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Abstract: Many developing nations are facing severe food insecurity partly because of their
dependence on rainfed agriculture. Climate variability threatens agriculture-based community
livelihoods. With booming population growth, agricultural land expands, and natural resource
extraction increases, leading to changes in land use and land cover characterized by persistent
vegetation greening and browning. This can modify local climate variability due to changing
land–atmosphere interactions. Yet, for landscapes with significant interannual variability, such as the
Mount Elgon ecosystem in Kenya and Uganda, characterizing these changes is a difficult task and more
robust methods have been recommended. The current study combined trend (Mann–Kendall and Sen’s
slope) and breakpoint (bfast) analysis methods to comprehensively examine recent vegetation greening
and browning in Mount Elgon at multiple time scales. The study used both Moderate Resolution
Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index (NDVI) and Climate
Hazards group Infrared Precipitation with Stations (CHIRPS) data and attempted to disentangle nature-
versus human-driven vegetation greening and browning. Inferences from a 2019 field study were
valuable in explaining some of the observed patterns. The results indicate that Mount Elgon vegetation
is highly variable with both greening and browning observable at all time scales. Mann–Kendall and
Sen’s slope revealed major changes (including deforestation and reforestation), while bfast detected
most of the subtle vegetation changes (such as vegetation degradation), especially in the savanna
and grasslands in the northeastern parts of Mount Elgon. Precipitation in the area had significantly
changed (increased) in the post-2000 era than before, particularly in 2006–2010, thus influencing
greening and browning during this period. The greenness–precipitation relationship was weak
in other periods. The integration of Mann–Kendall and bfast proved useful in comprehensively
characterizing vegetation greenness. Such a comprehensive description of Mount Elgon vegetation
dynamics is an important first step to instigate policy changes for simultaneously conserving the
environment and improving livelihoods that are dependent on it.
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1. Introduction

Vegetation plays very important roles in ecosystem processes, including the mitigation of climate
change effects [1] and the regulation of land surface temperatures, carbon and energy cycles [2–4].
At the same time, significant changes in terrestrial vegetation have been reported in the recent past [5,6].
Previous studies have concluded that these changes are driven by (1) slowly-changing natural processes,
such as regional climate change (e.g., changes in temperature, precipitation, etc.), nitrogen disposition
and increasing atmospheric CO2 concentrations [7], and (2) more rapid anthropogenic activities,
including land-use and land-cover (LULC) change (e.g., deforestation [8,9], overcultivation and
overgrazing [8], afforestation, expanding green areas in cities [1] among others). These processes do
not operate in isolation [7] but rather interact at multiple scales, with global-scale drivers interacting
with processes at the regional and local scales [10], thus making vegetation change dynamics a complex
phenomenon to examine. Understanding vegetation dynamics has attracted substantial attention in
the past years, specifically in the wake of climate change and variability [11]. As such, knowledge of
vegetation response to climate change is critically important in the effort to maintain the supported
processes as well as the human livelihoods derived from them [12]. Such an analysis has been difficult
in the past, due in part to limited access to consistent data both in space and time. However, with recent
developments in Earth observation (EO) technologies, spatio-temporally contiguous remote sensing
(RS) data have been collected, making it possible to investigate vegetation dynamics accurately and
comprehensively in terms of other environmental processes, at multiple scales.

The Normalized Difference Vegetation Index (NDVI), which is the normalized sum of the difference
in reflectance between near infrared and red bands, has extensively been used [5,10,13] as an indicator
of photosynthetic activity and vegetation amount [14]. Previous studies used this vegetation index
(VI) to characterize vegetation processes such as productivity decline [6], phenology [15,16] and
greening and browning [1,5,10,12,17,18]. Variability in NDVI generally follows patterns of climatic
conditions, mainly precipitation [11,19–22]. The NDVI–precipitation relationship is largely a strong
positive one, particularly in locations where total annual precipitation is less than 1000 mm [19,22].
This relationship is further compounded in space and time by site-specific factors such as existing LULC,
vegetation structure and composition [22], topography [10] and soil type [23]. As a result, vegetation
greenness response to climate has shown significant spatial and temporal variability. For instance,
contrasting natures and strengths of the NDVI–precipitation relationship have been reported: a strong
linear relationship in the Sahel [19] and a log-linear one in East Africa [22]. In other studies, seasonal
precipitation with different lag times was found to correlate strongly with NDVI [13,22]. This complexity
implies that (i) results from a specific regional analysis are not transferable to another region; (ii) any
slight spatial and/or temporal misspecification may lead to misleading results about vegetation
greenness–precipitation relationships and patterns; and (iii) understanding vegetation change requires
multiple images (time series, TS) as opposed to the extensively used traditional classification and
change detection methods.

East Africa depends heavily on rainfed agriculture, which puts food security and rural livelihoods
at risk [24]. The importance of land in this region cannot be overemphasized [24], yet land holdings
are small and steadily declining [24,25]. At the same time, populations have been increasing thus
necessitating expansion of food production while also navigating the effects of climate change in the
area. Over recent decades, therefore, East Africa has witnessed significant landscape transformation
due to both human and natural drivers [6,26]. Generally, natural vegetation has been converted to
farmlands, grazing lands and human settlements [25]. This LULC transformation has been reported in
the Mount Elgon ecosystem (MEE), a major water catchment tower supplying water to three major
lakes in East Africa (Lake Turkana, Kenya, Lake Kyoga, Uganda and Lake Victoria, Kenya, Uganda and
Tanzania [27]). The MEE is dominated by croplands in most locations, mixed vegetation (primarily
savanna, grasslands, and shrubs) in the northern portion and the Afromontane forest (Figure 1).
The high population growth and densities in the area have translated into need for more land [28].
Coupled with political interference and corruption among park and reserve staff, the need for more
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land has resulted in forest encroachment and deforestation as ecologically fragile land is cleared for
agriculture and settlement [28–32]. The changes in LULC have, in part, altered the functioning of
the ecosystem [29] and, as a result, the mountain area has experienced more frequent landslides,
prolonged droughts, and flooding [30,31]. Evidence of a changing climate has been reported [33] and
this may result in increased frequency of these events. As such, the livelihoods of at least 2 million
people [27,31] are threatened. Despite this, the complex MEE landscape is currently understudied.
A key study of LULC change was conducted by Petersson, Vedeld, and Sassen [27] and employed
institutional theory in analyzing processes that led to deforestation within protected areas (PAs) in the
transboundary MEE. It was found that, especially on the Kenyan side, it was challenging to correctly
quantify LULC change due to the overlap between bamboo, plantation and Shamba system farms.
Other studies have been conducted on relatively smaller spatial scales, mostly on the Ugandan side.
Such studies have focused on the effect of LULC change on landslide occurrence [28], soil organic
carbon, food security and climate change vulnerability [34], carbon stocks and climate variability [35]
among others. However, some of the studies have reported contradictory results especially about the
magnitude of LULC change within the agricultural land-use class. This may be due to the complex
LULC orientation, which leads to persistent greening and browning in the MEE, thus making it difficult
to correctly characterize vegetation dynamics especially using traditional classification and change
detection methods. More robust methods are therefore needed, and TS analysis has been applied to
comprehensively examine spatio-temporal landscape changes, particularly for constantly variable
landscapes like the MEE.

