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Abstract: Remote sensing technology plays an increasingly important role in land surface temperature
(LST) research. However, various remote sensing data have spatial–temporal scales contradictions.
In order to address this problem in LST research, the current study downscaled LST based on three
different models (multiple linear regression (MLR), thermal sharpen (TsHARP) and random forest
(RF)) from 1 km to 100 m to analyze surface urban heat island (SUHI) in daytime (10:30 a.m.) and
nighttime (10:30 p.m.) of four seasons, based on Moderate Resolution Imaging Spectroradiometer
(MODIS)/LST products and Landsat 8 Operational Land Imager (OLI). This research used an area
(25 × 25 km) of Hangzhou with high spatial heterogeneity as the study area. R2 and RMSE were
introduced to evaluate the conversion accuracy. Finally, we compared with similarly retrieved LST to
verify the feasibility of the method. The results indicated the following. (1) The RF model was the
most suitable to downscale MODIS/LST. The MLR model and the TsHARP model were not applicable
for downscaling studies in highly heterogeneous regions. (2) From the time dimension, the prediction
precision in summer and winter was clearly higher than that in spring and autumn, and that at
night was generally higher than during the day. (3) The SUHI range at night was smaller than that
during the day, and was mainly concentrated in the urban center. The SUHI of the research region
was strongest in autumn and weakest in winter. (4) The validation results of the error distribution
histogram indicated that the MODIS/LST downscaling method based on the RF model is feasible in
highly heterogeneous regions.

Keywords: land surface temperature; downscaling model; random forest; surface urban heat island;
highly heterogeneous areas

1. Introduction

Land surface temperature (LST) is an important parameter reflecting the interaction between
surface and atmosphere at the regional and global scales [1]. LST is also a natural indicator closely
related to human production and life. It can characterize the urban thermal environment [2,3] and is
widely used in urban heat island analysis [4], soil moisture estimation [5], surface flux estimation [6]
and other fields. Therefore, obtaining measures of LST is an important research objective in the fields
of climate, ecology, hydrology, soil and urban studies. However, due to the restrictions of imaging
conditions, existing remote sensing products have a contradiction between temporal resolution and
spatial resolution. A single dataset cannot satisfy LST spatiotemporal monitoring and application
research [7]. For example, the Landsat 8 Thermal InfraRed Sensor (TIRS) band has a spatial resolution
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of 100 m and can be resampled to 30 m to match multispectral bands. However, it has a long revisit
period of about 16 days and is greatly affected by weather [8,9]. On the contrary, Moderate Resolution
Imaging Spectroradiometer (MODIS), with the resolution of 1 km can obtain images four times per day.
Thus, the fusion of multi-source remote sensing data based on their respective resolution advantages
to obtain images with both high spatial resolution and high temporal resolution is a popular research
topic in LST inversion and application.

LST downscaling, which creates a composite of remote sensing images information with various
spatial resolution, involves lowering the detail of high-resolution data to that of low-resolution data.
Scholars have proposed a variety of downscaling methods, mainly divided into thermal sharpening
(TSP) and temperature unmixing (TUM) [10]. The TSP method can improve the spatial resolution
of thermal infrared band images, and the TUM method can obtain the LST information of different
components in the same pixel. Kustas et al. [11] proposed a DisTrad method, which constructed a
linear regression between LST and the normalized difference vegetation index (NDVI). This method
achieved downscaling of LST from the kilometer level to the hundred-meter level. Based on the
DisTrad method, Agam et al. [12] suggested the thermal sharpen (TsHARP) method, which used the
NDVI as the regression kernel [12]. Essa et al. [13] calculated the correlation between LST and remote
sensing of various land use and land cover types and then improved the DisTrad method based on
this information. Weng et al. [14] further considered the LST trend and landscape heterogeneity and
implemented the spatial–temporal fusion of LST based on radiance, proposing the spatial–temporal
adaptive data fusion algorithm for temperature mapping (SAFAT) method, and successfully verifying
the approach in Los Angeles, California.

The simple single-factor and multi-factor regression methods mentioned above cannot completely
summarize the complex relationships between different scale factors and LST. Hutengs et al. [15] used
the random forest (RF) model to downscale MODIS products from 1000 m to 250 m for the vegetation
coverage area around the Jordan Valley. However, in this research, the land cover type in the study
area was mainly vegetation and mostly comprised a single type. Extension of the RF model to urban
areas with complex underlying types needs further study. Generally, the most popular downscaling
methods apply the NDVI, which, however, cannot solely explain the variation in LST in urban areas
with complex surface types. Bonafoni et al. [16] proposed a traditional downscaling method combining
both built-up and vegetation spectral indices that was demonstrated in Milan, Italy.

In validation processing, Govil et al. [17] used 30-m retrieved LST to validate 30-m downscaled
LST of a humid tropical city. Hua et al. [18] verified a downscaling model based on retrieved LST and
determined that the downscaling effects of various land cover types are different. Hutengs et al. [15]
used a 240-m Enhanced Thematic Mapper Plus (ETM+)/LST map as a direct reference to evaluate
downscaling results. Standard LST products inversed from ETM+/LST based on a mono-window
algorithm were introduced to confirm the accuracy of the downscaling method in the research of Zhan
et al. [19]. Combined with the previous research on LST downscaling, most of these studies validated
downscaling methods based on special time nodes, in which the scan time between several remote
sensing products was the same or similar to existing high-resolution LST product correlations.

