
remote sensing  

Article

High Accuracy Geochemical Map Generation Method
by a Spatial Autocorrelation-Based Mixture
Interpolation Using Remote Sensing Data

Chenhui Huang 1,* and Akinobu Shibuya 2

1 Biometrics Research Labs., NEC Corporation, 1131, Hinode, Abiko, Chiba 270-1174, Japan
2 System Platform Research Labs., NEC Corporation, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan;

a-shibuya_ak@nec.com
* Correspondence: chenhui.huang@nec.com

Received: 17 April 2020; Accepted: 17 June 2020; Published: 21 June 2020
����������
�������

Abstract: Generating a high-resolution whole-pixel geochemical contents map from a map with
sparse distribution is a regression problem. Currently, multivariate prediction models like machine
learning (ML) are constructed to raise the geoscience mapping resolution. Methods coupling the
spatial autocorrelation into the ML model have been proposed for raising ML prediction accuracy.
Previously proposed methods are needed for complicated modification in ML models. In this
research, we propose a new algorithm called spatial autocorrelation-based mixture interpolation
(SABAMIN), with which it is easier to merge spatial autocorrelation into a ML model only using a
data augmentation strategy. To test the feasibility of this concept, remote sensing data including those
from the advanced spaceborne thermal emission and reflection radiometer (ASTER), digital elevation
model (DEM), and geophysics (geomagnetic) data were used for the feasibility study, along with
copper geochemical and copper mine data from Arizona, USA. We explained why spatial information
can be coupled into an ML model only by data augmentation, and introduced how to operate data
augmentation in our case. Four tests—(i) cross-validation of measured data, (ii) the blind test, (iii) the
temporal stability test, and (iv) the predictor importance test—were conducted to evaluate the model.
As the results, the model’s accuracy was improved compared with a traditional ML model, and
the reliability of the algorithm was confirmed. In summary, combining the univariate interpolation
method with multivariate prediction with data augmentation proved effective for geological studies.

Keywords: geochemical mapping; remote sensing; machine learning; data augmentation; computational
geometry

1. Introduction

1.1. Background

Geoscience data, which are dependent on the fieldwork of geologists, for example, lithological data,
geochemical data, etc., are always sparse on distribution maps. In recent studies, besides conventional
univariate geospatial interpolation methods, multivariate prediction models have been constructed to
raise the geoscience mapping resolution by using various geoscience data, especially remote sensing
data, as predictors. Pal et al. [1] have used fused multi-classifiers, which include multi-spectral data,
to achieve high-resolution lithological classification. Kirkwood et al. [2] have applied random forests
(RFs) machine learning (ML) methods to generate whole-pixel geochemical contents maps. The data
in unknown locations are predicted by the geographical referenced input data containing co-located
pixels specified by coordinates linked to a spatial reference frame, which is equivalent to processing
the predictions in a geographic space where samples are only compared numerically [3].
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Unlike lithological mapping, which is a classification work, a geochemical contents map is like
an image with analogue values, thus generating a high-resolution whole-pixel geochemical contents
map is a regression problem. It is suggested that considering the geological spatial dependencies,
spatial location, and spatial autocorrelation due to geological continuity, it cannot be ignored [4].
Cracknell et al. [5] demonstrated the prediction accuracy raised by treating spatial coordinates as
predictors to couple the spatial autocorrelation into the ML model. Sergeev et al. [6] proposed a method
to include spatial autocorrelation into an artificial neural network (ANN) by applying a kriging model.
However, in their models, ML models are needed for complicated modification.

Therefore, we propose a new algorithm called SABAMIN (spatial autocorrelation-based mixture
interpolation) that can merge both spatial location and autocorrelation, which are generated from the
univariate geospatial interpolation model into an ML model using a data augmentation strategy [7]
to provide a high accuracy model that can generate a high-resolution geochemical map. The data
augmentation strategy is currently used for solving small data machine learning, and has proved
effective in raising the accuracy of the machine learning model [8,9]. It is only needed to contain
pseudo training data generated from a reliable expert model into training datasets, which is an easy
task. It has to be noted that the accuracy and reliability of the ML model is determined by the accuracy
and reliability of the model for generating the pseudo training data.

In this research, to prove the effectiveness of this concept in geological study, we combine kriging
interpolation [10] and RFs to construct our new algorithm as an example. Because kriging interpolation
is a well-known method based on the spatial autocorrelation of data in Euclidian space, and RF is
an interpretable ML method [11] that has the merit to determine which predictor is important in the
model, here, we use kriging interpolation to create pseudo training datasets and RF to construct a
prediction model. We explain why both spatial location and autocorrelation can be coupled into an ML
model only by data augmentation, as well as how to create reliable pseudo training data in the case
of using kriging interpolation. Moreover, we demonstrate the reliability of the algorithm using the
example of generating a whole-pixel copper contents distribution map.

A portion of the findings in this report is based on the work [12] presented at the SPIE Remote
Sensing 2019 conference. All the data used in this research are open data obtained from the United
States Geological Survey (https://lpdaac.usgs.gov).

1.2. Why Spatial Information Can be Coupled into an Ml Model Only by Data Augmentation

In this section, we will explain why both spatial location and autocorrelation can be coupled into
an ML model only by data augmentation.

1.2.1. Spatial Information Calculated from Kriging Interpolation

The sampled target variable data points are defined as Si(xsi,ysi), si = 1, . . . , N, and vacant points
are defined as Aj(xaj,yaj), aj = 1, . . . , M. Here, N and M are the number of total sampled target variable
points and vacant pixels, respectively.

In kriging interpolation, two steps are executed in the following order: (i) Construct a spatial
distribution model of sampled points using variography; (ii) interpolate the vacant points. In the basic
kriging model, the system of equations is shown in Equation (1):

min
Λ

E = ΛT
·V·Λ−CT

·Λ−ΛT
·C + V subject to 1T

·Λ = 1 (1)

where E is the variance of prediction errors at vacant points, Λ is the size of an (M × N) matrix whose
elements λj,i are the weights to the measured value of Si for interpolating Aj, V is the size of an (N × N)
matrix whose elements va,b is the variance (here, semivariance is used) within pairs of sampled points
Sa and Sb, and C is the size of an (N ×M) matrix whose elements ca,b are the covariance within pairs of
sampled points Sa and vacant pixel Ab. To ensure that the model is unbiased, the weights must be
summed to one. To obtain the best prediction precision, E should be minimized, which is equivalent to
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optimization problem results in a kriging system. By using Lagrange multipliers, Λ can be solved by
Equations (2) and (3): [

Λ
µ

]
=

[
V 1
1T 0

]−1

·

[
C
1

]
(2)

Λ = V−1
·C + V−1

·

(
−1T
·V−1

)−1
·1T
·V−1
·C−V−1

·

(
−1T
·V−1

)−1
(3)

where µ is a Lagrange multiplier used in the minimization of the kriging error to honor the unbiasedness
condition. Equation (3) is based on the analytic inversion formula for block-matrix inversion, and
when the block matrix is not square, pseudo inversion is used. Then, the vacant pixels are interpolated
through Equation (4), which is analogous to inverse distance weighting (IDW) interpolation [13]:

PA = Λ·Ps (4)

where PS is the size of an (N × 1) vector whose elements PSi are the measured target variable value
at position Si, and PA is the size of an (M × 1) vector whose elements PAj are the interpolated target
variable value at position Aj.