Figure 1. Mount Elgon ecosystem (MEE) land-use and land-cover (LULC) in 2018. This map was created
by reclassifying Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover data (MCD12Q1)
created by the University of Maryland [36]. Mixed vegetation includes savanna, grasslands, and shrubs.
Cropland includes cropland and the cropland-vegetation mosaic classes. The black-gray line represents
the boundary between Kenya and Uganda and the red triangle is Wagagai Peak, the highest point on
Mount Elgon (4321 m above sea level).

TS analysis of RS data has been used to characterize environmental phenomena by describing both
trends and discrete change events [37]. In recent years, application of TS methods has increased and



Remote Sens. 2020, 12, 2113 4 of 27

this has been driven by improved access to RS imagery (for instance, due to opening up of the Landsat
archive in 2008 [38]), improvements in the integration of RS and GIS (Geographic Information Systems)
and general advancements in computing power [39]. As such, analysis of LULC change, including
vegetation greening and browning, has significantly evolved from the traditional bitemporal image
analysis to using multiple and continuous observations. Common methods for TS analysis include
Fourier analysis [40,41], principal components analysis, [42,43] and the Mann–Kendall statistic [44].
The Mann–Kendall statistic has been used to identify the presence and nature of monotonic trends in
vegetation time series [5,10,45]. It is a non-parametric statistic; thus, data does not have to conform to
any specific distribution [46]. Besides, Mann–Kendall compares relative magnitudes of sample data
instead of raw data values and therefore missing values are allowed in the analysis. The Mann–Kendall
analysis is often followed by the Sen’s slope estimator [47], which quantifies the strength of the
monotonic trends [12,45]. The Sen’s slope estimator calculates the median of the set of slopes generated
from Mann–Kendall [47]. Mann–Kendall and Sen’s slope have been found to be more robust for TS with
outlying values as compared to parametric statistics like ordinary least squares [12]. These two statistics
identify and quantify any overall trends in a time series and are therefore well suited for examining
vegetation greening and browning. Previous studies have successfully used these methods in assessing
the consistency of greening and browning patterns across spatio-temporal scales in northern India [12]
and assessing variability in greening and browning patterns caused by use of different RS imagery in
the boreal forest of central Canada [48]. However, the assumption that the vegetation trend preserves
its change rate throughout the period of study means that some greening and browning changes are
masked [5]. For instance, later greening in a consistently browning vegetation may not be detected
using Mann–Kendall and Sen’s slope. To counter this issue, more TS decomposition methods have been
proposed, including Breaks for Additive Season and Trend, bfast [16]. Using bfast, even subtle changes in
vegetation can be monitored. This algorithm has successfully been used in delineating anthropogenic,
fire and elephant damage within forest ecosystems in Kenya [49]. Complementing Mann–Kendall
and Sen’s slope with bfast can therefore be valuable in examining vegetation greening and browning
trends, especially in a dynamic environment like the MEE. In such an analysis, the latter can be used
to characterize changes detected by the former. Vegetation trends can then be characterized in more
detail and this can be the basis for understanding effects of climate on terrestrial ecosystems [5] and
the development of ultimate strategies for the sustainable management of ecosystems [10].

The goal of this study was to characterize comprehensively, over multiple time scales,
recent patterns and trends in MEE vegetation greening and browning. Here, the main objectives
were; (1) to assess and quantify the nature and magnitude of change in MEE greenness for the period
2001–2018; and (2) to characterize trends and variability in MEE precipitation as a way to disentangle
nature- versus human-driven vegetation greening and browning. It is hypothesized that (1) changes in
climate have forced local communities in the MEE to expand croplands at the expense of the natural
vegetation thus leading to deforestation and degradation; and (2) the high variability exhibited in
the MEE landscape requires integration of both general (such as Mann–Kendall and Sen’s slope) and
sequential (such as bfast) TS analysis methods to be fully characterized. To achieve these goals, the study
analyzed spatio-temporal trends and patterns in Moderate Resolution Imaging Spectroradiometer
(MODIS) NDVI (2001–2018) and Climate Hazards group Infrared Precipitation with Stations (CHIRPS)
precipitation (1986–2018) at multiple temporal scales (dekadal (10-day), 16-day, seasonal), using an
integration of Mann–Kendall, Sen’s slope and bfast algorithms. The study also incorporates inferences
from a field study conducted in the MEE in 2019 to explain some of the vegetation change dynamics in
the area. This analysis thus produces a more comprehensive characterization of vegetation dynamics
in the MEE, which would not be possible using traditional classification and change detection methods.
Results would help fill in some of the existing gaps in literature about nature and magnitude of
LULC change and the stability of LULC in the MEE. Such a comprehensive description of MEE
vegetation dynamics is an important first step to initiate dialogue aimed to instigate policy changes for
simultaneously conserving the environment and improving livelihoods dependent on it.
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2. Study Area Description

The MEE is located in western Kenya and eastern Uganda (Figures 1 and 2). The studied area
covers approximately 15,000 km2 and extends from 1◦37′42.82′′ N, 33◦55′45.07′′ E and 0◦42′15.76′′ N,
35◦14′18.84′′ E. Mount Elgon is a solitary volcano and is among the oldest in East Africa [28,32].
The highest point, Wagagai Peak, is 4321 m [28,50] and is found on the Ugandan side. This area rises
from a plateau that lies 1850–2000 m in the east and 1050–1350 m to the west with a caldera that
extends 8 km wide [50]. Vegetation in this area is zoned by altitude and mountain forest, farmland and
Afro-Alpine heath and moorland are the common land covers [27]. Declared a protected area in 1968
and 1992 in Kenya and Uganda, respectively [31,51], Mount Elgon Forest, a montane rainforest [52],
is home to many important indigenous tree species [27].