In the present study, the city of Hangzhou, China, which is characterized by strong spatial
heterogeneity, was selected as the research region. This research used three different models to
downscale MODIS/LST. The main objectives of the research were (1) to estimate the accuracy of the
downscaled LST in a heterogeneous urban landscape (Hangzhou, China) based on three different
models; (2) to assess the seasonal variation of the results during 2013 and 2014; (3) to confirm the
change of the surface urban heat island (SUHI) of Hangzhou across four seasons; and (4) to verify the
feasibility of the optimal downscaling model combined with LST retrieved at a resolution of 30 m.

2. Research Method

The essence of LST downscaling method is to use auxiliary surface parameters of high resolution to
improve the spatial resolution of the original LST products. The basic principle is that the quantitative
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relationship between LST and surface parameters remains unchanged at different scales; that is, the
regression model between LST and surface parameters at low resolution can still be applied to that
with high resolution. It can be expressed as the following equation:

LSTHR = f (SPHR) + ∆LST (1)

∆LST = LSTLR − f (SPLR) (2)

where LSTLHR and LSTLR represent LST at high resolution and low resolution, respectively; f represents
the regression model between LST and surface parameters at both low and high resolution; SPHR and
SPLR represent several parameters, which are NDVI in the TsHARP model and DEM, NDVI, NDBI,
Landsat 8 OLI band 2 to band 7 in the MLR model, and the RF model in this research at high-resolution
and low-resolution; and ∆LST represents the residual.

We defined a rectangular area in Hangzhou with a side length of 25 km as the study area. Landsat
8 OLI/TIRS with a resolution of 30 m and MODIS/LST products with a resolution of 1 km were used as
the original data for this research. These data comprised a digital elevation model (DEM), which only
represents height information, without any further definition about the surface [20], the normalized
difference vegetation index (NDVI) and the normalized difference built-up index (NDBI), calculated
from Landsat 8 OLI [21] and other bands in Landsat 8 OLI, as independent variables. The dependent
variable was pre-processed MODIS/LST products. The objective was to achieve LST downscaling from
1 km to 100 m to analyze SUHI during the day and night in four seasons, based on three different
models, MLR, TsHARP and RF models. MLR and RF models are multivariate models with several
independent variables, while the TsHARP model has only one independent variable. From another
perspective, the RF model is a nonlinear regression model, the MLR model is a linear regression
model, and the TsHARP model includes both linear regression and nonlinear regression models.
The coefficient of determination (R2) and root mean square error (RMSE) were used to evaluate the
accuracy of the downscaling models. According to high-resolution LST data, we analyzed the SUHI
of Hangzhou during day and night throughout the year. Finally, combined with the retrieved LST
computed from Landsat 8 TIRS with a resolution of 30 m, the downscaling results showed little error;
that is, the RF model is a feasible method to downscale LST in highly heterogeneous areas.

2.1. Downscaling Models

2.1.1. TsHARP Model

The thermal sharpen (TsHARP) model employs NDVI in a regression model to sharpen LST.
It assumes that the relationship between LST and NDVI is the same at all scales [22]. Correlations
between LST and NDVI are established [23], caused by shadows and evapotranspiration, which make
vegetation surface cooler than bare soil [24]. The building process is shown in Figure 1.
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The key to the TsHARP model is the determination of the most appropriate relationship between
LST and NDVI through regression analysis. In this research, three regression models—linear regression,
nonlinear binary curve regression and nonlinear ternary curve regression model—were used to fit
the scatter distribution of LST and NDVI at a scale of 1 km. The fitting function is as shown in
the following equation. From these three regression models, by comparing the R2 and RMSE, the
best-fitting regression model can be used to predict the LST distribution at a scale of 100 m.

f (N) =


a0 + a1N (linear regression model)

a0 + a1N + a2N2 (nonlinear regression model)
a0 + a1N + a2N2 + a3N3 (nonlinear regression model)

(3)

where a0, a1, a2 and a3 represent regression coefficients, and N represents NDVI.

2.1.2. MLR Model

The multiple linear regression (MLR) model, shown in Figure 2, is based on multiple linear
regression [25]. In downscaling low-resolution remote sensing products, additional high-resolution
remote sensing information needs to be introduced to achieve downscaling conversion.
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In the following building process, low-resolution parameters comprised two parts, namely,
dependent and independent variables. LST was set as the dependent variable, and independent
variables consisted of DEM, NDVI, NDBI, and band 2 to band 7 of Landsat 8. According to the
low-resolution variables, we used the least squares method to build an MLR model, as shown in
Equations (4) and (5) [26]. The LST at high resolution was estimated based on the p corresponding
independent variable and multiple regression models.

LSTLR = fMLR(SPLR) (4)

LSTLR = a0 + a1·is1 + a2·is1 + . . .+ an·isn (5)

where LSTLR is the LST from low-resolution remote sensing products; SPLR(is1, is2, . . . , isn) are several
parameters, which are DEM, NDVI, NDBI and Landsat 8 OLI band 2 to band 7 at low-resolution; fMLR

is the multiple linear regression model, and a0, a1, a2, . . . , an are regression coefficients.
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2.1.3. RF Model

The random forest (RF) model is a machine learning model which prevents overfitting and was
proposed by Breimans [27] in 2001. The term “random forest” was derived from the random decision
forest proposed by Tin Kam Ho [28] in 1995. RF is a non-linear statistical ensemble method [29]. It
uses bootstrap resampling technology to merge multiple samples extracted from the original training
samples to generate a new series of training samples, then creates decision trees based on these training
samples and establishes an RF model [15]. The RF model is not sensitive to multicollinearity, which
can effectively prevent overfitting during the downscaling process [18]. The current research used
Python 3.8 and the scikit-learn third-party open-source machine learning algorithm library, which is
one of the most popular machine learning libraries [30].

