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Abstract: Limited by the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-
On (GRACE-FO) measurement principle and sensors, the spatial resolution of mass flux solutions 
is about 2–3° in mid-latitudes at monthly intervals. To retrieve a mass flux solution in the Tibetan 
Plateau (TP) with better visual spatial resolution, we combined truncated singular value 
decomposition (TSVD) and Tikhonov regularization to solve for a mascon modeling. The monthly 
mass flux parameters resolved at 1° are smoothed to about 2° by truncating the eigen-spectrum of 
the normal equation (i.e., using the TSVD approach), and then Tikhonov regularization is applied 
to the truncated normal equation. As a result, the terms beyond the native resolution of 
GRACE/GRACE-FO data are truncated, and the errors in higher degree and order components are 
dampened by Tikhonov regularization. In terms of root mean squared errors, the improvements are 
27.2% and 12.7% for the combined method over TSVD and Tikhonov regularization, respectively. 
We confirm a decreasing secular trend with –5.6 ± 4.2 Gt/year for the entire TP and provide maps 
with 1° resolution from April 2002 to April 2019, generated with the combined TSVD and Tikhonov 
regularization method.  
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1. Introduction 

Since the launch of Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) in May 
2018 [1], the number of monthly products of time-variable gravity fields has grown, which provides 
the opportunity to further investigate large-scale secular and seasonal geophysical signals [2–4]. 
Known as the Third Pole, the Tibetan Plateau holds the largest number of glaciers, acting as an 
important contributor to major rivers in Asia, such as the Yangtze and the Ganges [5,6]. Due to the 
geographic complexity, remote sensing analyses, such as employing GRACE data, the digital 
elevation model (DEM) differencing approach, or converting height changes from laser altimetry 
(e.g., from Ice, Cloud, and Elevation Satellite, ICESat) to mass variations, are used in estimating the 
mass variation of the Tibetan Plateau (TP). For example, Brun et al. calculated the glacial mass loss at 
a trend of –16.3 ± 3.5 Gt/year between 2000 and 2016 in High Mountain Asia with a DEM [7] and 
Jacob et al. reported a less negative rate of –4 ± 20 Gt/year based on GRACE data [8]. The differences 
in mass trends that we find stress the need for a better understanding of the mass variations in the 
TP with high spatial resolution. 

Due to the weak sensitivity of its observations in the east-west direction, measurement errors, 
and the ill-posed inversion problem, unconstrained GRACE-based spherical harmonic solutions 
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show unreasonable north-south stripes [9]. Several post-processing techniques, such as applying 
Gaussian filters [10,11], decorrelation filters [12], and DDK filters [13,14], have been developed to 
constrain the errors in high degree and order. However, they tend to cause an attenuation of real 
geophysical signals [15]. Another option of recovering mass variations from GRACE data while 
avoiding the use of post-processing techniques is to use mass concentration approaches applied to 
GRACE inter-satellite range-rate measurements [16], or range-acceleration data [2,17], or spherical 
harmonic coefficients [8,18]. However, the normal equations that are formed within the mass 
concentration approach are typically ill-conditioned, and either truncated singular value 
decomposition (TSVD) or Tikhonov regularization is required to derive a stable solution. Moreover, 
the native spatial resolution of the mass flux solutions derived from GRACE data is about 2–3° (63,000 
km2) at an error level of 2 cm in terms of equivalent water height (EWH) at monthly intervals [19].  

It is well known that TSVD and Tikhonov regularization modify the eigen-spectrum of the 
normal equations in different ways, and combining the two methods adds one additional degree of 
freedom. More degrees of freedom for turning the normal equations are used in the multi-parameter 
regularization approach [20]. Although we cannot claim that the combination will automatically 
enable results superior to carefully tuned TSVD or Tikhonov regularization solutions, we 
hypothesize that it provides more flexibility when the gravity field is parameterized through 
mascons. The goal of the study is to derive an improved solution via the combined use of TSVD and 
Tikhonov regularization with respect to individual use of them: truncating the eigen-spectrum of the 
normal equation beyond the native spatial resolution of GRACE/GRACE-FO by TSVD, and then 
dampening the errors in higher degree and order components by Tikhonov regularization. The rest 
of this paper is organized as follows: Section 2 presents the combined TSVD and Tikhonov method 
after introducing the mascon modeling; Section 3 gives the details of total mass variations and spatial 
distribution of mass flux solution at 1° resolution in the TP and the conclusions are drawn in Section 
4.  