Figure 2. Map of the MEE in eastern Uganda and western Kenya showing long-term (1986–2018) mean
annual total precipitation (CHIRPS [53]). Generally, the driest parts are the grasslands in northeastern
MEE. The study area is wettest in the south and around the mountain region. Major protected areas
and towns are shown for reference. FR is shorthand for forest reserve, NR is national reserve, NP is
national park, WS is wetland system and WR is wildlife reserve.

The MEE receives rainfall in a bimodal pattern (two rainy seasons) and, according to Mugagga,
Kakembo and Buyinza [28], most of the rainfall is received between April and October on the Ugandan
side (with mean annual amounts ranging from 1500 to 2000 mm). The Kenyan side receives long
rains between March and June and short rains between September and November—average annual
rainfall ranging from 1400 to 1800 mm [54,55]. There is minimal temperature variation for the area—an
average minimum of 15◦C and a maximum of 23◦C on the Ugandan side [28] and 14 and 24◦C on the
Kenyan side [55]. However, temperatures and precipitation have a strong variation with changes in
altitude [27].
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3. Materials and Methods

The present study integrated Mann–Kendall, Sen’s slope and bfast in the analysis of NDVI and
precipitation trends to characterize recent greening and browning patterns and trends within the MEE.

3.1. Data and Sources

This study utilized the following datasets (Table 1) in the analysis of greening and browning
trends in the MEE.

Table 1. Description of original datasets used in the study.

Dataset Spatial Resolution Temporal Resolution Duration Source

MODIS
MOD13Q1.V6 250 m 16-day 2001–2018 https://lpdaacsvc.cr.usgs.

gov/appeears/

CHIRPS 5 km 5-day 1986–2018 https:
//earthengine.google.com/

3.1.1. MODIS NDVI and CHIRPS Precipitation

This study used MODIS NDVI data in the TS analysis of spatio-temporal changes in MEE
vegetation greenness signal. The 16-day NDVI composite MOD13Q1.V6 [56] with a 250-meter spatial
resolution was obtained through AppEEARS (https://lpdaacsvc.cr.usgs.gov/appeears/) [57]. Data for
the period 2001–2018 were used. While Landsat data [58] have a better spatial resolution and historical
coverage, and are therefore better suited for this study, they were limited by the many data gaps in
the TS over the MEE due to persistent cloud cover and Landsat’s long (16-day) revisit time. As such,
MODIS NDVI, which has previously been used successfully in similar studies in East Africa [6,22,59],
was used in this study. This study also used CHIRPS precipitation data [53]. These data have a
spatial resolution of 5 km and provide global daily and pentad records from 1981 to present. For this
study, these data for the period 1986–2018 were obtained and preprocessed within Google Earth
Engine (GEE) [60]. It is worth noting here that there were no observation data to assess the accuracy
of the CHIRPS dataset over the MEE. However, this dataset has been used extensively in similar
studies [12,61,62]. Moreover, this dataset was recently validated [63] and the results showed that the
CHIRPS data are reasonably accurate in estimating rainfall over east and South Africa.

NDVI preprocessing involved quality assessment using the associated VI quality files. Pixels with
low quality, high aerosol content, cloud cover and possible shadows were excluded during this exercise.
NDVI and precipitation composites for specific time scales were then generated. First computed were
mean NDVI TS during the wet season for the period 2001–2018. Here, imagery in April, May and
June was used. The TS of mean NDVI for each 16-day period during the season were also created.
As a result, there were generally two TS for each month and were labeled h1 and h2 for TS created
from NDVI composites recorded roughly in the first and second half of the month, respectively.
For precipitation, the TS of total amount over the wet season were computed for different periods;
1986–2018 (33 years); 1986–1996 (first 11 years); 1997–2007 (median 11 years); 2008–2018 (last 11 years);
1986–2005 (first 20 years); 1999–2018 (last 20 years); and 2001–2018 (18 years, similar to the NDVI
TS length). While the present study was aimed at characterizing changes in vegetation greenness
from 2001 to 2018, analysis of longer precipitation TS was necessary to understand any longer-term
precipitation patterns in the MEE that may influence the vegetation patterns. TS were also generated
of total precipitation amounts for each dekad over the wet season. In this analysis, these dekads for the
month of April were labelled April d1 (for dates 1–10), April d2 (for dates 11–20) and April d3 (for the
rest of the month). The same nomenclature was used for dekad TS in May and June. These were
used to assess nature and strength of relationship between vegetation greenness and precipitation
variability over a shorter time scale, in which case results from dekad precipitation TS were compared
to results from 16-day NDVI. The 16-day NDVI composites were used here due to unavailability of

https://lpdaacsvc.cr.usgs.gov/appeears/
https://lpdaacsvc.cr.usgs.gov/appeears/
https://earthengine.google.com/
https://earthengine.google.com/
https://lpdaacsvc.cr.usgs.gov/appeears/
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data to compute dekad NDVI composites. Finally, monthly precipitation composites were generated
for the period 1986–2018, for use in analyzing breakpoints in MEE precipitation.

3.1.2. Field-Collected Data

Environmental data from local communities and government officers within the MEE were
collected using semi-structured interviews and direct observation in July–September 2019 (IRB Number:
STUDY00002404). Most of the interviewees were from significantly changing landscapes (areas showing
significant changes in vegetation greenness). The participants in this study were interviewed about
perceptions of climate change and land-use change, and historical patterns of agriculture and land-use
change. Interviews were conducted and written responses recorded using Qualtrics software [64].
The fusion of such qualitative data with quantitative RS data is important because indigenous and
historical accounts of LULC change in such a constantly variable landscape can be used to fill in gaps
that may not be fully explained using RS and GIS alone.

3.2. Methods

This section describes the methods and analyses performed on NDVI and precipitation TS to
identify areas and characterize patterns of vegetation greening and browning within the MEE. These two
analyses were performed in R [65] and trends were assessed at the 95% significance level. After analysis
of monotonic trends in greenness and precipitation, it was necessary to perform breakpoint analysis
on these time series, to detect any significant breaks within the data. These two types of analyses are
described in more detail below. Figure 3 highlights major methods used in this study.