Figure 3 shows the building process of the RF model. The training samples were remote sensing
images with low resolution (1 km), and selection of dependent and independent variables was
the same as that in the MLR model. In order to verify the accuracy of the models, we divided
the sample into training samples and test samples according to a 6:4 ratio. The RF model was
created by n decision trees generated by training samples. In the process of creating the model,
several parameters needed to be adjusted, namely n_estimators, bootstrap, and oob_score of the
RF framework parameters and max_features, max_depth, min_samples_leaf, min_samples_split,
max_leaf_nodes, min_impurity_decrease, criterion and min_samples_leaf of the RF decision tree
parameters [31]. Among these, n_estimators, max_depth and max_features were the three that most
affect the downscaling result. In order to prevent the model from underfitting, we tuned these
three parameters for fitting to achieve the optimal model. Then, we used the previously divided
training samples for cross-validation based on the cross_val_score module in the scikit-learn libraries
to determine the feasibility of the model.
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2.2. Accuracy Evaluation and Fit Residual

Traditional quantitative evaluation usually uses one evaluation indicator. In order to compare the
accuracy of the three downscaling models for each day and night during four seasons more objectively,
this research used two evaluation indicators for comprehensive evaluation and analysis, R2 (coefficient
of determination) and RMSE (root mean square error).

R2 (coefficient of determination) is an important statistic to reflect the model fit. In statistics, it is
used to measure the proportion of dependent variables that can be explained by independent variables
to determine the explanatory power of the regression model [32]. R2 takes values between 0 and 1
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with no units. It is the most commonly used index to evaluate the pros or cons of regression models.
The larger the value of R2 (closer to 1), the better the regression model is fitted.

RMSE (root mean square error) is a commonly used measure of the similarity between two vectors
in n-dimensional space [33]. RMSE can test the consistency of real images and simulation images, and
thus can be used to judge the effect of different downscaling models. The RMSE calculation is shown
in Equation (6). Larger errors have a disproportionately greater effect on RMSE. Consequently, RMSE
is sensitive to outliers [34]. RMSE is non-negative. A lower RMSE means higher consistency between
simulation images and real images.

RMSE =

√√
1
n
·

n∑
i=1

(LSTLR − LSTLRS)
2 (6)

where the RMSE represents root mean square error, LSTLR represents the low-resolution real images to
reflect LST, LSTLRS represents the low-resolution simulation images to reflect LST, and n is the total
number of pixels in the low-resolution real images or simulation images.

In the process of establishing a correlation model at a low resolution, a residual exists between the
real and simulation images. In order to improve the accuracy of the simulation of high-resolution LST
images, this research fitted the residual to the simulation of high-resolution images. The flow chart
is shown in Figure 4. A spline was used to interpolate adjacent cells to downscale the LST residual.
The last step was to fit the high-resolution residual to the high-resolution simulation images, finally
resulting in high-resolution land surface temperature images.
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2.3. Downscaling Result Validation Based on Retrieved LST

To provide further confirmation of the approach, this research verified the downscaling accuracy
using retrieved LST values from Landsat 8 TIRS with similar time and weather conditions as those of
MODIS/LST. The single-channel algorithm proposed by Giannini et al. [35] and Dissanayake et al. [36]
for LST retrieval of Landsat 8 TIRS has high accuracy and sensitivity.

Firstly, the proportion of vegetation was calculated using Equation (7) [37]:

Pv =

(
NDVI −NDVImin

NDVImax −NDVImin

)2

(7)

where Pv represents the proportion of vegetation; NDVI represents the normalized difference vegetation
index (explained in Equation (9)); NDVImin and NDVImax represent the minimum and maximum value
of NDVI, respectively.

Secondly, land surface emissivity was computed using Equation (8):

E = 0.004Pv + 0.986 (8)
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where E represents land surface emissivity; Pv represents the proportion of vegetation.
Finally, LST corrected for spectral emissivity was computed using Equation (9) [38]:

LST =
Tb

1 +
(
λ·Tb
ρ

)
· ln(E)

(9)

where LST represents land surface temperature; Tb represents the at-satellite brightness temperature [39];
λ represents the band 10 wavelength in Landsat 8 TIRS (10.8 µm); ρ is 1.438 × 10−2 mK, and E represents
land surface emissivity.

Due to the difference between Terra satellite and Landsat 8 orbits, the revisit period of MOD11A2
is 8 days and that of Landsat 8 is 16 days, meaning that the images cannot be obtained in the same
day. In addition, there is also an error of several minutes in the scanning time. In order to solve the
contradiction in temporal resolution, we introduced meteorological conditions, including maximum
and minimum air temperature, relative humidity, wind speed [40] and solar radiation [41] on the basis
of selecting two adjacent dates as much as possible. Finally, we selected a set of downscaling LSTs
and retrieved LSTs with the closest time and the most similar meteorological conditions to verify the
downscaling method accuracy.

3. Case Study

3.1. Study Area

The study area is located in the center of Hangzhou, as shown in Figure 5. This research selected
a square urban area with a side length of 25 km. Hangzhou is located in the central and southern areas
of the Yangtze River Delta. Hangzhou’s climate is humid subtropical with four distinct seasons [42].
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Figure 5. Study area (a) Location of the study area in the Yangtze River Delta; (b) Landsat 8 composite
of the study area.