2. Data and Methods  

2.1. GRACE data 

Since the launch of the GRACE mission in 2002, the GRACE Science Data System (SDS) 
institutions, namely, the Center for Space Research (CSR), the Jet Propulsion Laboratory (JPL), and 
the GeoForschungsZentrum (GFZ), have been updating gravity monthly solutions during release 01 
to 06. Since the spatial, temporal, and spectral differences of these SDS products were shown to be 
within a certain scatter [21], they differ little among SDS products. Here we chose to employ the up-
to-date CSR release 06 products [22] from April 2002 to April 2019 (172 months), including GRACE-
FO data from June 2018 to April 2019. We follow the usual post-processing steps; since the GRACE 
monthly solutions refer to the center of mass, the offset between the center of mass and the center of 
the frame of the Earth, represented by the degree-1 coefficients of spherical harmonics [23], must be 
added back when the mass flux solutions are defined in the reference frame. We use degree-1 
coefficients derived from satellite laser ranging (SLR) observations [24] to correct this offset. C20 and 
C30 terms, which are poorly observed by GRACE and GRACE-FO, in particular, with only a single 
accelerometer, are replaced with SLR observations by the technical note 14 (TN-14) document 
recommended by Loomis et al. [25].  
 The response of the solid Earth to the glacial loading and unloading leads to glacial isostatic 
adjustment (GIA), and this signal should be removed from surface mass variations to enable an 
interpretation in terms of hydrology. We corrected our mass flux solution with the three-dimensional 
(3D) GIA model [26] and removed the GIA signal by 3.6 Gt/year from mass flux solution in the TP 
(Figure 1). With various ice sheet models and viscoelastic Earth models, other GIA models ranging 
from 0 mm/year to 2.5 mm/year account for mass variations of 0.2 Gt/year to 4.9 Gt/year in the TP, 
which indicate large uncertainties due to the complexity of the geodynamic process [27]. 
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Figure 1. Glacial isostatic adjustment (GIA) signals of the Tibetan Plateau (TP) in equivalent water 
height (EWH, mm/year) at 1° resolution. 

2.2. Mascon modeling 

 In mascon approaches it is common to first transform the spherical harmonic coefficients into a 
set of pseudo-observables over the region of interest; typically, gravity disturbances at satellite 
altitude on a regular grid. When we account for the Earth’s elastic yielding, the radial gravity 
disturbance can be expressed in terms of fully normalized Stokes coefficients as follows [23],  

𝛿g = - GM
r2 ෍ (
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)
௟
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where r, λ, and φ are the spherical coordinates of the pseudo observations (i.e., the radius (r = a + 500 
km), longitude, and latitude, respectively); G indicates the gravitational constant; a is the mean radius 
of the Earth; l and m indicate the degree and order of the gravity field model; the maximum degree 
lmax is 60; kl

'  (provided by Wahr et al. [11]) is the load Love number of degree l; Plm stands for the fully 
normalized associated Legendre functions; ∆Clm and ∆Slm are the Stokes coefficients after the mean 
gravity field is removed. 

According to Newton’s law of gravity, assuming n pseudo observations at satellite attitude 
caused by t mass-points in the study area, the total radial gravitational disturbance at each location j 
is as follows [18], 

 𝛿gi = G෍  δmj

(r-a cosψi,j)

(a2+r2-2ar cosψi,j)
3/2 , i=1,2,…,n, j=1,2,…,t

௧
௝ୀଵ  (2)

where  δmj  (j=1,2,…,t) is the unknown mass variations to be estimated and ψi,j  is the spherical 
distance. 
 Together with Equations (1) and (2), the radial gravitational disturbance in the pseudo 
observation points at satellite altitude connects the spherical harmonic coefficients and the mass 
variation due to the ground mass-points, and we reformulated the observation equation here as 

y = Ax + e , A௜,௝= G
(r-a cosψi,j)