Figure 3. Flowchart of analysis methods used in the study.
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3.2.1. TS Analysis: Mann–Kendall and Sen’s Slope

To analyze initial spatiotemporal changes in vegetation greening and browning trends in the MEE,
the current study borrowed from methodologies presented by Landmann and Dubovyk [6]. However,
since NDVI TS often do not meet assumptions for parametric analysis [48], the current study used
the nonparametric Mann–Kendall test rather than linear regression. To calculate the Mann–Kendall
test statistic, data values are evaluated as an ordered TS [46] and each value is then compared to all
subsequent values [46,66]. The Mann–Kendall S statistic is initially assumed to be 0 and a value of 1 is
added to (subtracted from) the test statistic if the value of an observation is higher (lower) than that of
the previous observation [46,66]. There is no change to the statistic if the values are equal. Equation (1)
below shows the Mann–Kendall test equation. High positive and low negative values of S, respectively,
indicate increasing and decreasing trends, but the strength of the trend is statistically quantified by
computing probability associated with S and the size of the data sample [46].

S =
n−1∑
k=1

n∑
j=k+1

sign
(
x j − xk

)
(1)

where sign
(
x j − xk

)
= 1 if x j − xk > 0
= 0 if x j − xk = 0
= −1 if x j − xk < 0 Source: Khambhammettu [46]

The magnitude of the trends was quantified using Sen’s slope estimator [47]. These algorithms
were used in this study first to characterize and quantify any general patterns in MEE greenness during
the growing season (April, May, and June). The analysis then investigated more subtle changes in
vegetation greenness over shorter (16-day) periods during the growing season. From these, areas of
increasing (decreasing) greenness were mapped as areas of vegetation greening (browning).

To disentangle changes due to human and natural forcings, monotonic trends were assessed in the
precipitation TS and magnitude of the trends quantified. The analysis was performed on precipitation
series at different temporal scales—based on the length of the time series (including 33-, 20-, 18-
and 11-year periods) and TS resolution (including dekad totals, and general growing season totals).
From these analyses, areas with significant positive (negative) precipitation trends were mapped as areas
experiencing significant and consistent wetting (drying) over the analysis period. A cross examination
of results from greenness and precipitation trend analysis was conducted to distinguish any human-
from nature-driven vegetation greening and browning. Using available very-high-resolution imagery
from Google Earth Pro [67], the nature of LULC conversion was ascertained. Besides, the statistics of
LULC change (including greening, browning pixels) were calculated.

3.2.2. Breakpoint Analysis: bfast

To further understand any temporal patterns in MEE greenness and precipitation, the bfast
algorithm was applied using the ‘bfastSpatial’ package (http://www.loicdutrieux.net/bfastSpatial/).
There exists a predictable annual cycle of greening an browning in vegetation, and these coincide with
the occurrence of rainy and dry seasons [49]. bfast, created by Verbesselt et al. [16] and Verbesselt
and Zeileis [68], creates a best-fit seasonal regression model with a trend component for the time
series [69]. This approach follows three main steps (i.) fitting a harmonic model based on a historical
(‘stable’) period, (ii.) testing observations that follow the historical period for any structural breaks
from the fitted model, and (iii.) calculating the magnitude of change which is the median residual
between observed and expected values in the monitoring period [49,70]. While this approach has been
applied on forested landscapes, the current study applied it to the whole of the MEE, whose LULC
comprises forested, savanna, grassland, and cropland LULC (Figure 1). This was prompted by the
unique LULC orientation in the MEE that makes it difficult to detect LULC changes via satellite image

http://www.loicdutrieux.net/bfastSpatial/
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change detection analysis [27]. bfast breakpoint analysis can sequentially monitor vegetation change
on a yearly basis, thus making it a suitable method for assessing changes in such LULC.

The models used in this part of the study were parameterized based primarily on the study by
DeVries et al. [70]. First, the time series was divided into historical and monitoring periods. A minimum
of two years for the historical period is recommended when using MODIS 16-day data [49,68]. In this
study, therefore, the period 2001–2004 was used as the initial historical period and was assumed to be
generally stable before the start of the monitoring period. First-, second- and third-order harmonic
models were fit on the NDVI data, the results were assessed, and the first-order model was finally
selected as the suitable instance to use. The single-order model has been used previously with the
assumption that vegetation phenology generally follows a similar trend [70]:

yt = α+ γ sin(
2πt

f
+ δ) + εt (2)

where yt dependent variable
t independent variable
f temporal frequency
α model intercept
γ model amplitude
δ model phase
εt error term

As in the study by DeVries et al. [70], the trend component was excluded from the time series to
reduce chances of yielding false breakpoints.

The change magnitude was calculated as the median of the residuals in the monitoring period.
The median is thought of as a conservative measure, unlike the sum, that minimizes the chances of
getting inflated magnitudes and therefore false breakpoints [70]. However, increasing the number of
observations before and after a change event, by including long monitoring periods, yielded very high
magnitudes and unrealistically numerous breakpoints. As such, this study elected to use sequential
non-overlapping one-year-a-time monitoring periods. Here, the TS was trimmed to include the historical
period plus one-year monitoring period. For monitoring the period from January to December 2005,
for example, the TS for January 2001 to December 2005 was used, and the monitoring period was
set to start in January 2005. This sequential monitoring approach is illustrated in DeVries et al. [70].
The approach is advantageous as it enables the assessment of subtle changes in vegetation within
the MEE, especially alternating degradation and restoration that would go undetected using other
methods. The default values for h, the minimal segment size between potentially detected breaks in
the trend model given as a fraction relative to the sample size [49], were used in this study.

Breakpoint analysis was also performed on the monthly total precipitation TS. The analysis was
performed on both 1986–2018 and 2001–2018 time series, to understand any longer-term patterns as
well as recent changes in the precipitation. Here, the third-order harmonic model with the trend term
was the best fit. While there was no direct application on record of bfast for precipitation breakpoint
analysis, it is noted that the algorithm can be used for this purpose [71,72].

3.3. Validation of Results

A hybrid validation of analysis results was performed in this study. The collection of reference
data borrowed from the methodology used previously by Landmann and Dubovyk [6]. The seasonal
greening and browning map from Mann–Kendall and Sen’s slope analysis (Figure 4) was linked to
very-high-resolution imagery in Google Earth Pro and both qualitative and quantitative accuracy
assessment of the results was performed. Locations of greening, browning and no change were
investigated by visually interpreting historical imagery in Google Earth Pro. The selection of these
testing points was based on the minimum size of detectable change (at least 250 m, the size of a MODIS
NDVI pixel) and the availability of sufficient imagery to interpret change. As such, only locations
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with very-high-resolution imagery in one of the three initial and final years (2001–2003, 2016–2018,
respectively) were used. By visually assessing historical imagery spanning these periods, vegetation
change, or lack thereof, could be observed. A total of 153 visually interpreted points (51 browned,
50 greened and 52 no change) were used. Greenness change in pixels at these locations was first
recorded. The seasonal greening and browning map from Mann–Kendall and Sen’s slope analysis
(Figure 4) was also reclassified into greened, browned and no change classes. The testing points
were then compared to the reclassified raster and accuracy measures including overall, producer’s,
and user’s accuracies were calculated. The final points were locations with pixels that indicated highly
discernible change (like deforestation, reforestation etc.).

