20.

Algorithm 1 Optimization Process for Proposed Solver

1: Input: Noisy imageY, regularization parameters λ1 = 1, λ2 = 1 and λ3 = 0.4, ε, kmax = 100, µmax = 106, ρ.
2: Initialize: LetY = X, D1 = D2 = D3 = 0, P = 0, k = 0, Λi = 0 (i = 1, 2, 3, 4) while not covered do
3: Update P via P = fold{Sν,ω(X+ Λ1/µ)}
4: Update D1 via D1 = soft(DhX+ Λ2/µ,λ1/µ)
5: Update D2 via D2 = soft(DvX+ Λ3/µ,λ2/µ)
6: Update D3 via D3 = soft(DpX+ Λ4/µ,λ3/µ)

7: Compute X via FFT: X = ifftn
(

C

(1+µ)1+µD

)
8: Compute the Lagrange multipliers by

Λ1 = Λ1 + µ(X−P), Λ2 = Λ2 + µ(D1 −DhX), Λ3 = Λ3 + µ(D2 −DvX), Λ4 = Λ4 + µ(D3 −DpX)

9: Update the penalty parameter µ = min
{
ρµ, µmax

}
.

10: end while

Output: The restoration result X.

By fixing the other variables, each of them can be optimized as following:
P1: argminD1

λ1‖D1‖1 +
µ
2 ‖X −P+ Λ1/µ‖2F

P2: argminD2
λ2‖D2‖1 +

µ
2 ‖D1 −DhX+ Λ2/µ‖2F

P3: argminD3
λ3‖D3‖1 +

µ
2 ‖D2 −DvX+ Λ3/µ‖2F

P4: argmin
P
‖P‖w,∗ +

µ
2 ‖D3 −DpX+ Λ4/µ‖2F
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P5: argmin
X

1
2‖Y −X‖

2
F +

µ
2 (‖X −P+ Λ1/µ‖2F + ‖D1 −DhX+ Λ2/µ‖2F

+‖D2 −DvX+ Λ3/µ‖2F + ‖D3 −DpX+ Λ4/µ‖2F)
The subproblems P1, P2, and P3 are of the same form, and by using the soft-threshold shrinkage

operator in the literature [31], they can be updated by

D1 = soft(DhX+ Λ2/µ,λ1/µ), D2 = soft(DvX+ Λ3/µ,λ2/µ), D3 = soft(DpX+ Λ4/µ,λ3/µ)

where soft(r, θ) = sign(r)∗max(|r| − θ, 0).
The subproblem P5 can be solved by the following linear system:

X = Y+ µ(P−Λ1/µ) + µ(D1 + Λ2/µ) + µ(D2 + Λ3/µ) + µ(D3 + Λ4/µ)

where X = (1 + µ)I+ µ
(
DT

h Dh + DT
v Dv + DT

p Dp
)
, and the I denotes unit tensor, DT

h , DT
v , and DT

p
represent the transaction of Dh, Dv, and Dp, respectively. Here, it takes the periodic boundary condition
forX into consideration, and theX in above linear system can be efficiently updated via 3D fast Fourier
transform (FFT), as follows:

X = ifftn
(

C

(1 + µ)1 + µD

)
where, C = fftn(Y+ µ(P−Λ1/µ) + µ(D1 + Λ2/µ) + µ(D2 + Λ3/µ) + µ(D3 + Λ4/µ)),D = DT

h Dh +

DT
v Dv + DT

p Dp, fftn and ifftn represent the 3D FFT and its inverse operation, respectively.
For the subproblem P4, with Problem (1) in mind and according to the authors of [32],

its closed-form solution is P = fold{Sν,ω(X+ Λ1/µ)}, where ν = 1/µ.