(a2+r2-2ar cosψi,j)
3/2, i=1,2,…,n, j=1,2,…,t,  (3)

where y is an n-vector of pseudo observations of the radial gravitational disturbance calculated by 
spherical harmonic coefficients; A is an n×t design matrix (n>t) and denotes an overdetermined system 
of the equation; x is a t-vector of unknown ground mass-points to be estimated (i.e., δmj); e denotes 
the n-vector of random errors with zero mean and variance of unit weight σ0

2. Via the law of error 
propagation, the weight matrix P is computed with P=(BDBT)-1, in which D is the covariance matrix 
from the CSR release 06 products; B is the coefficient matrix of projecting the spherical harmonics to 
the pseudo observation vector with its ith row elements corresponding to spherical harmonics ∆Clm 
and ∆Slm which are written as [28], 
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where (λ௜ , φ௜ ,r)  is the spherical coordinate of the ith pseudo observation; 𝑗∆Clm and 𝑗∆Slm are the 
column numbers corresponding to spherical harmonics ∆Clmand ∆Slm, respectively. According to Ran 
et al. [29], introducing the weight matrix P can improve the quality of estimated mass variations. 
Tikhonov regularization, with the L-curve method applied to choose the regularization parameter, is 
widely used in GRACE-derived regional and global mascon solutions [18,30].  

Within our study area of 63°E-105°E, 25°N-46°N, we constructed a mascon grid at ground level, 
at 1° resolution with 946 mascons (Figure 1). In the figure, the center of each mascon (1° × 1°) stands 
for the coordinate of the corresponding ground mascon to be estimated. The mass flux solution for 
the entire TP consists of the individual mass variations of each mascon inside the boundary of the TP 
(black line in Figure 1). The pseudo observations of radial gravitational disturbance cover an area of 
60°E-108°E, 22°N-49°N of 0.8° resolution and 1° resolution, respectively.  

2.3. Combined use of TSVD and Tikhonov Regularization 

 To recover the solution x，we applied the least-squares adjustment to minimize the square sum 
of e. The design matrix A (n×t) can be expressed by singular value decomposition (SVD) as  A =  USV୘, (6)

in which the columns of U=[ u1, u2, …, un] are the left singular vectors of A; the diagonal matrix S = 
diag[s1, s2, …, st] is the singular value of A; the columns of V=[ v1, v2, …, vt] are the right singular 
vectors of A. The least-squares solution xLS is, 

xLS = ෍  𝐮௝் y𝐬௝ vj

t

௝ୀଵ . (7)

As the index increases, the singular value s௝ି ଵ of A increases as well and small perturbations in the 
observations can cause significant perturbations in the solution. Due to the sampling and geometry 
of pseudo observation, we found a condition number for the design matrix A of 6.9·1017 (with the 
geodesic grid of 1° × 1°), indicating an ill-conditioned normal equation N= ATPA. There are two 
regularization methods presented: TSVD and Tikhonov regularization. By eliminating small singular 
values, the TSVD solution xk is in the form of [31], 

xk = ෍  𝐮௝் y𝐬௝ vj

௞
௝ୀଵ , (8)

where 1<k<t. If the truncation parameter k is chosen too large, the condition number of A remains 
large; however, a small k value leads to losing a large part of the signals. Tikhonov regularization is 
commonly applied to stabilize ill-posed problems, it is well-known that the solution minimizes the 
cost function 

Φ(x)=(Ax-y)TP(Ax-y)+𝜇xTRx, (9)

where 𝜇 indicates the regularization parameter (𝜇>0) and R is the regularization matrix. The solution 
to Equation (9) is expressed as, 

xఓ = ൫ATPA+𝜇R൯ିଵATPy , (10)

which shows that Tikhonov regularization dampens every component of the design matrix.  
Here we construct a new TSVD and Tikhonov regularization by applying Tikhonov 

regularization to the truncated normal equation. As the regularization matrix R is chosen as an 
identity matrix I and the design matrix A is truncated to the first k singular values, the solution 𝐱ఓ௞ is, 
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𝐱ఓ௞ = V(Sk
TPSk+𝜇I)ିଵSk