It was challenging to evaluate sequentially monitored vegetation change since it was not possible
to gather testing points due to many temporal gaps in images in Google Earth Pro. In most instances,
one can rarely find images for successive years, thus making it difficult to validate year-to-year
change results. Since the bfast algorithm detects even subtle changes in vegetation greenness,
changes could not be discerned with high confidence and therefore calculating accuracy assessment
statistics would be misleading due to inconsistencies in testing data [73]. As such, these results
were only visually and qualitatively assessed, and a general trend of change in the pixels was
interpreted rather than year-to-year change. Evaluating such time series results has been found to
be challenging previously [37,74]. In this study, inferences drawn from the field interviews were also
qualitatively incorporated in this exercise to explain some of the trends detectable in both trend and
breakpoint analyses.

4. Results

This study highlights and characterizes, using the Mann–Kendall, Sen’s slope and bfast algorithms,
recent vegetation greening and browning trends and patterns in the MEE at multiple time scales.
The results highlight portions of the MEE that experienced persistent and significant changes in
vegetation greenness, as indicated by changing NDVI. The results from similar analyses of precipitation
TS are also presented and, together, attempt to disentangle nature- from human-driven changes
observed over the MEE landscape.

4.1. Trend Analysis Results

4.1.1. Persistent Vegetation Greening and Browning in the MEE

Greening (browning) was defined as any significant increase (decrease) in NDVI as shown by either
Kendall τ (Mann–Kendall and Sen’s slope) or the magnitude of change (bfast). The results indicate
various greening and browning patterns during the growing season (Figure 4) and near-half month
(Figure 5) periods. During the growing season, greenness significantly increased in approximately
27% (3400 km2) of the study area. Here, NDVI increased at rates up to 0.025 per year. These locations
were concentrated mostly within croplands, grasslands, and savanna (Figure 1). Significant browning
was also evident, with NDVI in more than 1400 km2 (about 11% of the total area) decreasing by
up to 0.035 per year over the analysis period. These areas were mostly located in the southwestern
part of the MEE in Uganda. This location includes the Namatala wetland, which has experienced
intensive conversion to agriculture and settlement in the past years [75]. Browning was also evident
in other locations around the Mount Elgon ecotone and elsewhere in the MEE. Based on our visual
assessment, most of these corresponded to areas where deforestation occurred over the analysis period.
No significant trends were found in the rest of the MEE (62%, 7800 km2).

Analysis of greening and browning trends in NDVI for every 16-day period in the months of
April, May and June showed similar patterns; most browning occurred in the southwestern MEE and
greening elsewhere. Most of the changed areas experienced greening and browning at rates of up to
0.03 and -0.04, respectively. The highest proportions of land where greening occurred was found in the
month of May, especially the May h1 period, in which about 20% (2400 km2) of the MEE experienced
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significant greening (Figure 5). Greenness increased in more than 1600 km2 (13%) of the study area
during May h2. More greening was experienced in the June h2 and April h2 (9% of MEE greened
during both periods). The greatest proportion of browned areas was observed in June h1, where about
600 km2 (5%) of the MEE experienced vegetation greenness decline (Figure 5E). Most of the land within
the MEE did not experience any significant change during these 16-day periods.

Figure 4. Map of significant changed (greened and browned) locations during the growing season.
Slope values (Kendall τ), indicative of magnitude of change per time step, are shown here. White pixels
indicate no significant change.

Figure 5. Cont.



Remote Sens. 2020, 12, 2113 12 of 27

Figure 5. (A–F) Greening and browning trends in the Normalized Difference Vegetation Index (NDVI)
for every 16-day period in the months of April, May and June for 18 years (2001–2018).

4.1.2. Precipitation Variability in the MEE

The test for monotonic trends in precipitation revealed various patterns of consistently increasing
(wetting) and decreasing (drying) precipitation within the MEE (Figure 6). Most of the areas experienced
increased precipitation over the years and only negligible proportions of the study area became drier.
The greatest proportions of land during which consistently wetter conditions prevailed include
1999–2018, 1986–2018 and 2001–2018 (82%, 58% and 38%, respectively). The areas experiencing change
covered approximately 10,300, 7200 and 4800 km2, respectively. These periods also showed the greatest
magnitude of change in precipitation amount. Here, precipitation increased by at least 13, 4, and 5 mm
per year for 1999–2018, 1986–2018 and 2001–2018 periods. In addition, about 27% of the MEE also
experienced wetter conditions during 2008–2018.

There were very small portions of the MEE with wetter conditions during the earlier years in
the analysis; 1.61% of land (200 km2) recorded wetter conditions in 1986–1996 while there was no
significant increase in precipitation during the 1986–2005 and 1997–2007 periods. Consistently drier
conditions were observed in two time periods (1986–1996 and 1986–2005). However, only negligible
proportions of land (up to about 2%) experienced this change, although at substantial magnitudes of
up to 9 mm per year. Different spatial patterns existed from 2000; significantly increasing precipitation
in 2008–2018 was observed mostly on the Ugandan side, and the mountain forest and wetland reserves
seemed to be excluded (Figure 6B). In 2001–2018, the changed pixels were mostly found within the
mountain area, in the north and some areas in the west (Figure 6E). On the other hand, areas in the
northeastern portion of the study area did not experience changes in precipitation during the 1986–2018
period (Figure 6F). Lastly, the 1999–2018 period had significant increases in total seasonal precipitation
with an exception of a few eastern and southeastern portions of the MEE (Figure 6D). Overall, there was
an increase in precipitation for most areas in the study area, with an increasing magnitude of change,
especially in the post-2000 era.
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Figure 6. (A–F) Maps of precipitation change for each analyzed time period.