4. Experimental Results and Analysis

To evaluate our method for HSI denoising, we perform experiments on simulated and real-world
data. The compared state-of-the-art denoising methods include the TV-regularized low-rank matrix
factorization (LRTV) [8], the low-rank matrix recovery (LRMR) [18], the automatic hyperspectral image
restoration (HyRes) [33], noise-adjusted iterative low-rank matrix approximation (NAILRMA) [34],
and total variation regularized low-rank tensor decomposition (LRTDTV) [35]. The codes of these
methods are downloaded from the authors’ homepages. For the parameters in the compared methods,
they are manually adjusted to get the best results. For the weight parameters λi (i = 1, 2, 3) in TV
regularization, considering that λ1 and λ2 both control the spatial dimension of HSI, they should be
assigned to the same weights. For simplicity, we set λ1 = λ2 = 1, and then we tune λ3 according to
reconstruction performance; it is found that the result is better when λ3 = 0.4.

4.1. Experiment with Simulated Data

In the experiment with the simulated data, we add different intensity Gaussian noise to the Indian
Pines dataset [36], whose size is 145 × 145 × 224.

(1) Visual effectiveness comparison: For visual comparison, the denoising results of different
methods with the 11th band are presented in Figures 3 and 4, and the corresponding variances of
Gaussian noise are 20 and 60, respectively. It can be seen from Figures 3b and 4b that the clean HSIs
suffer degradation to a different degree. When the noise variance is 20, the compared methods could
remove most of the Gaussian noise, but there is still obvious residual noise in LRMR and NAIRLMA.
When the variance is 60, there is obvious residual noise in all of the compared methods. It can be
observed from the enlarged yellow squares in the top left corner of Figure 3 and the top right corner
of Figure 4 that the results obtained by our method preserve clearer and sharper edges, but the
results obtained by HyRes and LRTV have blurred edges or an over-smooth phenomenon. In general,
our method outperforms all of the compared methods at different noise levels.
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Figure 3. Denoised results of the 11th band by different methods when the variance is 20: (a) original, 
(b) noisy, (c) HyRes, (d) total variation-regularized low-rank matrix factorization (LRTV), (e) low-

Figure 3. Denoised results of the 11th band by different methods when the variance is 20: (a) original,
(b) noisy, (c) HyRes, (d) total variation-regularized low-rank matrix factorization (LRTV), (e) low-rank
matrix recovery (LRMR), (f) noise-adjusted iterative low-rank matrix approximation (NAILRMA),
(g) total variation regularized low-rank tensor decomposition (LRTDTV), (h) and proposed.
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(2) Quantitative comparison: Some frequently-used objective evaluation indexes are adopted,
including the mean peak signal-to-noise ratio (MPSNR) [37], the mean structural similarity index
(MSSIM) [37], the mean spectral angle mapper (MSAM) [38], and the Erreur Relative Globale
Adimensionnelle de Synthese (ERGAS; relative dimensionless global error in synthesis in English) [39].
PSNR (its unit is dB) and SSIM are utilized to assess the similarity between the denoised image and the
original image based on mean square error (MSE) and structural consistency, respectively. Larger values
of MPSNR and MSSIM indicate that the results are better. ERGAS is used to measure the fidelity of the
denoised image by calculating the weighted sums of the MSE of all the bands, while SAM denotes the
average angle of spectrum vectors between the denoised HSI and its corresponding original image
across all spatial positions. SAM fully reflects the spectral consistency of the denoised HSI with the
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original image. Smaller values of these two indexes represent better denoised results. The definitions
of these indexes are as follows:

MPSNR =
1
b

∑b

i=1
10log10

2552
× ni

‖ûi − ui‖
2

where b represents the number of spectral bands, and ûi and ui are the restored image and the i-th
band of the original clean image—they are of the same size. ni represents the total number of pixels of
image ui.

SSIM =

(
2µxµy + C1

)(
2σxy + C2

)(
µ2

x + µ2
y + C1

)(
σ2

x + σ2
y + C2

) , MSSIM =
1
b

∑b

i=1
SSIMi

where µx and µy represent the average value of x and y images. σx and σy stand for the variance of x
and y images, respectively, and σxy is the covariance of these two images. C1 and C2 are constant here.