TUT𝐏y,  Sk = diag[s1, sଶ,…, s௞, 0,…,0].  (11)

Consisting of the variance-covariance matrix of 𝐱ఓ௞ and the bias correction of both Tikhonov 
regularization and the truncated part [32,33], the corresponding mean squared error (MSE) matrix is, 

MSE(𝐱ఓ௞)=σ0
2Qఓ௞VSk

TPSkVTQఓ௞+𝜇2Qఓ௞x෤x෤TQఓ௞ + x෤TVkVkTx෤,  Vk = [0,…,0,vk+1,…,vt] (12)

in which  x෤  is the true value, and Qఓ௞= V(Sk
TPSk+𝜇I)ିଵVT . The variance matrix of 𝐱ఓ௞ is 

σ0
2Qఓ௞VSk

TPSkVTQఓ௞ . The 𝜇2Qఓ௞x෤x෤TQఓ௞  and x෤TVkVk
Tx෤  correspond to bias impacts of Tikhonov 

regularization and TSVD, respectively. For more details, please refer to [32,33]. To estimate the 
unknown 𝜎଴, the following equation is introduced [34], 

σො0
2=

eොTPeො-𝜇2x෤T(Qఓ௞-𝜇Qఓ௞2 )x෤
(n-t)+𝜇2tr(Qఓ௞2 )

. (13)

in which eො is the estimation of the error vector. Since the true value x෤ remains unknown, we replaced 
it with the estimation 𝐱ఓ௞ by the combined method.  

Comparing Equation (10) with Equation (11), it is obvious that this combined Tikhonov 
regularization adds a small regularization parameter 𝜇 to the truncated s௝ (1 < 𝑗 ≤ 𝑘)  only. The 
choice of the truncated number k controls the amount of useful information derived from the normal 
equation and the Tikhonov regularization further dampens the errors of higher degree and order.  

When considering the location of the inflection point of the eigenvalue curve for the case of 1° 
resolution, we selected the truncation parameter k as 270 (about 2° resolution) for the combined 
method; we then applied Tikhonov regularization to the truncated normal equation and derived the 
optimal regularization parameter 𝜇 based on the criterion of minimizing the traced MSE (for details, 
see [33,34]); finally, we calculated the mass flux solution with Equation (11). Other methods to 
determine the regularization parameter such as the discrepancy principle [35], the generalized cross-
validation method [36], or the L-curve criterion [18,30] could be investigated. 

Figure 2a shows the eigenvalues of the normal equation with the 1° resolution with different 
methods in January 2004. It should be noted that the choice of regularization parameter and 
truncation value may bias the mass variations derived from the combined method, TSVD, or 
Tikhonov regularization. To compare the combined solution with other solutions, we did not truncate 
the normal equation with Tikhonov regularization only (Figure 2a, blue dotted line) and derived the 
optimal regularization parameter 𝜇 based on the criterion of minimizing the traced MSE. Note that 
the regularization parameters of the combined method and Tikhonov regularization are separately 
calculated for each month. The truncating parameter k of TSVD solutions is chosen according to the 
MSE criterion in each month [30]. We further compared the condition numbers by the combined 
method, and Tikhonov regularization, respectively in Figure 2b. The condition numbers by the 
combined methods were reduced slightly more compared to those by Tikhonov regularization 
during 2002 to 2019. Figure 2c presents how traced MSE of the combined method varies with the 
regularization parameter in January 2004. The regularization parameter of 1.6 × 10-29 is selected by 
the minimum traced MSE. 

Limited by the GRACE data, the spatial resolution of the solution is about 2°. Therefore all 1° 
grids are overparameterized; due to rounding error, the eigenvalues lower than 10-33 drop very slowly, 
and the correspondent eigenvectors form linearly dependent parameters. Truncating them to about 
a 2° resolution is better than direct parameterizing with 2° grids, since the combinations with larger 
eigenvalues are left. However, if we truncate more terms to get a stable solution, we may lose the 
signals corresponding to small eigenvalues. The terms for the eigenvalues larger than 10-33 are 
corresponding to the spatial resolution of GRACE data; Tikhonov regularization is therefore used to 
derive a stable solution.  
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Figure 2. (a) Eigenvalues of the normal equation in January 2004; (b) condition numbers for 172 
months; (c) traced mean squared error (MSE) of the combined method varies with regularization 
parameter in January 2004. 