The trend analysis for each dekad in the growing season found that, based on rates of change, the
2008–2018 period recorded the highest change in precipitation in April d1 and May d1, at rates of up to
13 mm per yearly dekad, see Figure 7). Areas where this change was experienced were located mostly
in western MEE. An increase in precipitation was also recorded in April d2 in 2001–2018, June d3 in
1986–1996 and June d3 in 2008–2018. Negative trends in MEE precipitation were also observed in some
dekads, mostly in 1986–2005. During this period, precipitation decreased in April d1, May d2 and
June d1, at the rate of up to 3 mm per annual dekad.

Based on the proportions of land with significant change in precipitation, the study found that
most of MEE precipitation significantly changed during May d1 in 1986–2018 (90%, 11,300 km2) and
May d1 in 1999–2018 (43%, 5400 km2, Figure 8). From these results, some patterns are clear. For the
months of May and June, annual dekad precipitation increased significantly for all time periods,
although at varying rates and proportions. Precipitation in most of the MEE was more stable in the
earlier years in the study (as in 1986–1996) or generally depicted significant and consistently drier
conditions (as in 1986–2005). Based on these results and those in Figure 6 above, it was necessary
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to conduct a breakpoint analysis to provide a better characterization of any specific spatio-temporal
breaks in precipitation and greenness trends.

Figure 7. (A–C) Significantly changed precipitation for dekads in the period 2008 to 2018.

Figure 8. (A–E) Significantly changed precipitation for dekads in the period 1999 to 2018.

4.2. Breakpoint Analysis Results: bfast

While breakpoint analysis was performed for both 1986–2018 and 2001–2018 precipitation TS,
no significant breaks were found in the former. Therefore, results from 2001–2018 are presented in
this study.

4.2.1. MEE Precipitation

The breakpoint analysis in bfast revealed no significant breaks in MEE average mean total
monthly precipitation. However, breakpoints monitored for each pixel from January 2005 revealed
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very interesting patterns. In most configurations, the analysis revealed significant breakpoints in
2006 and 2007 for most of the MEE. To reduce the influence of post-change detection observations on
change magnitude, the same analysis was performed for the period 2001–2008, with 2001–2004 set
as the historical period. Therefore, change maps and statistics provided are based on this adjusted
analysis. Precipitation changed significantly in the two years, with about 9800 km2 (66% of the
area) and 4800 km2 (32%) of the MEE experiencing wetter conditions in 2006 and 2007, respectively
(Figure 9). Most of the breakpoints in 2006 were detected in the months of July–October, while a great
proportion of changes in 2007 were detected in March and April. Similar wetter conditions were
detected in some locations in the months of May and June for both years. No drier conditions were
detected. The magnitude of precipitation change ranged from approximately 10 to 53 mm during the
monitored period (Figure 10A) and the bfast models used could explain up to 70% of the variance
in the precipitation breakpoints (Figure 10B). Precipitation was also monitored sequentially for the
period 2005–2018 and no breakpoints were detected except for a few pixels in 2005–2007.

Figure 9. (A,B) Months when major breaks were detected in the precipitation time series (2001–2008)
when the period 2005–2008 was monitored.

Figure 10. (A,B) Adjusted R2 (greater than 0.5) and magnitude of change in the precipitation time
series (2001–2008) using 2005–2008 as the monitoring period.
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4.2.2. MEE Greenness

The analysis of breakpoints revealed that some significant breaks existed in the NDVI time series for
each year (2005–2018). Having been sequentially monitored, the results include, for each monitored year,
months when the breakpoints were observed, the magnitude of change at the breakpoints, the length
of historical data used and adjusted R2. In this analysis, only highly statistically significant changes
(p < 0.05) are reported. This decision was based on two reasons: (i.) There were no ground data for
validating results from sequentially monitored bfast. To ensure that only accurate results are reported,
breakpoints from models with less than 50% adjusted R2 were excluded. Thus, only breakpoints from
models with average to high explanatory power were reported. This 50% threshold has been used
elsewhere by Landmann and Dubovyk [6]. (ii.) Vegetation greenness in the MEE showed significant
interannual variability. As such, to ensure a long-enough historical period used by ‘bfastSpatial’,
the study excluded any breakpoints from models using a historical period of less than two years.

The ‘bfastSpatial’ model was able to detect changes in vegetation greenness, especially in the
grasslands of the northeastern MEE (Figures 1 and 11). The observed changes could be due to both
natural factors (such as variability in precipitation) and/or human activities (for example, clearing
of land for agriculture and settlement, deforestation for charcoal burning and construction etc.).
The maximum magnitude of changes ranged from −0.24 and 0.21, thus indicating only subtle changes
in the MEE vegetation. The breakpoints were detected in each of the years, but most of them were
observed in 2013, 2007 and 2010 (greening) and 2009 and 2017 (browning), as shown in Figure 11.
Overall, there were more areas where significant greening trends were detected compared to browning,
with about 17% of the MEE (about 2500 km2) and 10% (about 1500 km2) showing greening and
browning, respectively, over the monitoring period. These represent annual greening and browning
rates of about 1.2% and 0.7%, respectively.

Figure 11. Cont.
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Figure 11. Greening and browning in the MEE. The results from bfastSpatial using NDVI time series
(2001–2018) while sequentially monitoring each year in 2005–2018. These maps show magnitudes of
change for pixels with significant breakpoints.

Based on the yearly changes, differentiated greening and browning patterns were observed during
the monitoring period. Cumulatively, the greatest proportion of land with changed greenness was in
2013 in which significant breakpoints were observed in approximately 13% of the MEE (approximately
1850 km2). This was followed by 2009 (1350 km2), 2007 (1200 km2) and 2010 (650 km2) (Figure 12).
For 2013, 2010 and 2007, the majority (over 95%) of the changed locations experienced greening.
The year 2009 recorded browning in over 99% of the changed locations.

Figure 12. Greening and browning in the MEE. The results from bfastSpatial using NDVI time series
(2001–2018) while sequentially monitoring each year in 2005–2018. The graphs show the total area of
land that experienced greening and browning for each monitored year.
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4.2.3. MEE Greenness vs Precipitation

There was an increase in precipitation in 2006 compared to previous years (Figure 13).
There followed a steady decrease in 2007–2009 and finally an increase in 2010. Similar changes
were observed in greenness during the five years. First, there was greening at most breakpoints in 2007
following the significant wetting in 2006. Significant browning followed, most of which occurred in
2009. This was also observable in an aspatial bfast breakpoint analysis performed on MEE mean NDVI,
in which a sudden increase in NDVI was observed towards the end of 2006, followed by a consistently
reducing trend until 2009/2010, in which another sudden increase was found (Figure 14). No significant
breakpoints were found from a similar analysis using mean MEE precipitation. However, results from
‘bfastSpatial’ indicate that most of the MEE had very significant increases in precipitation in the second
half of 2006 and the first half of 2007. Therefore, the corresponding changes in vegetation greenness
can be attributed to this change in precipitation.