In the first step of kriging interpolation, a semivariogram of measured points that express the
spatial autocorrelation of these points is formed to estimate the limitation of the autocorrelation range.
For this estimation, the semivariance distribution in the semivariogram is regressed by a monotonically
increasing function (a spherical model is used in this study) [14]. This regressed function can be
expressed by Equation (5):

V(x, y) = β(H(x, y), r, k) (5)

where H is the size of an (N × N) matrix whose elements ha,b are the Euclidean distances between pairs
of sampled points Sa and Sb, which are variables determined by coordinates x and y. In accordance
with geological continuity, near points are more similar; thus, the further the points are, the bigger the
semivariance. Therefore, they should be saturated outside a specific distance, which means when the
vacant pixels are further than this distance, the estimation is too bad to trust. Further, r is defined as a
specific distance that corresponds to the “range” of the regressed model of the semivariogram, and k is
defined as the semivariance at distance r, which corresponds to the “sill” of the regressed model of
the semivariogram [15]. β is the regressed function, and C can be also constructed by this regressed
function, which is expressed by Equation (6):

C(x, y) = β(B(x, y), r, k) (6)

where B is the size of an (N ×M) matrix whose elements ba,b are the Euclidean distances between pairs
of sampled points Sa and vacant pixel Ab, which are also variables determined by coordinates x and
y. It is noted that ha,b and ba,b cannot exceed r, thus after comparing ha,b and r in Equation (5) and
comparing ba,b and r in Equation (6), the smaller one is used for calculation. As a result, PAj can be
expressed as a function, shown in Equation (7):

PAj = f
(
Λ
(
xaj, yaj

)
, xsi, ysi, Ps

)
(7)

1.2.2. Merge Spatial Information into RF Model

In a supervised ML process, a function or rule is created on the basis of example input–output
pairs, for example, an RF. In the RF regression algorithm, decision trees are produced during the
process. Given predictor vectors t, which will be listed in Table 2 as td ∈ R63, d = 1, . . . , 63, and given
a target vector Π, the copper contents, Πu∈RL, u = 1, . . . , L, where L is the total number of training
datasets, a decision tree recursively partitions the space R. Considering the kriging-interpolated target,
variable points are included in the training datasets, PSi + PAj ∈ Πu, and L = M + N.



Remote Sens. 2020, 12, 1991 4 of 27

There is data U at node γ, and for each candidate split θ = (td,gγ) consisting of a feature td and
threshold gγ, the data are partitioned into subsets U1(θ) and U2(θ). Sets U1(θ) and U2(θ), and their
relationship with U are expressed by Equations (8) and (9):

U1(θ) = (t,Π)
∣∣∣td ≤ gm (8)

U2(θ) = U −U1(θ) (9)

The effect of the split is evaluated by its impurity, which is composed of mean squared error
(MSE) processing and a search for the minimum impurity to determine locations for future splits.
The impurity I(U,θ) is computed using an impurity function J, shown in Equation (10):

I(U,θ) = L1
L J(U1(θ)) + L2

L J(U2(θ))

= L1
L ·

1
L1

∑
u1εL1

Πu1 −
1

L1

∑
u1εL1

Πu1

2

+ L2
L ·

1
L2

∑
u2εL2

(
Πu2 −

1
L2

∑
u2εL2

Πu2

)2

= 1
L

 ∑
u1εL1

Πu1 −
1

L1

∑
u1εL1

Πu1

2

+
∑

u2εL2

(
Πu2 −

1
L2

∑
u2εL2

Πu2

)2


(10)

where L1 is the number of datasets in U1(θ) and L2 is the number of datasets in U2(θ), respectively.
Then, the optimized split θo is specified by minimizing I(U,θ), whose process can be expressed by
Equation (11):

θo = argminθI(U,θ) (11)

Finally, the RF model is constructed by repeating these processes. From Equation (10), we can
also calculate the following:

Πu1 =
1
L1

∑
u1εL1

Πu1 ,Πu2 =
1
L2

∑
u2εL2

Πu2 (12)

where Πu1 and Πu2 are the average values of the target variables in U1(θ) and U2(θ), respectively.
Then Equation (12) becomes:

Πu1

(
Λ
(
xAu1 , yAu1

))
= 1

L1

 ∑
Su1εLS1

ΠSu1 +
∑

Au1εLA1

ΠAu1


= 1

L1

 ∑
Su1εLS1

ΠSu1 +
∑

Au1εLA1

f
(
Λ
(
xAu1 , yAu1

)
, xSu1 , ySu1 , PSu1

) (13)

Πu2

(
Λ
(
xAu1 , yAu1

))
= 1

L2

 ∑
Su2εLS2

ΠSu2 +
∑

Au2εLA2

ΠAu2


= 1

L2

 ∑
Su2εLS2

ΠSu2 +
∑

Au2εLA2

f
(
Λ
(
xAu2 , yAu2

)
, xSu2 , ySu2 , PSu2

) (14)

where LSq is the number of sample points in Uq(θ), and LAq is the number of kriging interpolated
points in Uq(θ) (q = 1, 2). As a result, Πu1 and Πu2 are determined by Λ, and θo, which determines the
structure of the RF model and predicted value by this model, also becomes an Λ-dependent variable.

Therefore, as long as we generate some pseudo training data by apply kriging interpolation and
including them in training datasets, the spatial location and spatial autocorrelations can be combined
into the ML model by following the processes above.
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2. Materials and Methods

2.1. Study Area and Target Variable

Arizona, USA is a well-known copper-mining area. In this area, abundant remote sensing and
geochemical databases have been created from previous geological studies [16–19]. Moreover, Arizona
has satellite image data with less noise-like cloud. Therefore, it was considered as a good model case
for a remote-sensing big data study, and copper was selected as our target element for testing the
feasibility of our new algorithm for geochemical map generation.