The study area includes various land use and land cover. Qiantang River runs through this area.
West Lake is located on the west side. To the southwest of West Lake is a forest area. The urban area is
mainly concentrated in areas to the north, east, and northeast of West Lake. As an important part of the
urban agglomeration in the Yangtze River Delta, Hangzhou developed with rapid urbanization from
the end of the previous century. Due to urban expansion and population growth, the urban structure
has changed significantly. This has also led to climate change in this area, particularly in terms of SUHI.
Previous research shows that SUHI is a significant contributor to regional warming in this area [43].
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3.2. Data Source and Preprocessing

In this study, MODIS/LST products and Landsat 8 OLI were obtained from summer 2013 to spring
2014. Landsat 8 OLI provides seasonal coverage of global land images with nine bands. These remote
sensing images use the World Reference System (WRS) to enable users to search for images from
any part of the world using path and row numbers [44]. In Landsat 8 OLI, the coastal aerosol band
(band 1) focuses on aerosols research in coastal areas; the panchromatic band (band 8) produces black
and white images with a resolution of 15 m used to enhance and improve resolution; and the cirrus
band (band 9) is designed for clouds, particularly for cirrus clouds [45]. These three bands were not
useful for the downscaling of this study. In contrast to these bands, the visible blue band (band 2),
green band (band 3) and red band (band 4) can help identify various land uses and land covers; the
near-infrared band (band 5) provides vegetation indexes, such as NDVI, which allow measurement
of plant health in combination with other bands; and the shortwave infrared bands (bands 6 and 7),
which are particularly useful for distinguishing wet from dry earth, and for geology [45]. Thus, we
only selected bands 2 to 7 from Landsat 8 OLI as the data source. Landsat 8 OLI is greatly influenced
by clouds and weather. Accordingly, several sunny days without any clouds above the study area
were chosen: April 14, July 19, November 8 in 2013 and January 27 in 2014. We selected Landsat
8 Level-1 Data Products after system radiation correction and geometric correction [39]. The WRS
path and row were 119 and 039, respectively. The Landsat data we chose are shown in Table 1. The
additional parameters at high-resolution extracted from Landsat 8 OLI were pre-processed according
to Equations (10) and (11) [46,47]. Meanwhile, DEM data with a resolution of 30 m, which reflect the
altitude situation, were also used in the RF model and the MLR model as independent variables. In
order to downscale from 1 km to 100 m, this research resampled these parameters at a scale of 100 m
and 1 km.

NDVI =
NIR−RED
NIR + RED

(10)

NDBI =
SWIR1 −NIR
SWIR1 + NIR

(11)

where RED, NIR and SWIR1 represent band 4, band 5 and band 6 in Landsat 8 OLI, respectively [39].

Table 1. The dates and remote sensing images IDs of data source.

Landsat 8 OLI/TIRS MOD11A2/LST

Date Landsat Scene ID Date MODIS/LST ID

2013.04.14 LC81190392013104LGN02 2013.04.07 A2013097.h28v05.006.2016156021756
A2013097.h28v06.006.2016156021753

2013.07.19 LC81190392013200LGN01 2013.07.20 A2013201.h28v05.006.2016166200144
A2013201.h28v06.006.2016166200148

2013.11.08 LC81190392013312LGN02 2013.11.09 A2013313.h28v05.006.2016173161718
A2013313.h28v06.006.2016173161720

2014.01.27 LC81190392014027LGN01 2014.01.17 A2014017.h28v05.006.2016197155044
A2014017.h28v06.006.2016197155043

MOD11A2/LST products with a resolution of 1 km were selected as the low-resolution LST data
with a temporal resolution of 8 days, including day data (10:30 a.m.) and night data (10:30 p.m.).
MOD11A2 products were retrieved based on the split channel algorithm [48]. The path and row were
28/05 and 28/06, respectively. The imaging dates, shown in Table 1, were April 7, July 20, November 9
in 2013 and January 17 in 2014, similar to the Landsat 8 OLI dates. Then, the MODIS Tools called MRT
were used for reprocessing tasks, such as creating a mosaic and resampling.
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4. Results and Discussion

4.1. Model Selection and Precision Analysis

Based on SPSS and Python, we constructed correlation models for statistical low-resolution data.
Downscaling based on the TsHARP and MLR models was run on SPSS, and the RF model was run
using Python.

After statistical calculation, the TsHARP model with the best fitting was the third of three equations,
the unary cubic model. Table 2 shows the regression coefficients of the TsHARP model during day
and night in four seasons. According to these regression coefficients, we formed the corresponding
downscaling models and thereby predicted low-resolution LST. Among the regression coefficients,
a0 has high significance for the models regardless of the seasons or whether day or night; a2 and a3

have low significance, especially in autumn and winter daytime. Figure 6 shows the scatter plot of
predicted LST data based on the TsHARP models versus MODIS LST data. The x-axis represents the
MODIS/LST product values, which are the true LST (1 km level); the y-axis represents the predicted
LST from the TsHARP model (1 km level).

Table 2. The regression coefficients of the TsHARP models during day and night in four seasons.

Season Day or Night Regression Coefficients

a0 a1 a2 a3

spring day 22.672 *** 48.924 *** −290.510 *** 373.146 ***

night 12.887 *** 5.591 ** −110.425 *** 239.119 ***

summer day 37.672 *** 48.924 *** −290.510 *** 373.146 ***

night 28.351 *** 15.334 *** −151.171 *** 273.468 ***

autumn
day 19.222 *** 12.474 * 35.560 −591.507 **

night 14.234 *** 26.034 *** 77.402 ** 110.314

winter
day 9.952 *** 13.535 *** −288.013 ** 764.451 *

night 3.323 *** −26.812 *** −280.854 *** 3898.314 ***

Note: * p < 0.1; ** p < 0.05; *** p < 0.01.