2.4. Leakage Correction 

The leakage errors in GRACE observations increase proportionally with the strength of the 
signal source and attenuate quickly with the increasing distance between the source and the mass 
points. Similar to other studies [28], we expanded the study area by 3°, covering the area of 60°E-
108°E, 22°N-49°N, and calculated these additional mass variations outside the study area with 
mascon modeling as well. To eliminate the leakage error, we removed the radial gravitational 
disturbance derived from these nearby additional mass variations from our pseudo observations.  

3. Results and Discussion 

3.1. MSE Roots 

Here we introduced MSE, which is one of the most common measures to describe how methods 
perform in parameter estimation. Estimators (i.e., mascons in our case) with a smaller MSE, indicate 
that they are expected to have a closer distance to the true value. To compare the performance of each 
method in the parameter space, we calculated the MSE roots of 946 mascons in the TP using the 
combined method with Equation (12), those by TSVD according to Xu [32], and those by Tikhonov 
regularization according to Shen and colleagues [33]. Figure 3 shows the MSE roots in EWH (cm) of 
all mascons for each month. Except for a few months, the combined method has a better performance 
than Tikhonov regularization. The maximum MSE roots of 946 mascons were successfully reduced 
from 8.31 cm in the case of TSVD to 6.74 cm in the case of the combined method. The maximum MSE 
root by Tikhonov regularization is equal to 7.56 cm. The MSE roots of 3.08 cm by the combined 
method is smaller than those of 4.23 cm and 3.53 cm by TSVD and Tikhonov regularization, 



Remote Sens. 2020, 12, 2045 7 of 13 

 

respectively (Table 1). In other words, the improvements are 27.2% and 12.7% for the combined 
method over TSVD and Tikhonov regularization.  

 
Figure 3. MSE roots of 946 mascons for 172 months in EWH (cm). 

Table 1. MSE roots for three methods in EWH (cm). 

MSE Roots Maximum Minimum Mean 

Tikhonov + TSVD 6.74 1.29 3.08 
TSVD 8.31 1.70 4.23 

Tikhonov 7.56 1.53 3.53 
Note: TSVD = truncated singular value decomposition. 

3.2. Total Mass Variations  

As expected, the time series of mass flux solution in the TP (i.e., within the black boundary in 
Figure 1) from April 2002 to April 2019 exhibited strong annual changes with a decreasing secular 
trend at a rate of –5.6 ± 4.2 Gt/year, –7.9 ± 3.9 Gt/year, –6.8 ± 5.2 Gt/year, and –8.6 ± 5.8 Gt/year with 
combined TSVD and Tikhonov regularization, TSVD only, Tikhonov regularization only, and P4M6 
+ 400 km Gaussian filtering [10–12] applying to mass points exactly those used in the combined 
method, respectively (Figure 4). Note that the TSVD solution suffers unrealistic south-north strips 
(see Figure 5d), indicating that using TSVD alone is not suitable to recover mass flux solution in the 
TP. 

 
Figure 4. Time series of the mass flux in the TP in EWH (cm). 
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To investigate the secular trend and the seasonal mass variations, we established a fitting 
function to estimate the linear rate, (semi-) annual variations, as well as to remove a 161-day S2 alias 
that would remove an error due to incorrect modeling of the S2-tide, as follows, 

EWH(t)=a·t+b+A1 cos ൬2π
T1

t-θ1൰+A2 cos ൬2π
T2

t-θ2൰+A3 cos ൬2π
T3

t-θ3൰+Δ, T1=1, T2=0.5, T3=
161

365.25, (14)

where, A1, A2, A3, θ1, θ2, θ3 stand for the annual, semi-annual, and 161-day amplitudes and phases; t 
is the time tag in years; b is bias parameter; Δ  is the residuals. We realize that Equation (14) 
represents a mathematical model that enables an unbiased trend estimate, rather than a tool for 
assessing solution errors in the presence of real geophysical signals which do not necessarily follow 
this model. However, we argue that (1) it is indeed our primary aim to derive the mass trends, and 
(2) several modeling studies have confirmed that a trend plus (semi-) annual model describes snow 
accumulation, groundwater, and surface water change in the TP region quite well [37,38]. 