The geochemical data including copper elements were obtained from the National
Geochemical Database-Reformatted Data from the National Uranium Resource Evaluation (NURE)
Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program [20]. In this study,
to constitute a big dataset for ML, mainly concerning the amount of sampled copper geochemical
data, the data were obtained from Arizona and its outskirts as our region of interest (ROI), which
included the boundary areas of California, Nevada, Utah, and New Mexico, The whole ROI was in
a rectangle range from (W115.9040, N37.6758) to (W107.888, N30.9958) (not including the territory
of Mexico). The copper contents data were obtained from the “cu_ppm” column of the table in the
shape file ‘nuresed.shp’ (source: https://mrdata.usgs.gov/nure/sediment/nuresed.zip). Inside the ROI,
a total of approximately 16,000 samples were obtained. In the negative data in the raw data table,
for example, −5 ppm means less than 5 ppm [21]. To process the negative data properly, in this study,
we assumed the real values of the negative values, for example, −5 ppm should be a random value
between 0 and 5 ppm in accordance with the Gaussian distribution.

Figure 1a shows our ROI, and Figure 1b shows the boundaries of Arizona, the reference geological
map, the study areas Ta, Tb, Tc, Pa, Pb, and Pc, and spatially-scattered sampled copper data points in
this area. These study areas are all the detailed local areas inside the ROI. For the following validation
test, Ta, Tb, Tc, Pa, Pb, and Pc were all selected to be near mining districts where mines are dense, which
assured both geochemical anomalies and background content areas were included in the same map as
the characteristic example model cases.

The geological map is arranged from the Geologic Map of the United States at a
scale of 1:2,500,000 [22] (source: https://mrdata.usgs.gov/geology/us/kbgeology.zip). There are
50 geological/lithological (G/L) types included in the whole ROI referenced from “UNIT” in the
shape file “kbge.shp”, which are numbered from 1 to 50 and are marked in different colors. A summary
of G/L type names present within the ROI referenced from the “ROCK” column of the table in the
shape file are listed in Table 1. We set the grid for the whole map (including the target variable
mentioned above; the predictor variable is mentioned later) to 0.008 by 0.008 degrees in longitude
and latitude, respectively (approximately 1 by 1 km in distance), resulting in an image dimension of
836 × 1003 pixels. By scattering the sampled copper data on the map in this resolution, over 50% of
the map area is not covered by the sampled data, which leaves a huge blank area on the map. As a
result, in our case, the sampled data compose three independent point groups (PGs) that are observed
in the right side (PG1), left median position (PG2), and left upper position of the map (PG3). Figure 1c
shows the statistics of sampled copper data amounts and average contents of all sampled copper data
in each lithological type area.

The details of Ta, Tb, Tc, Pa, Pb, and Pc are shown in Figures 2 and 3, and Table 2. The sampled
copper data are plotted by black circles on the reference geological map, with the size of a black circle
proportional to the copper content. The coordinates of copper mines in Arizona referenced from the
Mineral Resources Data System of the United States Geological Survey (USGS) [23,24] are also plotted
by red diamonds (source: https://mrdata.usgs.gov/mrds/output/mrds-fUS04.zip). Only those copper
mines whose “dev_stat” in the shape files are labeled “Producer” or “Past Producer” are marked.
A number of important landmarks such as cities and mountains are also marked on the map to show
as references of the approximate positions. A detailed introduction of the study areas is summarized
in the supplementary material (Table S1).

https://mrdata.usgs.gov/nure/sediment/nuresed.zip
https://mrdata.usgs.gov/geology/us/kbgeology.zip
https://mrdata.usgs.gov/mrds/output/mrds-fUS04.zip
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map of the study area, and spatially-scattered geochemical data points in this area. Different 
geological/lithological (G/L) types are numbered and marked in different colors. Each correspondent 
lithological type is referenced in Table A1 of Appendix A. Sampled copper points concentrated in 
different positions on the map are marked as PG1, PG2, and PG3. The study areas are marked as Ta, Tb, 
Tc, Pa, Pb, and Pc. (c) The statistics of sampled copper data amounts and average content of all sampled 
copper data in each lithological type area. 
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Figure 1. The region of interest (ROI) and the position study area in this research: (a) The approximate
position in the USA; (b) the detailed study area, the boundaries of Arizona, the reference geological map of
the study area, and spatially-scattered geochemical data points in this area. Different geological/lithological
(G/L) types are numbered and marked in different colors. Each correspondent lithological type is referenced
in Table S1 of supplementary. Sampled copper points concentrated in different positions on the map are
marked as PG1, PG2, and PG3. The study areas are marked as Ta, Tb, Tc, Pa, Pb, and Pc. (c) The statistics
of sampled copper data amounts and average content of all sampled copper data in each lithological
type area.
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The G/L types in this figure are marked the same number of those in Figure 1. 
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Figure 3. Study areas of: (a) Pa; (b) Pb; (c) Pc. The sampled copper data are plotted by black circles,
and the copper mine positions referenced in the United States Geological Survey (USGS) are plotted by
red diamonds. The G/L types in this figure are marked the same number of those in Figure 1.

Table 1. Summary of geological/lithological (G/L) types present within the study areas referenced from
“ROCK” column of the table in the shape file “kbge.shp”. The G/L type numbers correspond to the
numbered colors in Figures 1–3.

No. G/L Type No. G/L Type No. G/L Type No. G/L Type

1 Water 14 Eocene 27 Upper Mesozoic
eugeosynclinal 40 Upper Paleozoic

eugeosynclinal

2 Quaternary 15 Paleocene
continental 28 Jurassic 41 Upper Paleozoic

clastic wedge facies

3 Quaternary
volcanic rocks 16 Navarro Group 29 Lower Mesozoic

volcanic rocks 42 Lower Paleozoic

4 Pliocene
continental 17 Taylor Group 30 Jurassic granitic

rocks 43 Cambrian

5 Pliocene volcanic
rocks 18 Latest Cretaceous

granitic 31 Lower Jurassic
and upper Triassic 44 Z sedimentary rocks

6 Pliocene felsic
volcanic rocks 19 Austin and Eagle

Ford Groups 32 Lower Mesozoic 45 Y sedimentary rocks
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Table 1. Cont.