SAM = arccos


∑n

i=1 xiyi√∑n
i=1 x2

i

√∑n
i=1 y2

i


where S1 = (x1, x2, . . . , xn) and S2 = (y1, y2, . . . , yn) represent the spectral vectors at the same location
in HSI.

ERGAS = 100
h
v

√
1
b

∑b

i=1

(
RMSE(xi)

µ(i)

)2

where h, v and b are defined above. RMSE (xi) denotes the root-mean-square error (RMSE) for image xi,
and µ(i) denotes the mean of image yi.

It is easy to see from Table 2 that the MPSNR values of our method are 3–7 dB higher than
the maximum PSNR values of the compared methods. For MSSIM, the TV-regularization methods
(LRTV, LRTDTV, and our method) achieve better results than the other methods, but the MSSIM values
of our method are still higher than those of LRTV and LRTDTV. This indicates that the denoising
results of our method have a better visual effect, and this is consistent with what we see in Figures 3
and 4. To take a closer look at the SSIM and PSNR values of all the bands, we use noise variance 60
(see Figure 5) as an example. The results from Figure 5 show that our method outperforms almost all
of the compared methods for each band, except that the SSIM values of our method in some bands are
lower than those of LRTV.
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Table 2. Quantitative comparison of all of the compared methods under different noise variances for
the Indian Pines dataset.