Scatter points were not distributed near the 1:1 line, which meant that this model was poor and
could not be used in downscaling research in this study area. The TsHARP model is based on the
correlation between LST and NDVI. Due to shadows and transpiration, the vegetation surface is
usually cooler than that of other landscapes [24]. This theoretical basis had considerable errors because
of the strong spatial heterogeneity of the study area [49–51], and the predicted LST had an obvious
boundary value. Therefore, the TsHARP model was not suitable for this study.

In order to solve the problem of the sharp drop in the correlation between LST and NDVI due to
spatial heterogeneity, we introduced more independent variables to build the MLR model based on
NDVI, including DEM, NDBI, and Landsat B2 to B7. According to the independent and dependent
variables, we calculated the regression coefficients (a0, a1, a2 . . . an) using the least-squares method.
Table 3 shows the regression coefficients of the MLR models. Overall, CT, DEM, NDVI, B2, B3, B4, and
B7 have high significance, compared with other variables. The significance of NDBI during the day is
generally higher than that at night. Scatter diagrams comparisons of MODIS LST and predicted LST
(Figure 7) show that the predictive capabilities of the MLR model are improved compared with the
TsHARP model. However, since the MLR model is a linear model, which cannot easily characterize the
complex nonlinear regression between LST and independent variables, there are a large number of
outliers. Thus, the MLR model is not a perfect downscaling model in this research.
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Figure 6. Scatter diagrams of predicted land surface temperature (LST) data based on the TsHARP
models (y-axis) versus Moderate Resolution Imaging Spectroradiometer (MODIS) LST data (x-axis).
(The black dashed lines represent the 1:1 line; that is, the predicated LST and MODIS LST of the
scattered points falling on this line are equal).

Table 3. The regression coefficients of the MLR models during day and night in four seasons.

Season Day or Night Regression Coefficients

CT DEM NDVI NDBI B2 B3 B4 B5 B6 B7

spring day 18.1 *** 0.008 * 26.8 * −29.1 * 0.004 *** −0.008 *** 0.005 *** −0.001 0.001 * −0.002 ***

night 16.2 *** 0.012 *** 26.9 ** −19.6 0.003 *** −0.006 *** 0.004 *** −0.001 0.001 −0.002 ***

summer day 16.9 *** −0.009 * 45.7 *** −90.9 *** 0.006 *** −0.005 *** 0.004 *** 0.001 * −0.002 ** −0.002 ***

night 27.4 *** 0.004 * 18.5 *** −23.7 ** 0.003 *** −0.004 *** 0.003 *** −0.001 *** 0.001 *** −0.002 ***

autumn
day −4.47 −0.017 ** 107 *** 71.3 ** −0.001 0.002 0.005 ** −0.007 *** 0.001 0.003 ***

night 34.7 *** 0.010 *** −89.0 *** 24.0 * 0.001 −0.006 *** −0.001 0.002 ** 0.002 ** −0.001 *

winter
day 42.1 *** 0.009 *** −106 *** −4.90 *** 0.003 *** −0.016 *** 0.005 *** 0.005 ** −0.001 0.001 *

night 2.53 0.019 *** −26.2 −49.6 ** 0.006 *** −0.008 *** 0.003 *** 0.002 0.000 −0.003 ***

Note: CT—Constant Term; * p < 0.1; ** p < 0.05; *** p < 0.01.

The simple single-factor and multi-factor regression models cannot completely summarize the
complex relationship between different factors and LST. Under the premise that the physical mechanism
is still unclear, a better choice is to build a downscaling model with the help of machine learning
methods. Compared with some other machine learning methods, such as artificial neural networks
and support vector machines, the RF model has the advantages of low computation needs and a
large number of samples, which are appropriate for downscaling research. The training process
of the RF model mainly comprises the process of adjusting hyperparameters, which is generally
called parameter tuning. Various parameters combinations will have different predicted results.
Therefore, there is no single set of parameters that can optimize the various models. Optimization
requires continuous training and adjustment to achieve the optimal combination for a certain type
of problem [52]. We tuned parameters according to the importance of the three most significant
parameters, which are n_estimators, max_depth and max_features. Due to the small number of
samples in this research, the division depth was not constrained; that is, max_depth was set to “None”.
Thus, this study only tuned n_estimators and max_features. Other parameters were set to default
values. Figure 8 shows the changes of the model’s obb score, that is R2, when tuning n_estimators and
max_features in three parts: Figure 8a represents the changes with n_estimators ranging from 1 to 200;
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Figure 8b represents the partial enlarged detail with n_estimators ranging from 1 to 40, and Figure 8c
represents the range from 30 to 200.
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Figure 8. The changes of model Out Of Bag (OOB) scores (y-axis) when tuning n_estimators (x-axis)
and max_features (blue line and orange line): (a) the changes with n_estimators ranging from 1 to 200;
(b) the partial enlarged detail with n_estimators ranging from 1 to 40; (c) the partial enlarged detail
with n_estimators ranging from 30 to 200.

In order to prevent underfitting of the RF model, in the tuning process, we increased n_estimators to
improve the model’s fitting ability; when the Out Of Bag (OOB) scores did not significantly improve for
the first time, the value of n_estimators was optimal (Point A and B in Figure 8). Meanwhile, we adjusted
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max_features and set it to None (blue line in Figure 8; max_features are the square root of the sample
features) and Auto (orange line in Figure 8; max_features are the sample features).