No. G/L Type No. G/L Type No. G/L Type No. G/L Type

7 Miocene
continental 20 Upper Cretaceous 33 Lower Mesozoic

eugeosynclinal 46 Younger Y granitic
rocks

8 Tertiary intrusive
rocks 21 Cretaceous

continental 34 Triassic 47 Older Y granitic
rocks

9 Oligocene
continental 22 Cretaceous

volcanic rocks 35 Permian 48 X metasedimentary
rocks

10 Miocene volcanic
rocks 23 Cretaceous

granitic rocks 36 Upper part of
Leonardian Series 49 X granitic rocks

11 Miocene felsic
volcanic rocks 24 Woodbine and

Tuscaloosa groups 37 Lower part of
Leonardian Series 50 Orthogneiss and

paragneiss

12 Eocene
continental 25 Fredericksburg

Group 38 Wolfcampian
Series continental

13 Lower Tertiary
volcanic rocks 26 Lower Cretaceous 39 Upper Paleozoic

Table 2. Detailed information of Ta, Tb, Tc, Pa, Pb, and Pc.

Area Range Resolution

Ta (W111.7200, N33.5638)–(W110.9440, N32.7958) 110 × 110
Tb (W111.7840, N32.5558)–(W110.9120, N31.6838) 110 × 110
Tc (W110.7840, N32.7158)–(W109.9920, N31.9238) 110 × 110
Pa (W114.3840, N35.4758)–(W113.9840, N35.0758) 50 × 50
Pb (W109.6240, N33.2758)–(W109.2240, N32.8758) 50 × 50
Pc (W112.2640, N34.5558)–(W111.8640, N34.1558) 50 × 50

2.2. Predictor Variables–High-Resolution Remote Sensing Data

All of the available remote sensing data including that from the advanced spaceborne thermal
emission and reflection radiometer (ASTER) data, digital elevation model (DEM), and geophysics
(geomagnetic) data [25] are used to create an ML model to make predictions. Matlab (Mathworks,
Natick, USA) is used for all of the data processing and calculations here and in the sections below.

All the ASTER data are extracted from “ASTER Level 1T” and DEM data are extracted from “ASTER
Global Digital Elevation Model” in the USGS’s EarthExplorer search engine, respectively (source:
https://lpdaac.usgs.gov/data_access/data_pool, courtesy of the NASA Land Processes Distributed
Active Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center,
Sioux Falls, South Dakota). The ASTER data are part of the ASTER Level 1T group, and the search
filter is set as follows: Cloud cover is “less than 10%”; correction achieved is “all”; and SWIR, TIR, and
VNIR1 modes are all “on”. Geomagnetic data are obtained from magnetic anomaly maps and data for
North America [25] (source: https://mrdata.usgs.gov/magnetic/USmag_origmrg.zip). The geomagnetic
data are international geomagnetic reference field (IGRF) residual signals taken from a height of 305 m,
the precision of which is approximately 1–10 nT.

One shot from an ASTER satellite can only cover 60 × 60 km, and a DEM can only cover an area
approximately 100 × 100 km on Earth; therefore, to cover the whole ROI in this research, we retrieved
a total of 637 ASTER images and 160 DEM images from the data pool and created a composite of all
the images in accordance with their longitude and latitude to create a wide-range map. The detail of
the source of ASTER and DEM data are listed in Tables S2–S4 of the supplementary document. All the
ASTER band data are extracted from the “.hdf” file by the “hdftool” of Matlab, and DEM data are
obtained by translating the “.tiff” DEM image to a digital number.

The resolutions of these predictors are all different (15 of ASTER visible and near-infrared (VNIR)
band data, 30 of ASTER short wave infrared (SWIR) band data, 90 of ASTER thermal band data, 30 of
DEM data, and 5 km of geomagnetic data). The VNIR and SWIR data and DEM data are 8-bit, and the
thermal data are 12-bit. The geomagnetic data are processed into four types: Analytic signal-processed
geomagnetic data, reduction to pole-processed geomagnetic data, residual IGRF- and vertical first

https://lpdaac.usgs.gov/data_access/data_pool
https://mrdata.usgs.gov/magnetic/USmag_origmrg.zip
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derivative-processed geomagnetic data. ASTER and DEM predictor variables and their derivatives are
reprocessed from their original data grid to a regular 1-km grid to be studied using bicubic interpolation
and geomagnetic predictor variables are reprocessed using the nearest interpolation, i.e., 5 × 5 pixels in
a 1-km grid will be the same value.

The derivatives of ASTER as predictors include all the commonly used ASTER band ratios and
their combinations that are reported as a significant lithological index for geological mapping [26,27].
For example, the carbonate index (No. 41 predictor in Table 3) map is acquired by calculating the
image of Band 13, 14, 15 pixel-by-pixel. A total of 63 predictor variables used in this research are listed
in Table 3. The predictors are categorized into five groups: Geomagnetic, DEM, ASTER band, ASTER
lithological index, and Coordinates.

Table 3. Predictor variables used in this research.

Group No. Predictor Predictor Description

Geo-magnetic

1 Mag_AS Analytic signal processed geomagnetic data
2 Mag_RTP Reduction to pole processed geomagnetic data
3 Mag_TMI The residual of international geomagnetic reference field (IGRF)
4 Mag_VD Vertical first derivative processed geomagnetic data

DEM
5 Altitude The altitude of the Earth surface, from 0–2500 m
6 Slope The elevation of the Earth surface

ASTER
Band

7 Band_1 The ASTER band 1 sensor data
8 Band_2 The ASTER band 2 sensor data
9 Band_3N The ASTER band 3N sensor data
10 Band_4 The ASTER band 4 sensor data
11 Band_5 The ASTER band 5 sensor data
12 Band_6 The ASTER band 6 sensor data
13 Band_7 The ASTER band 7 sensor data
14 Band_8 The ASTER band 8 sensor data
15 Band_9 The ASTER band 9 sensor data
16 Band_10 The ASTER band 10 sensor data
17 Band_11 The ASTER band 11 sensor data
18 Band_12 The ASTER band 12 sensor data
19 Band_13 The ASTER band 13 sensor data
20 Band_14 The ASTER band 14 sensor data
21 Band_1_R The reverse of 7
22 Band_2_R The reverse of 8
23 Band_3_R The reverse of 9
24 Band_4_R The reverse of 10
25 Band_5_R The reverse of 11
26 Band_6_R The reverse of 12
27 Band_7_R The reverse of 13
28 Band_8_R The reverse of 14
29 Band_9_R The reverse of 15
30 Band_10_R The reverse of 16
31 Band_11_R The reverse of 17
32 Band_12_R The reverse of 18
33 Band_13_R The reverse of 19
34 Band_14_R The reverse of 20
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Table 3. Cont.