Variance Index Noisy HyRes LRTV LRMR NAIRLMA LRTDTV Proposed

MPSNR 26.780 42.395 41.066 42.503 43.088 43.503 49.79
10 MSSIM 0.6566 0.9874 0.9958 0.9849 0.9845 0.9976 0.9987

MSAM 0.0789 0.0116 0.108 0.0114 0.0104 0.0100 0.0038
ERGAS 91.77 16.02 20.36 15.25 14.22 15.17 7.22

MPSNR 20.763 37.469 38.815 36.522 38.214 41.092 43.330
MSSIM 0.4366 0.9665 0.9927 0.9472 0.9586 0.990 0.9953

20 MSAM 0.1565 0.0200 0.0143 0.0227 0.0174 0.0136 0.0090
ERGAS 183.45 28.26 25.82 30.412 25.22 19.32 14.891

MPSNR 17.24 34.75 35.65 32.95 34.97 37.84 40.16
30 MSSIM 0.3240 0.9417 0.9863 0.8949 0.9219 0.9685 0.9902

MSAM 0.2316 0.0270 0.0205 0.0343 0.0248 0.0204 0.0127
ERGAS 275.15 38.30 33.94 46.10 36.15 27.44 20.48

MPSNR 14.741 32.860 33.798 30.418 33.105 35.017 38.012
40 MSSIM 0.2528 0.9150 0.9787 0.8379 0.8933 0.931 0.9830

MSAM 0.3037 0.0332 0.0252 0.0461 0.0299 0.0285 0.0157
ERGAS 366.98 47.708 42.389 61.367 45.078 37.76 23.67

MPSNR 12.80 31.44 32.10 28.51 31.22 32.76 35.78
MSSIM 0.2031 0.8964 0.9697 0.7807 0.8524 0.8846 0.9734

50 MSAM 0.3719 0.0385 0.0309 0.0574 0.0367 0.0371 0.0212
ERGAS 458.73 56.21 50.51 76.09 55.77 49.12 34.81

MPSNR 11.219 30.279 30.898 26.981 29.723 30.821 34.983
60 MSSIM 0.1688 0.8687 0.9620 0.7259 0.8126 0.8339 0.9649

MSAM 0.4359 0.0438 0.0360 0.0683 0.0432 0.0464 0.0228
ERGAS 550.44 64.06 59.84 91.33 66.51 61.47 37.81

MPSNR 9.88 29.24 29.71 25.61 28.58 29.26 32.70
70 MSSIM 0.1388 0.8488 0.9514 0.6745 0.7812 0.7806 0.9521

MSAM 0.4964 0.0496 0.0428 0.0800 0.0485 0.0552 0.0321
ERGAS 642.04 71.60 69.80 105.44 75.02 72.97 48.95

MPSNR 8.717 28.459 28.787 24.572 27.582 27.939 32.202
80 MSSIM 0.1167 0.8262 0.9415 0.6297 0.7465 0.7314 0.9425

MSAM 0.5523 0.0539 0.0472 0.0906 0.0544 0.0646 0.0333
ERGAS 734.13 78.09 75.95 119.77 85.11 85.01 51.61

MPSNR 7.70 27.72 27.68 23.52 26.61 26.71 31.62
90 MSSIM 0.0992 0.7981 0.9272 0.5856 0.7122 0.6806 0.9288

MSAM 0.6044 0.0592 0.0584 0.1024 0.0606 0.0747 0.0354
ERGAS 825.26 84.92 86.87 135.19 95.01 97.08 54.24

MPSNR 6.78 27.10 26.60 22.62 25.71 25.72 31.13
100 MSSIM 0.0855 0.7827 0.9118 0.5463 0.6792 0.6396 0.9184

MSAM 0.6528 0.0632 0.0665 0.1136 0.0668 0.0835 0.0362
ERGAS 917.09 91.87 99.68 149.93 103.87 108.51 57.96

On the account of nonlocal similarity, it can be seen from Table 2 that the MSAM and ERGAS
values of our method are much lower than the other five methods. This can be interpreted as our
method beng able to better maintain spectral information. To demonstrate the spectral fidelity achieved
by our method, Figure 6 shows the spectral reflectance spectrum at location (55, 55) from all of the
compared methods. In Figure 6, the blue curve represents the spectral reflectance values of the original
image, and the orange curve represents the denoised spectral reflectance. It is not difficult to see that
the spectral curve obtained by the proposed method achieves less spectral distortion and fits better to
the original spectral curve than the compared methods.
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Figure 6. Full band spectral reflectance curve at a spatial position (55, 55): (a) HyRes, (b) LRTV,
(c) LRMR, (d) NAIRLMA, (e) LRTDTV, and (f) proposed.

4.2. Real-World Data Experiments

The performance on the simulated dataset is evaluated in Section 4.1. In this section, we choose
two widely used real-world HSI datasets to verify the denoising performance. The first one is the
Hyperspectral Digital Imagery Collection Experiment (HYDICE) urban dataset [40] and the second
one is the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Salinas dataset [36].

4.2.1. HYDICE Urban Dataset

The original dataset has 210 bands, and each band is a 307 pixel × 307 pixel grayscale image. In the
experiment, we manually adjust the parameters of the compared methods accordingly to achieve the
best results.

Figures 7 and 8 display the denoising results of band 138 and band 206, respectively, with different
methods. There is still plenty of residual noise in HyRes, LRMR, NAILRMA, and LRTDTV. For the
LRTV, most noise is removed, but the result is over smooth. By considering the nonlocal low-rank
property and spectral–spatial TV regularization, our proposed method shows superior performance on
removing the Gaussian noise and preserving the spatial texture information and spectral information.
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Figure 7. Denoised results by different methods of the 206th band in an urban dataset: (a) original, (b) 
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Figure 8. Denoised results by different methods of the 138th band in an urban dataset: (a) original, (b) 
HyRes, (c) LRTV, (d) LRMR, (e) NAILRMA, (f) LRTDTV, and (g) proposed. 

  

Figure 7. Denoised results by different methods of the 206th band in an urban dataset: (a) original,
(b) HyRes, (c) LRTV, (d) LRMR, (e) NAILRMA, (f) LRTDTV, and (g) proposed.
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Figure 8. Denoised results by different methods of the 138th band in an urban dataset: (a) original,
(b) HyRes, (c) LRTV, (d) LRMR, (e) NAILRMA, (f) LRTDTV, and (g) proposed.