1 
 

 
Figure 13. Violin plot of average total annual precipitation in the MEE. The red box highlights the
period 2006–2010.

The significant and extensive browning observable mostly in 2009 (Figure 11) may be explained
in terms of vegetation regaining its ‘normal’ greenness levels following sudden greening due to
an above-normal precipitation. However, no significant breaks were found in precipitation around
2013, the year with the highest proportion of land with detected change in vegetation greenness.
Thus, such browning and greening trends can be explained with regards to other factors, including
temperature and anthropogenic activities that may have altered vegetation greenness during the
monitoring period. The ‘bfastSpatial’ model did not find any significant breakpoints, in precipitation
TS, in 2012. This may be due to the unstable historical data prior to the monitoring period. However,
the violin plot (Figure 13) indicates that this year had some of the highest precipitation recordings.
As such, there is a high chance that the greening following in 2013 was influenced by this increase
in precipitation.

A visual inspection of these results in Google Earth Pro indicates that the subtle changes are
indicative of various LULC changes. There was evidence of human settlement being introduced into
the grasslands in the northeastern MEE. Information gathered from the field corroborates this finding
and further explains the implications for landscape greenness. Inhabited by nomadic pastoralist
communities, this part of the MEE is susceptible to degradation, especially when these communities
move, driven by rainfall patterns, to settle within the grasslands. Based on fieldwork and data from
Google Earth Pro, reduced natural vegetation and tree density were evident in these locations. In other
instances, the new inhabitants converted natural vegetation to agriculture and, although this would
result in environmental degradation, some planted crops were greener than the natural vegetation,
and, therefore, these areas were shown to exhibit greening trends. In other locations outside of the
grasslands, visible greening trends were indicative of some afforestation practices. Data from the field
revealed that this kind of greening was driven by the cultivation of evergreen early maturing blue
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gum (Eucalyptus globulus) tree species, sometimes together with and other times in the place of the
maize crop. This was especially common in the eastern and southeastern parts of the domain and
parts of Uganda.

Figure 14. bfast mean 16-day NDVI time series decomposition (2001–2018). Breakpoints in trend were
found between 2006 and 2010.

4.3. Accuracy Assessment

Validation of Man-Kendall and Sen’s slope results revealed an overall accuracy of 98.04% and
user’s accuracies of 100%, 98% and 96.2% for browned, greened, and unchanged locations, respectively
(Table 2). Producer’s accuracies of 98% (for both browned and greened locations) and 98.1% (no change)
were also obtained. The visual inspection of bfast results using Google Earth Pro also revealed that
most of the detected subtle changes occurred. However, no more detailed information like year of
change could be discerned due to the lack of available high-resolution imagery.

Table 2. Mann–Kendall and Sen’s slope accuracy assessment statistics.

Browned Greened No Change User’s Accuracy

Browned 50 0 0 100
Greened 0 49 1 98

No change 1 1 51 96.2
Producer’s
Accuracy 98 98 98.1

Overall Accuracy 98.04

5. Discussion

5.1. Precipitation and Vegetation Change in the MEE

Climate change continues to affect economies in most developing nations, especially those relying
heavily on natural processes for their livelihoods. Agriculture remains the backbone of many of
these nations [76–82], yet agriculture’s vulnerability to climate change effects cannot be contested.
Climate-related natural hazards, including extensive flooding, extended droughts [83], landslides [28]
among others, have significantly impacted agricultural production and endangered lives. The frequency
of these events shows an increasing trend [84,85], thus trapping many agriculture-dependent
communities in an unending struggle for survival. Therefore, existing food insecurity in these
developing nations can be attributed to their overreliance on rainfed agriculture [83]. Moreover,
the high population growth and densities in these nations and elsewhere have translated into need for
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more agricultural land [28]. Coupled with political interference and corruption among forest park
and reserve staff, this need for more land has resulted in forest encroachment and deforestation as
ecologically fragile land is cleared for agriculture and settlement [28–32]. Therefore, understanding the
major drivers of landscape change is an important first step to inform better decisions to simultaneously
conserve the natural environment and improve the livelihoods dependent on it. First, being able to
separate nature- from human-induced landscape changes would be valuable in this endeavor.

Changes in the landscape occur at varying rates and magnitudes across space and time, from very
subtle tree damages to forest clearings [49]. In this study, two major forms of landscape change—
browning (areas of declining vegetation) and greening (areas of increasing vegetation) [12]—were
studied. The results show that MEE greenness exhibited substantial variability, and some form of
the greening and browning change was recorded each year. As expected, these changes varied by
scale, with the highest proportions of greened and browned locations observed over the growing
season rather than any of the individual 16-day periods. Importantly, there was a lot of activity
in areas bordering the mountain forest, as expected. Clearly, both greening and browning trends
were observable, particularly on the Kenya side. Significant deforestation occurred as a result of
encroaching fertile land on the high slopes of the mountain, for agriculture and settlement (examples
in Figure 15). This finding has been reported in previous studies [27,28]. The Shamba system, thought
of as a win-win arrangement, enabled local communities to farm in protected areas while tending to
the growing trees in their early stages of growth [27]. This was a government effort originally meant
to convert native to plantation forests and later to replant trees on harvested forest land. However,
the Shamba system farms overlap with plantation forest and bamboo vegetation thus making it more
difficult to conclusively identify, characterize and quantify the nature and magnitude of LULC change,
especially by the use of traditional classification and change detection methods [27]. The significant and
consistent browning in the southwestern MEE are attributed to the conversion of the Namatala wetland
to agriculture (mostly paddy rice farming) and settlement (due to the growth of Mbale town) [75].
Since the early 2000s, 80–90% of this wetland has been converted. The wetland area is an Important
Bird Area (IBA) [86] and therefore the reported LULC conversion caused many nature–human and
human–human conflicts, including, respectively, bird poisoning and competition among people to
own and utilize the wetland.