Group No. Predictor Predictor Description

ASTER lithological
index

35 R_Ferric_iron Feature index of Fe3+, =8/7
36 R_Ferrous_iron Feature index of Fe2+, =11/9 + 7/8
37 R_Laterite Feature index of laterite, =10/11
38 R_Gosan Feature index of gosan, =10/8

39 R_Ferrous_Silica Feature index of ferrous silicates, mainly Fe oxide Cu-Au
alteration, =11/10

40 R_Ferric_oxides Feature index of ferric oxides, =10/9
41 R_Carbonate Feature index of carbonate/chlorite/epidote, =(13 + 15)/14
42 R_Epidote Feature index of epidote/chlorite/amphibole, =(12 + 15)/(13 + 14)
43 R_MgOH Feature index of Amphibole/MgOH, =(12 + 15)/14
44 R_Amphibole Feature index of amphibole, =12/14
45 R_Carbonate2 Feature index of carbonate, =19/20
46 R_Dolomite Feature index of dolomite, =(12 + 14)/13
47 R_Sericite Feature index of sericite/muscovite/illite/smectite, =(11 + 13)/12
48 R_Alunite Feature index of alunite/kaolinite/pyrophyllite, =(10 + 1 2)/11
49 R_phengitic Feature index of phengitic, =11/12
50 R_Muscovite Feature index of muscovite, =13/12
51 R_Kaolinite Feature index of kaolinite, =13/11
52 R_Quartz Feature index of quartz rich rocks, =20/18
53 R_Basic_deg Feature index of basic degree index of SiO2, =18/19
54 R_SiO2 Feature index of SiO2, =19/18
55 R_Siliceous_rock Feature index of siliceous rocks, =172/(16 × 18)
56 R_Silica1 Feature index of the first pattern of silica, =17/16
57 R_Silica2 Feature index of the second pattern of silica, =17/18
58 R_Silica3 Feature index of the third pattern of silica, =19/16
59 R_Vegetation Feature index of vegetation, =9/8
60 R_Clay Feature index of clay, =(11 × 13)/122

61 R_NDVI Feature index of NDVI, =(9 − 8)/(9 + 8)

Coordinates
62 x Longitude
63 y Latitude

2.3. Spatial Autocorrelation-Based Mixture Interpolation Algorithm

2.3.1. The Process of the SABAMIN Algorithm

Figure 4 shows the flow chart of the SABAMIN algorithm. First of all, the measured target variable
data are input into the pseudo training data generation model by using kriging interpolation, and then
the pseudo training data are generated. Both are applied for composing of training datasets. Meanwhile,
both are input into a coordinate extraction function, then the coordinates of training datasets are
extracted to construct a coordinate filter for selecting predictor variable data in correspondent pixel
from the whole ROI. Furthermore, by this coordinate filter, the ROI is divided into two areas: “Areas for
training” (T areas) and the remaining blank areas as “areas waiting to be predicted” (P areas), and the
predictor variable data is divided into “data for training” and “data for prediction”, respectively.
Through RF learning, a prediction model is generated and by inputting data for prediction into this
model, the target variable data in P area are generated. Finally, using a mapping function, the measured
data, pseudo training data, and predicted data are merged together to complete a whole-pixel map
of the ROI. This is a process of mixing univariate interpolation and multivariate prediction; thus,
we named our new algorithm spatial autocorrelation-based mixture interpolation.
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2.3.2. How to Generate Pseudo Training Data in Our Case

The generation of pseudo training data is a crucial part of algorithm. It is important that pseudo
training data are reliable. However, in our case, there are problems that need to be solved. Below,
we introduce how to generate reliable pseudo training data in our case.

Figure 5 shows a conceptual drawing explaining these problems. As mentioned before, kriging
interpolation is reliable in a range of r. However, mineral contents have been reported to be highly
correlated with lithological features [28–30]; thus, it is considered that the spatial autocorrelations
within points of different geological areas are different and the correlation between two different
areas is lower. Due to geological discriminations that exist at the area border, different G/L types are
considered to have different r. If the interpolation model is produced under the condition that a single
r is set by fusing all sampled points in the study area, distribution crosstalk Cr1 (Figure 5a) will occur
in the regions near the borders of different geological areas because the neighboring sampled points
inside the range of r may come from different geological areas. Therefore, the pseudo training data in
Cr1, which do not make sense in geoscience, are too unreliable to be used. To avoid Cr1, it is necessary
to determine reliable spatial sections that enable reliable pseudo training data points inside them.
Therefore, kriging interpolation must be processed in each geological area independently.

Sampled points are categorized into different point groups in accordance with G/L types, which are
defined as PG_Geoψ ψ = 1, . . . , Γ, where Γ is the total number of G/L types in the study area, and they
need to be separated from each other spatially. Creating an envelope of the PGs enables them to be
separated from each other. To achieve this, a computational geometry strategy is applied here.

Observing the distribution shape of PG_Geoψ domains, they are not usually geometrically convex,
but always contain multiple concave parts. The alpha shape [31], an algorithm capable of generating an
optimized envelope in this case, was chosen for an automatic enveloping generation process. An alpha
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shape is a family of piecewise linear simple curves in the Euclidean plane associated with the shape of
a finite set of points. The PG is split into multiple triangles by Delaunay triangulation [32], wherein
each edge or triangle may be associated with a characteristic radius; the radius Φ of the smallest
empty circle containing an edge or triangle. After the alpha shape has been formed, a closed spatial
section is partitioned by the edge of the shape, and the points inside the shape that can be judged by a
point-in-polygon algorithm [33] can be considered reliable to enable all vacant pixels to be interpolated
inside the shape.

By applying the alpha shape algorithm without setting Φ, Delaunay triangles (DTs) among the
points are formed to connect all points in the PGs to each other. As shown in Figure 1, there are
a number of G/L types that are included in PG1, PG2, and PG3. The DTs cover the points in the
intermediate blank parts even though they belong to different geological areas. This generates crosstalk
Cr2 (Figure 5b), which covers those blank areas. Compared with the relatively smaller DTs inside PG1

or PG2, the size of the DTs across two PGs are big and the distances from their internal points to most
neighboring sampled points are far. Therefore, the reliability of the estimated points inside these big
DTs is low for pseudo training data. To avoid Cr2, it is necessary to correctly select the threshold of Φ,
to divide PG_Geoi into PG_Geoψ,ω, where PG_Geoψ,ω belongs to PGω, ω = 1, 2, 3, and then to obtain the
optimized shape of the envelope of each PG_Geoψ,ω. Therefore, for all data points, a threshold Φt that
forms three independent parts in the alpha shape process is needed to be specified first.