Based on the above analysis, we go further to evaluate all of the denoising algorithms with
the mean cross-track profile (MCTP) [24]. All the MTCPs of 206th spectral band after denoising,
along with the original MTCP, are presented in Figure 9. The horizontal axis and vertical axis in Figure 9
represent the column number and the mean digital number (MDN) values of each column, respectively.
The existing noise leads to severe disturbances in the profile of the original image. After denoising,
the disturbances are suppressed by the compared methods with different levels of success. In particular,
the dead lines in Figure 7a are also eliminated, and the corresponding MTCPs are smoothed, as shown
in the red circles in Figure 9. Evidently, our method provides a smoother mean profile, which is
consistent with the results shown in Figure 7.
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Figure 9. Vertical mean profiles of the denoising results of the 206 spectral band in the Hyperspectral
Digital Imagery Collection Experiment (HYDICE) urban image: (a) original, (b) HyRes, (c) LRTV,
(d) LRMR, (e) NAILRMA, (f)LRTDTV, and (g) proposed.
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4.2.2. AVIRIS Salinas Dataset

This data contains 224 bands, and each band is a 512 × 217 pixel grayscale image. The original
image is too large for display, so we extract a subimage of 300 × 217 pixels to show the denoising results.
The second band in this dataset is contaminated by heavy Gaussian noise (Figure 10a), so we select
this band to evaluate the denoising performance, the results are presented in Figure 10b–g. We can
observe that the LRMR method completely failed to denoise this band. The HyRes and NAILRMA can
remove some noise, but there is still obvious noise remaining. As for LRTV and LRTDTV, they have
over-smoothed the image and distorted the structure, as presented in Figure 10c,f, and thus fail to
give satisfactory results. Figure 10g indicates that the proposed method can still keep sharp edge
when removing heavy noise. All of the curves of MDN with band 2 before and after denoising are
presented in Figure 11. By comparison, our method achieves a better restoration result than the
compared methods.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 17 
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Figure 11. Vertical mean profiles of the denoising results of the second spectral band in the Airborne 
Visible/Infrared Imaging Spectrometer (AVIRIS) Salinas image: (a) original band, (b) HyRes, (c) 
LRTV, (d) LRMR, (e) NAILRMA, (f) LRTDTV, and (g) proposed. 
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Figure 10. Denoised results by different methods of the second band in the Salinas dataset: (a) original,
(b) HyRes, (c) LRTV, (d) LRMR, (e) NAILRMA, (f) LRTDTV, and (g) proposed.
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4.3. Discussion

(1) Parameters selection

The regularization parameters are discussed in Section 4.1. The other two parameters are related
to the patch (size m ×m × b), the parameters involved are m and k, and k is the number of similar
patches in each cluster.

To determine the optimal values of m and k, the MPSNR index in the simulated experiments is
used as the criterion. The curves of the MPSNR values with m under three different noise variance
cases are shown in Figure 12a, in which the σ2 represents noise variance. It can be seen that in the
interval from 5 to 10, the MPSNR value increases with the increase of m. The most likely reason for this
is that the damaged structure can be restored with the increase of m. As the value of m continues to
increase, the MPSNR value gradually decreases, which indicates that under the optimal selection of m,
a reasonably satisfactory denoising effect can be obtained. When the variance is 50, the MPSNR has
a higher value when m = 11 than when m = 10. As the improvement is negligible, the patch size is set
as m = 10 for all the experiments.
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Figure 12. PSNR value changes: (a) mean peak signal-to-noise ratio (MPSNR) versus patch size (m)
and (b) MPSNR versus patch number (k).

Moreover, the number of similar FBPs (k) is evaluated with the parameter m being fixed. The result
in Figure 12b shows that the MPSNR index increases gradually until k = 40, thereafter it drops slowly.
It can be explained that too many patches will destroy the low-rank property. Furthermore, more FBPs
means a higher time cost, and we finally set the number of similar FBPs to 40.