Combining the predicted results of the above two models, the fitting degree of winter night was
the highest. Thus, we took winter night as an example of parameter tuning. When all parameters
were set to default values, the OOB score was 0.9621. When n_estimators increased from 1 to 7, OOB
scores rose rapidly, then tended to be flat. According to Figure 8c, the orange line reached the first
maximum OOB scores (OOB score = 0.9719), Point A, when n_estimators was 41. When n_estimators
was 71, the first maximum OOB score of the blue line was 0.9740, Point B. Consequently, Point B
was the best parameter combination as shown in Table 4. After parameter tuning, we obtained the
optimal combination corresponding to an OOB score of 0.9740, which was 0.0119 higher than the
original OOB score. Then, we combined the training samples and test samples to perform a total
of 10 cross-validation on the optimal model based on the cross_val_score module to verify whether
the model was good fitting. The 10-fold cross-validation results are shown in Figure 9. The mean
of accuracy was about 0.9625. The fourth cross-validation had the highest accuracy, of about 0.9834,
and the lowest was the ninth, of about 0.9396. The mean squared error (MSE) of the training sample
was about 0.025 ◦C and that of the test sample was about 0.053 ◦C. The MSE of test samples was
slightly higher than that of training samples, indicating that the model was not overfitting. Overall,
the cross-validation results meet the requirements; that is, the optimal RF model could be used in the
subsequent downscaling research.

Table 4. RF model parameter list and main optimal combination of this model.

Parameter Name in
Scikit-Learn Parameter Description [53] Ranges Optimal Value

n_estimators The number of trees in the forest. 1, 3, 5, 7 . . . 199 71

max_depth The maximum depth of the tree None, 1, 2 . . . 100 None

max_features The number of features to consider when
looking for the best split None, Auto None

oob_score Whether to use out-of-bag samples to
estimate the generalization accuracy. True, False True
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Figure 9. Cross-validation results of the optimal model (x-axis represents the cross-validation times;
y-axis represents the model accuracy; the black dashed line represents the mean of cross-validation
results).

Through the above method, we tuned the parameters of the RF models for different dates
so that their accuracy complied with the requirement based on cross-validation; we then predicted
low-resolution LST based on these RF models and compared results with MODIS/LST products to verify
model accuracy. The scatter diagrams are shown in Figure 10. The scatterplot comparisons of MODIS
LST and predicted LST show the improved predictive capabilities of the RF model in comparison to
the TsHARP and MLR models, with almost all scatter points clustered around the 1:1 line and fewer
outliers. Compared with the earlier two models, the RF model is more suitable for downscaling in
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this highly heterogeneous research region. Furthermore, the error histograms (Figure 11) show that
the prediction errors of the RF model approximately obeyed the normal distribution; the peak value
appeared around 0 ◦C, and values gradually decreased on both sides. Peaks at night were generally
higher than those during the daytime. The prediction errors in summer and winter were significantly
less than those in spring and autumn, especially during daytime. The daytime errors in autumn were
more discrete than those during other seasons. Compared to the minimum value, the value of winter
night was closest to 0 ◦C, respectively, −0.7 ◦C and 0.5 ◦C. However, 1% of values were less than −2 ◦C,
and 0.2% of values were more than 2 ◦C.Remote Sens. 2020, 12, x FOR PEER REVIEW 13 of 22 
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To summarize, R2 and RMSE were calculated for MODIS/LST products and predicted LST, as
shown in Figure 12. The histogram shows R2, and the line chart shows RMSE, of various models. Blue,
orange, and gray represent the TsHARP, MLR, and RF models, respectively. The results clearly show
that the RF model was more suitable for this research than the TsHARP and MLR models. This is
evident in the significantly higher R2 and lower RMSE of the RF model compared to the other two
models. For the RF model, the prediction effect at night was better than that during the daytime, and
that at winter night was the best, with R2 of 0.9740 and RMSE of 0.1678. The worst effect was for
autumn daytime: R2 was 0.9286 and RMSE was 0.7556. However, even the worst RF model performed
better than the other two models. From a seasonal perspective, R2 values in summer and winter were
higher than those in spring and autumn. From low to high, RMSE values were winter, spring, summer,
and autumn. By comparison with the single-factor TsHARP model, the prediction improvement of the
MLR model with more independent variables was limited due to the simple linear regression. The
application of the RF model greatly enhanced the model’s predictive capabilities, because, under the
premise of multiple factors, machine learning could perform complex nonlinear regression. According
to the above model selection and precision analysis, we only selected the RF model to undertaken
downscaling of MODIS/LST products from 1 km to 100 m.
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4.2. Downscaling Results and Surface Urban Heat Island