When the points are concentrated at different places on the plane that consist of different groups,
for all points, the value of Φ within the PGs is small but the amount of small Φ is large, while the
value of Φ between the PGs is large but the amount of such large Φ is small. If the threshold of Φ is
set to cover most of Φ within the PGs and discard the remaining ones, the DTs between the PGs will
disappear and the envelope of each PG will be generated. To achieve this, determining the turning
point between the histogram of Φ from the maximum position to infinite is considered effective to find
Φt, which can be actualized by, for example, a triangle thresholding algorithm [34]. The histogram of
Φ of all the datasets used in this research is shown in Figure 6a. According to the triangle thresholding
algorithm, Φt is specified by the following process: Connect the peak value and the value at infinity
by a line, search for the furthest point It from the line on the histogram envelope, and specify the
corresponding Φ of It. The alpha shapes are calculated under the conditions of setting Φ to infinity
(Figure 6b), Φt < Φ < +∞ (Figure 6c), and Φ = Φt (Figure 6d). The calculated Φt is 0.0848 degree
in longitude and latitude, defined as Φ1 here, and the length is approximately 10 pixels in our case.
For each PG_Geoψ, it is divided into PG_Geoψ,ω.

In a number of cases, it is clear that there are multiple PGs, PG_Geoψ,ω,χ,χ= 1, . . . , Ω, not connecting
with each other that belong to the same PG_Geoψ,ω. The distances Dχ between these areas may be
smaller than Φt, which indicates that this alpha shape algorithm is not effective to divide all observed
independent PGs, leaving crosstalk parts with adhering geological area Cr3 (Figure 5c). Here, Ω is the
total number of these independent PGs in PG_Geoψ,ω. We first directly performed kriging interpolation
while ignoring the effect of Cr3. Then, to handle Cr3, G/L type labels were plotted for every pixel on the
map in accordance with the data, as shown in Figure 1, to create image masks, M_Geoψ for excluding
those points not covered by M_Geoψ. After the filtering process, Cr3 was also eliminated, and kriging
interpolation on a single geological area could be successfully performed.

It should be noted that all vacant pixels in a DT must correlate with at least three neighboring
points (the apexes of the correspondent DTs and three points determine a plane) in accordance with
kriging interpolation, where Φ of a DT must be smaller than rψ. If not, several vacant pixels located at
the center of a DT will not be subject to kriging interpolation. Therefore, to form an alpha shape of
each PG_Geoψ, Φt should be set as Φψ = min(Φ1, rψ).

If we did not apply M_Geoψ after the DTs were formed and before Φt was specified, a number
of badly estimated pseudo training data points would be included, even though part of the process
could be omitted. In cases when the distance between PG1 and PG2 and Dψ, were smaller than r1

(the example in Figure 5b), vacant pixels in DTs included in Cr2 would be also interpolated. Even
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if Cr2 was eliminated by M_Geoψ cropping, those badly estimated points (inside the green dashed
line surrounding the region in Figure 5b) remained in the candidate training region. If we followed
the process mentioned above, although there were still a number of less reliable areas remaining,
the surface would be greatly suppressed (green dashed line surrounding the region in Figure 5d).Remote Sens. 2020, 12, x FOR PEER REVIEW 16 of 28 
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Figure 5. Conceptual drawings of Figure 1 to explain how to spatially divide kriging interpolation
regions and machine learning (ML) regions on a geochemical map: (a) The case of only setting a single r
by fusing all sampled points in the study area to kriging interpolation. Distribution crosstalk Cr1 occurs
in the regions near the border of different geological areas; (b) Delaunay triangles (DTs) generated by
applying the alpha shape algorithm without setting Φ. Crosstalk Cr2 occurs at the intermediate parts
between different PGs; (c) DTs generated by applying the alpha shape algorithm with setting threshold
at Φt. Remaining crosstalk Cr3 occurs at the intermediate parts between different PG_Geoψ,ωs; (d) a
geological mask M_Geoψ is applied; Cr3 is also eliminated.

According to Equation (3), an inverse computation of an (N × N) matrix is included in kriging
interpolation. To ensure the computation speed of the computer, we compromised by generating
pseudo training data using only three neighboring points. Thanks to the alpha shape algorithm,
interpolation was processed independently in a single DT unit by using the apexes’ values.

The result after kriging interpolation in all PG_Geoψ,ω is shown in Figure 7. Here, T areas is the
colored area and the remaining white areas are P areas, respectively. However, not every interpolated
data point in the T areas can be treated as pseudo training data. As mentioned above, because the
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further the distance from the interpolated points to the measured points is, the lower the reliability of
the interpolated value. A large amount of relatively low reliability data will reduce the reliability of the
constructed prediction model. To ensure reliability, a penalty on selection probability Q going into the
training dataset is given to each data point. The selection probability is proportional to the minimum
distance bmin from the candidate interpolated point Aj in a DT to the three apexes’ measured data Sα,
where α = 1, 2, 3. bmin can be expressed by Equation (15), and Q can be expressed by Equation (16):

bmin = min
A j∈DTε

‖A j − Sα‖ α = 1, 2, 3 (15)

Qψ =


(

Φψ−bmin
Φψ

)2
, bmin,ψ < Φψ

0, bmin,ψ ≥ Φψ or A j < DTε
(16)

The equations indicate that the apexes (bmin = 0), which are also the measured points, will be
absolutely selected, and the points outside these DT areas will not be selected. Whether the interpolated
data in the T areas will be selected as pseudo training data is determined by their Qs. Finally, the flow
chart of pseudo training datasets in our case is shown in Figure 8.Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 28 
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Figure 6. Applying the alpha shape algorithm to our case: (a) Specifying Φt by triangle thresholding
algorithm; (b) alpha shape under the condition of setting Φ to infinity; (c) alpha shape under the
condition of setting Φ to Φ1 < Φ < +∞; (d) alpha shape under the condition of setting Φ to Φ1.
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2.4. Algorithm Validity Test

The validity test of the proposed algorithm includes four parts: (i) Cross-validation of measured
data, (ii) blind test in T areas, (iii) temporal stability test in P areas and (iv) predictor importance test.
The validity of the constructed model by SABAMIN is compared with that by only RF, which does not
merge the spatial autocorrelation into ML.