The similarity of the annual phase retrieved by all methods in Table 2 suggests that the mass 
storage of the Tibetan Plateau reaches a maximum in September, likely related to the large amount 
of precipitation in the TP between June and September which is brought by the southwest monsoon 
of the Indian Ocean [39,40]. Assume for the moment the fitting curve represents the true signal, we 
further derive an estimate for the root mean squared error (RMSE), the standard deviation of the 
residuals, and root mean squared (RMS) ratio defined as, 

RMS Ratio=
RMS(fitting curve)

RMS(residuals) , (15)

where RMS(fitting curve) refers to the latitude weighted RMS of the fitting curve; RMS(residuals) 
stands for RMS of residuals Δ. The RMSE of the combined method is 1.9 cm, close to the RMSE of 
filtering, while that of the Tikhonov regularization is 2.2 cm (Table 2). The RMS ratio of 1.21 by the 
combined method is higher than those of 0.45, 0.78, and 1.16 by TSVD, Tikhonov regularization, and 
filtering, respectively, indicating that the combined method can retrieve annual and semi-annual 
signals at a higher confidence level. The improvements of the combined method relative to the 
Tikhonov regularization is 14% for RMSE, and 55% for RMS ratio.  

Table 2. Linear trend and annual signals of the total mass variation in the TP.  

Method Trend (Gt/year) Annual RMSE (cm) RMS Ratio 
Amplitude(cm) Phase (°) 

Tikhonov + TSVD –5.6 ± 4.2 2.8 ± 0.5 226.8 ± 14.4 1.9 1.21 
TSVD –8.9 ± 5.9 2.2 ± 1.9 262.6 ± 34.3 1.6 0.45 

Tikhonov –6.8 ± 5.2 2.3 ± 0.5 220.2 ± 26.4 2.2 0.78 
P4M6 + 400 km –8.6 ± 5.8 2.3 ± 0.6 223.1 ± 23.5 1.8 1.16 

Note: significant at 2-σ level for trends, annual amplitudes, and phases. RMSE = root mean squared error; RMS 
= root mean squared. 

Table 3. Linear trend in the TP of different datasets and previous studies. 

Method Time Intervals GRACE Data Trend 
(Gt/year) 

Trend of combined 
method (Gt/year) 

TSVD + Tikhonov Apr 2002–Apr 2019 GFZ Release 06 –5.9 ± 4.3  –5.6 ± 4.2  
Jacob et al. [8] Jan 2003–Dec 2010 CSR Release 04 –4 ± 20  –2.3 ± 5.7 

Yi and Sun [35] Jan 2003–Dec 2012 CSR Release 05 –7.8 ± 5.7  –4.6 ± 5.3 
Zou et al. [37] Aug 2002–Dec 2016 CSR Release 05 –6.2 ± 1.7  –7.6 ± 3.8 

When evaluated over the same period, the secular trend of total mass variations in the TP that 
we find with the combined method at 1° resolution is among the range of previous studies with 
different datasets (Table 3). The use of GeoForschungsZentrum (GFZ) release 06 data agrees with the 
results of the Center for Space Research (CSR) release 06 within 5%.  
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3.3. Mass Variations Distribution 