During the construction of nonlinear regression models, the RF model was able to provide feature
importance based on randomized variable selection. The importance scores were presented in mean
squared error (MSE). The larger the MSE of an independent variable, the more important that variable
is to a model [54]. Figure 13 shows the independent variable importance scores from all research
data; the x-axis represents MSE, and the y-axis represents the independent variables. Among the
independent variables, b2 to b7 represent Band 2 to Band 7 from Landsat 8 OLI. During daytime,
the importance scores of various factors were relatively balanced, and the difference between high
and low score factors was large at night, especially at winter night. The b6 score reached 43.2%; in
comparison, the highest score in daytime was 30%, for NDBI in winter. At night, b5 and b6 were
the most important, with high scores. Meanwhile, DEM played a major role in the RF models at
night. Contrary to nighttime, DEM scores in daytime were not large. According to the Environmental
Lapse Rate [55], high-altitude areas usually received more solar radiation with more xeric and warmer
conditions, particularly north-facing slopes. In the current research, different orientations resulted in a
significant difference of LST. Therefore, the effect of DEM is weak when receiving solar radiation [56].
NDBI during daytime played a key role in the RF models, with the highest scores in summer, autumn
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and winter and the second highest in spring. This meant that buildings heated by solar radiation had a
significant influence on LST. By contrast, at night without solar radiation, NDBI had lower importance
scores than DEM.Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 22 
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The intention of an LST downscaling model is to overcome the contradiction between the
spatial–temporal resolutions of various remote sensing images to obtain LST products with high
spatial–temporal resolution. According to the RF models constructed in Section 4.1, we downscaled
MODIS/LST from 1 km to 100 m; that is, independent variables with a scale of 100 m were used to
predict the corresponding LST. In order to improve prediction accuracy and reduce errors, we used
a spline method to fit residuals, as introduced in Section 2.2. Due to some restrictions of the study
area, MODIS/LST products could not provide high-resolution LST of Qiantang River, which crosses
the urban area, mostly resulting in a lack of water surface temperature data. The data were unable
to provide enough training samples for the RF model. Therefore, the downscaling accuracy based
on the RF model of water surfaces will be greatly reduced. The average annual sediment discharge
was 6.68 million tons [57]. The tidal bore is one of the symbolic features of the Qiantang River. The
effect of tidal bores causes abrupt changes of the river bed, thus changing the land cover, which in
turn influences LST [58]. Hence, we eliminated the LST downscaling of large areas of water, such as
Qiantang River and West Lake.

Figures 14 and 15 show LST distribution during day and night, respectively, including the
MODIS/LST products, predicted LST with a scale of 1 km, and predicted LST with a resolution of 100 m;
the latter two represent the downscaling results. LST changes from blue to red. Blue regions represent
low-temperature areas, and red regions represent high-temperature areas. Comparing MODIS/LST
products and predicted LST with a scale of 1 km, the similarity of each pair of images is extremely
high, whether during the day or at night, which also shows that the RF model is suitable for future
downscaling research in this study area. The following prediction results, with a scale of 100 m, are
the downscaling results after the fitting of residuals. The distribution of downscaled LST is basically
consistent with the distribution of MODIS/LST products.
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With the exception of autumn, the SUHI distribution during the day is similar across the seasons.
On the north bank of the river and the northeast side of the lake, a large number of high-temperature
areas are generally distributed. The LST of the southwest area of the lake is lower than that of the other
areas. Compared with spring and summer, there are more high-temperature areas in the northeast
corner of the region and the north bank of the river. However, the low-temperature areas in the
southern part of the river are more than those in spring and summer. In contrast to spring, summer
and winter, the high-temperature areas in autumn are obviously fewer. Red areas mainly appear on
the north bank of the river and near the east side of the research region. Similar to the other three
seasons, the low-temperature areas are also located at the southwest of the lake.

At night, high-temperature areas are mainly concentrated around the lake in low-resolution
MODIS/LST products. However, SUHI in autumn is obviously different from other seasons.
Several small areas with extremely high temperatures can be found in MODIS/LST products.
Through downscaling and excluding large water areas including West Lake and Qiantang River,
the corresponding high-resolution LST shows that the SUHI distributions at night are similar in all
seasons. The blue areas are located in the northeast of the study area and the south bank of the river.
The dissimilarity in the four seasons lies in the relative differences of LST in high-temperature areas.
The red area is larger in winter than in other seasons.

From the downscaling results, we found that there are significantly more high-temperature areas
during the day than at night. This means that the distribution range of SUHI is wider during the day
than at night. During the daytime, SUHI spreads throughout the research region, but at night, SUHI
shrinks towards the West Lake and the south of the study area. Two obvious SUHI areas are distributed
on both sides of Qiantang River. The LST of SUHI on the north bank is higher than that on the south
bank. In daytime, the urban center, which is to the northeast of West Lake, is not clearly the warmest
area; however, at night, the urban center became the core zone of SUHI irrespective of the season.

Ranges of LST during daytime (Figure 14) and at night (Figure 15) are shown in Table 5. Comparing
MODIS/LST and predicted LST with a scale of 1 km, we found that the average LSTs were almost
equal, with differences less than 0.02 ◦C. However, the ranges were smaller. Comparing MODIS/LST
and predicted LST with a scale of 100 m, the mean LST difference showed improvement compared
with the former, but within the allowable range. Furthermore, the LST ranges were close to those of
MODIS/LST. The predicted LST (100 m) difference was largest in autumn during both day and night;
that is, SUHI in autumn is the most serious. The difference in winter was the smallest. Generally
speaking, differences during the day were always greater than those at night, and differences ranged
from 2 ◦C to 5 ◦C, except in winter. In winter, the difference at night was 0.39 ◦C higher than that
during the day. From the mean LST throughout the year, LST rose sharply to reach 38.42 ◦C in the
daytime and 27.56 ◦C at night from spring to summer, then gradually decreased to 9.91 ◦C during the
day and 1.98 ◦C at night in winter.

Table 5. Ranges of LST during daytime (Figure 14) and at night (Figure 15) of all research dates.

Season Day or Night MODIS LST/◦C Predicted LST (1000 m)/◦C Predicted LST (100 m)/◦C

max mean min max mean min max mean min ∆

spring day 28.37 24.49 19.15 27.48 24.48 19.75 27.97 24.34 20.49 7.48

night 15.05 12.15 10.15 14.81 12.15 10.40 15.10 12.08 9.72 5.38

summer day 43.15 38.51 32.81 42.50 38.52 33.92 42.82 38.42 33.18 9.64

night 30.41 27.69 24.85 30.09 27.70 25.78 30.43 27.56 25.32 5.11

autumn
day 28.03 19.88 15.69 25.43 19.86 16.33 26.74 19.91 15.96 10.78

night 19.51 12.89 8.77 18.71 12.87 10.35 16.20 12.75 10.03 6.17

winter
day 12.13 9.89 7.43 11.72 9.89 7.59 11.94 9.91 7.49 4.45

night 4.33 2.13 −0.51 4.03 2.13 0.12 4.32 1.98 −0.52 4.84

Note: ∆—The predicted LST difference with a resolution of 100 m between the maximum and minimum.