First, the cross-validation test of measured data was done to test the precision of the constructed
prediction model. The measured data were the most reliable values in the datasets: If the prediction
values in the cross-validation were near to the real value, the precision of the model was good.
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The precision was evaluated by the root mean squared error (RMSE) between the predicted value
and real value through 10-fold cross-validation. In the cross-validation, all training datasets were
randomly divided into 10 groups, then 9 groups were selected for training, and the remaining 1 group
was selected for validation. To compare the two models fairly, only real and predicted values in actual
sampled points were picked up for calculating RMSE.

Second, blind testing in T areas was done to test the accuracy of the T area. If the accuracy is good,
spatial continuity should still be reserved well by the model, that is, the predicted map should have
a similar distribution to the original one. To confirm this, a blind test was conducted in the T area.
During one test, data in the selected area were excluded from the training data, and the remaining data
were used to construct the prediction model. The distribution of the excluded area was then predicted
by the constructed model and compared with the real distribution. Only data from actual sampled
points were selected in the evaluation. The RMSE and Pearson product–moment correlation coefficient
(Rt) were used to evaluate the similarity between the predicted and real distributions. The study
areas, Ta, Tb, and Tc were selected for three different blind tests. To confirm whether the model could
handle the prediction of geochemical anomalies, zones around the mining districts were considered as
candidate areas for the test.

Third, the temporal stability test in P areas was done to test the accuracy of P area. Since there
were no geochemical data in a P area, it was difficult to validate our algorithm by comparing the
predicted value with the real value. We considered that, as shown in Figure 2, the copper content in
the rocks around a copper mine should be high, so checking whether high copper content areas were
located around copper mining districts was considered a compromised method for the reliability test.
Furthermore, it was considered that if the reliability of the algorithm was high, the similarity between
the different predicted distributions using ASTER images of different time series should be high. In all
cases, the predicted high content areas should be located around the copper mines. The similarity of
all pairs of predicted maps in different time series were calculated, and an average similarity of them
was used to compare the reliabilities of SABAMIN and RF. The Pearson product–moment correlation
coefficient (Rp) was used to evaluate the similarity. Three study areas, Pa, Pb, and Pc in the P areas,
which are all located around copper mining districts, were selected for these tests.

Fourth, the predictor importance of different groups ImG was also calculated to check whether the
constructed model was geologically reasonable and to determine whether the constructed model was
biased to any predictor. If the predictors in the high importance ranking were the factors which were
already known to be highly correlative to copper content-based conventional geological knowledge,
for example, high copper contents tend to distribute around copper mine restricts which are always
located in the mountain, and if the topographic factors were in the high importance ranking, the model
was considered geologically reasonable. To check predictor bias, first, the normalized importance of
all predictor variables Imw, w = 1, . . . , 63, were calculated by the RF, and then, in accordance with
Table 2, they were allotted to different groups ImGmag, ImGdem, ImGband, ImGlith, ImGcor, which represent
geomagnetic variables, DEM variables, ASTER band variables, ASTER lithological index variables,
and coordinate variables groups, respectively. ImG was obtained by summing all of the members’
importance in the group. As a good selection of predictor variable, the constructed model should not
be biased to any predictor.

Random processes are seen in both the RF and SABAMIN. In the RF, the random creating node of
trees by randomly selecting training variables induces a random process. That random selection process
for creating a prediction model generates a random factor in SABAMIN. As a result, the calculated
RMSE, Rt, and Rp are not constant values. Therefore, their means and standard deviations are
calculated from 30 repeated tests and used for comparison in tests (i) and (ii), and the average predicted
distributions of the repeated tests are used in test (iii). Moreover, the mean and standard deviation of
the predictor’s importance are calculated from 30 repeated tests. Two-sided t-tests are used to examine
the differences between groups. For all analyses, the statistical significance is set to p < 0.05.
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3. Results

3.1. Cross-Validation Test of Measured Data

The 10-fold cross-validation results of the RF and SABAMIN are shown together in Figure 9.
The test was repeated 30 times. As a result, the RMSE of the RF and SABAMIN was 329.10 ± 0.53
and 281.54 ± 1.04 ppm, respectively. A significant difference is seen between the precision test results,
which means the constructed prediction model by SABAMIN was more accurate than that of RF.
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3.2. Blind Test in T Area

The blind test results of Ta, Tb, and Tc are shown in Figure 10a–c, respectively. In each panel,
the real distribution, RF-predicted distribution, and SABAMIN-predicted distribution are compared.
The results of the RMSE and Rt are shown in Table 4. In both RF and SABAMIN prediction, all Rts
exceeded 0.6, the distribution of high and low copper contents were almost correctly predicted, and
their predicted distribution was highly similar to the real distribution, which means that, like the RF,
SABAMIN can effectively use sampled points to predict other completely vacant areas. Nevertheless,
compared with the RF, the RMSE and Rt were improved by SABAMIN, and the RF-predicted distribution
was noisier than that of the SABAMIN-predicted one. In the local areas marked by black arrows,
the SABAMIN predicted areas are closer to the real ones, while those of the RF deviated. These results
suggest that the spatial autocorrelation is reserved well in the prediction model.
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Figure 10. Blind test results of (a) Ta, (b) Tb, and (c) Tc.

Table 4. Root mean squared error (RMSE) and Rt results of the RF and SABAMIN. Tests are repeated
30 times, with the (mean ± standard deviation) listed.

Area
RMSE p-Value Rt p-Value

RF SABAMIN RF SABAMIN

Ta 172.5 ± 5.5 133.9 ± 3.9 0.000 ** 0.546 ± 0.052 0.629 ± 0.050 0.000 **
Tb 419.0 ± 10.5 410.6 ± 9.0 0.001 * 0.757 ± 0.032 0.779 ± 0.030 0.005 *
Tc 431.2 ± 8.8 398.6 ± 7.3 0.000 ** 0.737 ± 0.038 0.756 ± 0.020 0.021 *

* p < 0.05; ** p < 0.001.

3.3. Temporal Stability Test in P Areas

The results of the temporal stability test in the P areas by Pa, Pb, and Pc are shown in Figure 11a–c,
respectively. Three predicted distributions by the remote sensing data (see Table S5 in the supplementary
material) in three different temporal series (tem1, tem2, tem3) approximately covering the same region
are shown together in temporal order. For the reference, reconstructed images by ASTER band 1, 2,
and 3N images are shown together. In all temporal series of all test areas, the copper content around a
mining district was predicted to have a high value, which is considered to be a reasonable result. Even
if the ASTER images were captured at different timings, the predicted distributions would look very
similar. Table 5 shows the similarity between the pairs of tem1, tem2, and tem3, which was evaluated by
Rp. All Rps almost exceeded 0.5, which indicates that the prediction was steady temporally. The results
above suggest a high reliability of our algorithm.
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mine position. The crowd of the mine positions corresponds with the mining district shown in Figure 3.