(2) Convergence Analysis

To illustrate the convergence of the proposed method, the relative changes and MPSNR values
versus the iteration number of our method are presented in Figure 13. It can be seen that the values of
these two indexes tend to be stable after about 35 iterations, which clearly shows the convergence of
our method.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 17 

 

To determine the optimal values of m and k, the MPSNR index in the simulated experiments is 
used as the criterion. The curves of the MPSNR values with m under three different noise variance 
cases are shown in Figure 12a, in which the ߪଶ represents noise variance. It can be seen that in the 
interval from 5 to 10, the MPSNR value increases with the increase of m. The most likely reason for 
this is that the damaged structure can be restored with the increase of m. As the value of m continues 
to increase, the MPSNR value gradually decreases, which indicates that under the optimal selection 
of m, a reasonably satisfactory denoising effect can be obtained. When the variance is 50, the MPSNR 
has a higher value when m = 11 than when m = 10. As the improvement is negligible, the patch size 
is set as m = 10 for all the experiments. 

  
(a) (b) 

Figure 12. PSNR value changes: (a) mean peak signal-to-noise ratio (MPSNR) versus patch size (m) 
and (b) MPSNR versus patch number (k). 

Moreover, the number of similar FBPs (k) is evaluated with the parameter m being fixed. The 
result in Figure 12b shows that the MPSNR index increases gradually until k = 40, thereafter it drops 
slowly. It can be explained that too many patches will destroy the low-rank property. Furthermore, 
more FBPs means a higher time cost, and we finally set the number of similar FBPs to 40. 

(2) Convergence Analysis 
To illustrate the convergence of the proposed method, the relative changes and MPSNR values 

versus the iteration number of our method are presented in Figure 13. It can be seen that the values 
of these two indexes tend to be stable after about 35 iterations, which clearly shows the convergence 
of our method. 

 

  
(a) (b) 

Figure 13. Convergence analysis with the iteration number: (a) relative changes ฮࣲ௞ାଵ − ࣲ௞ฮி ฮࣲ௞ฮிൗ  and (b) MPSNR versus the iteration number in the simulated Indian Pines 
dataset. 

(3) Operation time analysis 
To test the computational complexity with compared algorithms, we select the running time of 

the Salinas dataset for comparison. The running times (in seconds) are shown in the Table 3. LRMR 
is the fastest, but its performances are the worst. Our algorithm is not the fastest, but also not the 
slowest. 

M
PS

N
R

M
PS

N
R

0 5 10 15 20 25 30 35
Iteration

15

20

25

30

35

40

Figure 13. Convergence analysis with the iteration number: (a) relative changes ‖Xk+1
−X

k
‖F/‖Xk

‖F

and (b) MPSNR versus the iteration number in the simulated Indian Pines dataset.



Remote Sens. 2020, 12, 1956 14 of 16

(3) Operation time analysis

To test the computational complexity with compared algorithms, we select the running time of the
Salinas dataset for comparison. The running times (in seconds) are shown in the Table 3. LRMR is the
fastest, but its performances are the worst. Our algorithm is not the fastest, but also not the slowest.

Table 3. Comparison of the running time.

Method HyRes LRMR LRTV NAIRLMA LRTDTV Proposed

Time (second) 29 0.209 483.42 439.21 942.92 587.08

5. Conclusions

To remove Gaussian noise, we propose a TV-regularization TWNNM model. In this model,
we apply TWNNM on the HSI group clustered by NNS to characterize the LR property with similar
patches. Moreover, TV regularization is utilized to not only suppress noise, but also keep the local
smoothness in both the spatial and spectral domain. Experiments on both simulated and real HSI
datasets indicate that our method can retain detailed information of the image better, while noise
points are removed, which can be explained as by the fact that the combined LR and smooth prior
information of the image component has the ability to accurately suppress noise and keep the smooth
structure. Our method outperforms the state-of-the-art methods both in visual quality and evaluation
criteria. Furthrmore, in further works, we will extend our method to other restoration tasks, such as
magnetic resonance imaging (MRI) [41] and optical coherence tomography (OCT) images [42–44].
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