Figure 5 presents the spatial distribution of the secular trend, derived from the mass variations in 
TP: with the combined method, with the Tikhonov regularization, with P4M6 + 400 km Gaussian filter, 
with TSVD, with the filter minus those of the combined method, and with the Tikhonov regularization 
minus those of the combined method, respectively. The filtering results show signals relatively similar 
with the combined method; however, the TSVD-only method still exhibits significant south-north 
stripes. The trend map in Figure 5a–c shows the mass accumulation in the Inner TP at a maximum trend 
of 2.4 cm/year with the combined method. Two other significant signal sources are the Indus Basin 
located in North India and the Brahmaputra Basin located in the central and eastern Himalayas. The 
minimum secular trend from the mass flux solution derived from the combined method is found at –
11.2 cm/year in the Indus Basin and –5.4 cm/year in the Brahmaputra Basin, while with Tikhonov 
regularization these trends remain as –8.9 cm/year and –4.2 cm/year, respectively. We speculate that in 
addition to the dampening by Tikhonov regularization, the relatively weaker signals could also be 
blamed by the low spatial resolution because a larger mass point covers more area and the mass 
variations in a large area will be smoothed if the strong signal is averaged together with weak ones in the 
same mass point. Note that the trend map is arranged from –2 to 2 cm in Figure 5e and Figure 5f. Figure 
5e shows the trends of the filtering solution minus those of the combined method, indicating that the result 
of the combined method presents no stripe pattern, just like the two-step filtering technique which is 
designed to remove the south-north stripes. Figure 5f gives the trends of the Tikhonov only method minus 
those of the combined method, showing south-north stripes. Since Figure 5e shows no evident south-
north stripes, it is the result of Tikhonov regularization that contains stripe patterns. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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Figure 5. Linear trend of the TP in EWH (cm/year): (a) with combined TSVD and Tikhonov 
regularization; (b) with Tikhonov regularization; (c) with P4M6 + 400 km Gaussian filtering; (d) with 
TSVD; (e) difference between (a) and (c); (f) difference between (b) and (a). 

The geophysical processes causing mass variations are complicated in the TP. The strong mass 
loss signal in north India is likely caused by the anthropogenic groundwater depletion, confirmed by 
groundwater-level monitoring data [41]. Global Positioning System observes long-term uplift rates 
as 0.5–0.7 cm/year in the TP, which might be isostatically compensated by an increasing mass 
deficiency at depth [42]. Gardner et al. [43] suggested rapid thinning rates of mountain glaciers in 
different sub-regions based on glacier elevation variations. The recharge pathway of the melt water 
remains unclear, and tends to sink into the ground, whose local storage capacity is limited due to 
permafrost [8]. 

We then visualized the RMSE of each mass point in the TP to compare with those from the 
Tikhonov regularization, and from the filtering results (Figure 6). Note that the RMSE map is 
arranged from 0–30 cm and 0–50 cm in Figure 6c and Figure 6d, respectively. The latitude weighed 
RMSE of the TP with the combined method was the smallest among the three methods (9.6 cm vs. 
10.4 cm for Tikhonov, 12.2 cm for filtering, and 23.0 cm for TSVD), which is consistent with the 
improved RMSE and RMS ratio derived from the total mass variations. The largest difference of the 
RMSE is located in the southeast of the Indus Basin, reaching 22.9 cm from the combined method, 
25.3 cm from the Tikhonov regularization, and 29.7 cm when using the filtering method. Along the 
Karakoram Mountains and the Himalayas Mountains, the larger RMSE indicates that the Tikhonov 
regularization and the filtering methods perform worse in retrieving secular and seasonal signals 
than the combined method. 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 6. Root mean squared error (RMSE) of mascons in the TP: (a) with combined TSVD and 
Tikhonov regularization; (b) with Tikhonov regularization; (c) with P4M6 + 400 km Gaussian filtering; 
(d) with TSVD. 

4. Summary 

We introduced a combined TSVD and Tikhonov regularization method to retrieve mass flux 
solutions at 1° resolution in the TP. This combined method truncates the terms beyond the native 
resolution of GRACE/GRACE-FO data and dampens the errors in higher degree and order 
components by Tikhonov regularization. Of course, the number of degrees of freedom in the 
truncated normal equation is approximately equal to those directly parameterized as 2°. The 
improvements for the combined method over TSVD and Tikhonov regularization are 27.2% and 
12.7% in terms of MSE roots from 2002 to 2019. Furthermore, using TSVD or Tikhonov regularization 
alone leaves corresponding mass flux solutions in the TP with unrealistic south-north stripes, while 
the result of the combined method shows no evidence of stripes. 
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