Disentangling nature- from human-induced vegetation change is an important yet complex task.
In this study, patterns of change in precipitation varied with the TS duration (33-, 11-, 20- and 18-years)
and resolution (dekad, seasonal). Previous studies indicated that precipitation in the area exhibited
significant temporal variability, with both positive [63] and negative [80] trends observed over time.
It can be inferred that precipitation had changed more (increased) over the period after 2000 than earlier.
This implies that some of the vegetation greening and browning should be linked to this MEE wetting.
This is true for the period 2006–2010, where bfast reveals that greening and browning events in the
MEE follow significant wetting and drying events. However, a visual interpretation of Mann–Kendall
analysis maps for both MODIS NDVI and CHIRPS precipitation did not show much similarity. Besides,
bfast did not reveal any breakpoints in precipitation around 2013, the year when most breakpoints in
greenness were detected. While this may be a fault in the bfast model used (because of, for instance,
instability in historical data used), precipitation alone may not be a reliable predictor of vegetation
change [49]. Davenport and Nichols [22] concluded that the NDVI–precipitation relationship varies
both spatially and temporally, is not linear, generally exhibits a three-month lag, and depends on
underlying LULC types. Therefore, it is likely that these complex relationships were not well revealed
in both analyses in this study. Besides, the observed greening and browning patterns may be driven by
other climate factors (such as temperature), which were not examined in this study, due in part to data
unavailability for the MEE. Moreover, the spatial scale mismatch between the CHIRPS and MODIS
data make more quantitative comparisons challenging.
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Figure 15. (A–D) Some of the greened and browned areas identified by Mann–Kendall and Sen’s slope.
Images (A–C) indicate the conversion of natural vegetation (mostly forest) to cropland and settlement.
Image (D) indicates afforestation. Source: Google Earth Pro [67].

Visual inspections of the results from both analyses revealed the applicability of Mann–Kendall
and bfast methods in detecting changes in vegetation greenness. Most people in the MEE are small-scale
farmers, owning sometimes less than an acre (0.4 hectares) of land. This represents less than 10 percent
of the pixel size used (250 by 250-meter MODIS), meaning that some subtle land conversions were
missed. The choice to use these data was necessitated by the frequent availability of MODIS NDVI
data. The ability of Mann–Kendall and bfast in delineating areas of change in the MEE using this
coarse imagery is important, as free finer RS imagery like Landsat is limited by both cloud cover across
tropical regions and their coarse temporal resolutions. Looking forward, combining Sentinel-2 and
Landsat imagery may help address this issue, but this will not resolve the problem for historical studies
like this one.

The use of Mann–Kendall and bfast algorithms proved to be a valuable integration. Mann–Kendall
performed well in mapping locations that had experienced significant change in the entire TS (2001–2018).
Consistently greened and browned locations were mapped with high confidence (95% significance
level) and similar patterns existed for both 16-day and average growing season periods: significant
and consistent browning in southwestern MEE and greening elsewhere. The best and most accurate
results were obtained using average growing season NDVI TS. Here, browned locations (especially
around mountain boundaries and southwestern MEE) and greening elsewhere were clearly demarcated.
This indicates that the growing season period, rather than the shorter 16-day period, is the best temporal
scale for monitoring vegetation change in the MEE. bfast on the other hand performed well in mapping
changed greenness locations for sequentially monitored periods from 2005 to 2018. This part of the
analysis revealed only subtle changes in vegetation greenness in most locations, indicative of vegetation
degradation rather than deforestation [70]. Importantly, areas with breakpoints across multiple years
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were effectively identified, a finding that would likely be omitted if using traditional post-classification
change detection methods. These findings demonstrate that the process of vegetation greening and
browning can be studied more thoroughly by fusing these two methods. Using Mann–Kendall and
Sen’s Slope, one can assess and quantify monotonic trends in their TS to get the general picture in the
series. This can be complimented with an assessment of the temporal occurrence of significant breaks
in the series using bfast. Using this integrated approach, vegetation greening and browning can be
fully characterized and understood to provide more information for better decision making.

5.2. Sources of Uncertainty

Due to a lack of ground precipitation measurements, the present study did not validate the
CHIRPS data over the MEE. The GHCN data [87] would potentially be used, but only one data point
existed in the study area and was therefore deemed insufficient for this task. While this is a potential
source of uncertainty, these data have been used extensively in similar studies. Moreover, CHIRPS
data are based on ground station data since they are created through “smart interpolation” procedures
that incorporate both satellite information and gauge data [53] thus making daily CHIRPS imprecise,
and reliable only at dekad or higher aggregations. Validation of bfast results was also not possible due
to a similar lack of data. Frequent, high-resolution imagery was not freely available to download and
process, and the study relied on imagery from Google Earth Pro which had a lot of spatial and temporal
gaps. While no accuracy statistics were calculated for these results, the results were interpreted based
in part on data collected from the MEE field study.

6. Conclusions

The MEE of eastern Uganda and western Kenya was found to exhibit significant variability
in vegetation dynamics and precipitation regimes. This variability was attributed to the existing
LULC orientation especially in eastern MEE and climate change and variability. As such, it is
highly probable that analysis of only a few images to ascertain MEE landscape change would yield
inconsistent results. In this study, greening and browning in the MEE was examined using both
TS trend and breakpoint analysis methods. The MEE had experienced significant and persistent
greening and browning at different time scales and this change was attributed to both natural factors
(including changing precipitation) and anthropogenic factors (especially the vegetation-to-cropland
conversion). The southwestern MEE had consistently browned due to the conversion of the Namatala
swamp to paddy rice farming and settlement. A lot of activity was also observed around the
mountain forest boundary as people encroached and converted the forest LULC to agriculture and
settlement. There were breakpoints in the vegetation greenness TS, particularly in the savanna and
grassland land covers in northeastern MEE. The breakpoints were detected in each of the monitored
years (2005–2018), but most of them were observed in 2013, 2007 and 2010 (greening) and 2009
and 2017 (browning). The study also concluded that MEE precipitation had significantly changed
(increased) in the post-2000 era. More specifically, total precipitation significantly increased in 2006
and 2009–2010 with a consistently decreasing trend in between. We therefore concluded that these
precipitation changes influenced significant greening and browning patterns observed in the same
period. The greenness–precipitation relationship was weak in other periods as greening and browning
changes were not strongly influenced by changing precipitation. This may be attributed to the complex
nature of the MEE landscape and/or the spatial and temporal scale mismatch between MODIS NDVI
and CHIRPS precipitation data. The integration of Mann–Kendall, Sen’s slope and bfast proved useful
in comprehensively characterizing recent changes in vegetation greenness within the MEE. Having
a comprehensive description of vegetation change is an important first step, especially for such a
variable landscape, to effect policy changes aimed at simultaneously conserving the environment and
improving livelihoods that are dependent on it.
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