Table 5. Rp results between pairs of tem1, tem2, and tem3. Tests are repeated 30 times, with the (average
± standard deviation) listed.

Area
Rp

tem1 vs. tem2 tem1 vs. tem3 tem2 vs. tem3

Pa 0.681 ** 0.347 * 0.548 *
Pb 0.756 ** 0.710 ** 0.834 **
Pc 0.743 ** 0.581 ** 0.562 **

* p < 0.05; ** p < 0.001.

3.4. The Predictor Importance Test

The results of the predictor’s importance analysis by RF are shown in Figure 12 and Table 6. From
the results that show the importance of coordinates are ranked at first and third, the spatial information
is the most important factor in our constructed model, which corresponds with the knowledge that
spatial information is crucial for geochemical mapping, (see previous study [5,6]). Next, the altitude
and slope are ranked at second and sixth, which corresponds with the fact that copper mines (high
copper content areas) are always located in the mountains in the Arizona area [35], and mining changes
the topographic surface. Of the four geomagnetic predictors, one was ranked in the top 10, and
the remaining three were ranked in the top 20, which corresponds with the fact that metal elements
influence the geomagnetics. In this copper prediction case, the ASTER lithological index obtained by
cross band calculation, such as Mg-OH, muscovite, dolomite, kaolinite, silica, quartz, and alunite are
in high ranks, and are commonly seen alteration minerals exposed around active mines. All the above
information demonstrates that the constructed model is reasonable for geochemical contents mapping.
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A comprehensive look at Figure 12 and Table 6 does not show any significance that any factors were
more overwhelming than all other factors. All predictors were fairly treated to construct the model.
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Table 6. Total predictor’s importance in each variable group.

Group Predictor Number ImG (Mean ± SD)

Geomagnetic 4 0.088 ± 0.012
DEM 2 0.088 ± 0.018

ASTER Band 28 0.210 ± 0.023
ASTER Lithological index 27 0.457 ± 0.025

Coordinates 2 0.158 ± 0.021

4. Discussion

By applying the data augmentation strategy, pseudo training datasets were created using the
kriging interpolation model. The accuracy of the ML model was improved with augmented data,
which agree with applications in different fields [36,37]. The geochemical content in the majority
positions were only at the background level, and the high regions’ performances were considered
to be anomalies on the map. In a univariate interpolation, it is difficult to describe all the geological
anomalies perfectly by maximum likelihood estimation using such data with high skewness; thus,
usually the geological anomalies sometimes contradict the distant geospatial association. In this
study, to avoid that, although we still calculated the weight by kriging, in the interpolation operation,
the vacant pixels in a triangular area were only interpolated by the three most neighboring points and
sacrificing the contribution by some low weight measured points. This might be the one reason that
an only slight improvement of RMSE was observed in our study. Recently, Kim et al. [38] proposed
a curvature interpolation method which is suggested to be a more accurate univariate interpolation
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method for geospatial data than IDW, and is considered a candidate method to improve the accuracy of
pseudo training data generation. ML usually only constructs a model to fit the majority in the datasets,
where the minority tends to be ignored by the model. As a result, the high values are underestimated.
This might be another reason for slight RMSE improvement. By the hint of mineral prospectivity
mapping studies [39–41], the geochemical distribution can be treated as classification labels. It is
observed from Figure 10 that, although predicted distribution does not perfectly correspond with the
real one, a high accuracy of classifying high and low contents should be achieved. Therefore, the
prediction accuracy can be further improved using the method that firstly classifies the study area into
different classes, and then constructs different regression models in the different region with different
class to ensure all data can be correctly estimated in specific ranges.

In the temporal stability test, ASTER images in different temporal series were used for the test.
We hypothesized that there was no or only slightly topography alteration in the short term, and by
ignoring some human-made changes, ASTER images in different temporal series should be the same.
Therefore, the predicted geochemical distribution should be similar in this case. However, the ASTER
images show the solar optical reflectance information from the Earth’s surface, and despite the effect of
the surface vegetation coverage condition, the reflected luminance may change due to different solar
heights and angles at different times in the day or during different seasons. This unstable component
was regarded as signal noise in temporal series. Although it is possible to achieve a higher similarity
in Pa, Pb, and Pc by correcting them in accordance with the solar zenith angle [42], a reasonable result
that predicted high content regions are located at or very near to actual mining districts in all temporal
series indicated that our prediction model was robust to this fluctuation induced by solar condition
changing. Thus, the signal of the predictor variables seem to be more determinative than the noise in
the prediction process.

5. Conclusions

In this study, to provide a high accuracy model for generating a high-resolution geochemical map,
we proposed a new algorithm, SABAMIN, which merged both spatial location and autocorrelation
into an ML model by using data augmentation and computational geometry strategies. We applied
kriging interpolation to generate pseudo training datasets and applied an alpha shape method to build
these pseudo training datasets to become geologically reliable.

In the blind test results, a higher similarity meant the spatial autocorrelation was reserved well in
the prediction model. Furthermore, coordinate variables were ranked at the top level in the predictor’s
importance test. These results suggest that we successfully merged spatial autocorrelation into the ML
model by only co-training with the sampled datasets and pseudo training datasets.

Compared with the RF constructed model, SABAMIN achieved a lower RMSE in the cross-validation
test. The model also performed a steady prediction in a temporal stability test using multiple ASTER
images in different temporal series. The effect and reliability were confirmed by these results.

According to the ranking of predictor importance, the machine learning suggested that the major
factor related to copper content distribution corresponded with common geological knowledge, which
suggests that the constructed model is reasonable for geochemical contents mapping.

In summary, SABAMIN is effective for generating high-resolution geochemical maps with high
accuracy. Combining the univariate interpolation method with multivariate prediction with data
augmentation also proved effective for geological studies.

In the future, we will further improve the pseudo training data generation method or try to
provide different prediction model to different region with contents in different levels to improve the
accuracy of the prediction model.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/12/12/1991/s1,
Figure S1: The detail of remote sensing data: (a) ASTER band 1 data; (b) DEM altitude data; (c) Analytic signal
processed geomagnetic data, Table S1: Detailed introduction of the study areas, Table S2: The default filename of
source files of ASTER data, Table S3: The default filename of source files of DEM altitude data, Table S4: The
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