Remote Sens. 2020, 12, 2134 18 of 22

4.3. Validation Results Comparing Downscaling LST and Retrieved LST

Due to satellite orbit restrictions, we could not obtain MODIS/LST products and Landsat 8
OLI/TIRS to retrieve LST with high resolution with the same scan time. We referred to historical
meteorological dates from Greenhouse Data [59] as shown in Table 6. According to the date, we
preliminarily excluded spring and winter, because the acquisition dates of Landsat 8 OLI/TIRS and
MOD11A2 were too far apart. Compared with spring and winter, the dates in summer and autumn
were adjacent. The scan times [8,60] of the two remote sensing types was similar, concentrated around
10:30 a.m., and only 2 or 3 min apart. Then, we organized and analyzed the obtained meteorological
data. The smallest difference was in summer (with an asterisk in Table 6). The maximum and minimum
air temperatures differed by only 1 ◦C; the difference in relative humidity was 1%; the wind speed
difference was 0.1 m/s; and the solar radiation difference was about 0.4 MJ/m2. Compared with other
sets of data, we selected the Landsat 8 TIRS on July 19 2013 to retrieve LST and combined with
MOD11A2 on July 20 to verify downscaling accuracy.

Table 6. RF model parameter list and the optimal combination of this model.

Season Spring Summer * Autumn Winter

RS Type LC08 MOD LC08 MOD LC08 MOD LC08 MOD

Date 04.14 04.07 07.19 07.20 11.08 11.09 01.27 01.17
Scan Time (a.m.) 10:33 10:30 10:33 10:30 10:33 10:30 10:32 10:30

ATmax/◦C 28 17 37 36 25 28 11 12
ATmin/◦C 15 5 27 28 13 16 2 0

RH/% 33 39 49 50 69 67 35 34
Wind Speed/m/s 4.0 1.6 2.7 2.8 1.8 2.0 1.9 1.2

SR/MJ/m2 31.6 34.6 35.6 36.0 12.6 13.4 11.1 10.9

Note: LC08—Landsat 8 OLI/TIRS; MOD—MOD11A2; AT—air temperature; RH—relative humidity; SR—Solar
Radiation; * the season we selected for validation.

Using the single-channel algorithm in Section 2.3, the retrieved LST (that is, the real LST) with a
resolution of 30 m is shown in Figure 16b. Figure 16a shows the downscaled LST with a resolution of
100 m. The differences in the LST ranges of the two figures is small; the real LST ranges from 34.89
◦C to 41.62 ◦C, while the other ranges from 33.18 ◦C to 42.82 ◦C. According to the LST distribution,
the high-temperature areas (red areas) and low-temperature areas (blue areas) are basically similar.
From the comparison of the downscaled and real LST, we present the error distribution histogram
as shown in Figure 16c. The x-axis represents the error between the two types of LST, and the y-axis
represents the number of pixels. The error is approximately normally distributed. The peak value of
the error is around 0.3 ◦C, the mean of errors is about 0.2617 ◦C, the median is about 0.3 ◦C, and the
standard deviation is about 1.56 ◦C. Since the scan times and scan methods of Landsat 8 TIRS and
MODIS/LST are different, as mentioned above, and the meteorological conditions at the two times
were not exactly the same, a few errors between the downscaled and real LST. This small number of
errors meets the research requirement; that is, the downscaled LST based on the RF model meets the
accuracy requirement, and the RF model can be used in downscaling research.
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5. Conclusions

This research used three different models (TsHARP, MLR and RF models) to downscale MODIS/LST
products from 1 km to 100 m based on Landsat 8 OLI and a DEM with high-resolution data and
selected the highly heterogeneous Hangzhou urban area as the research region. Of the three model
types examined, the TsHARP model was a single-factor regression model that favors nonlinearity
based on the correlation between LST and NDVI. The MLR model was a multi-factor linear regression
model, which introduced more independent variables compared to the TsHARP model, including
DEM, NDBI and Landsat 8 OLI Band 2 to Band 7. The RF model was used as a multi-factor nonlinear
regression model based on machine learning to predict LST. Then, we used R2 and RMSE to evaluate
the prediction effect of these three models. According to the evaluation comparison, the suitable
model—that is, the RF model—was selected for the subsequent downscaling study. After parameter
tuning, we built the optimal RF model to downscale the MODIS/LST products for four seasons during
day and night and analyzed SUHI based on the high-resolution LST. Finally, we selected similar
retrieved LST based on Landsat 8 TIRS to verify the feasibility of the RF model.

However, the choice of independent variables in this research was flawed. This article selected
DEM, NDVI, NDBI and Landsat 8 OLI Band 2 to Band 7, thus including only two topography-derived
variables, NDVI and NDBI. In other studies, Hamid and Mohsen [61] selected RVI, DVI, RDVI,
NDVI, SAVI and MSAVI, while Wei Z. et al. [62] chose NDVI, EVI, NDWI, LAI, ALB, ELV and SLP.
In precision evaluation, we were unable to retrieve high-resolution LST based on Landsat 8 TIRS
for the same periods to verify downscaling accuracy because the Terra Satellite, which provides
MODIS/LST products, and Landsat 8 OLI/TIRS are not synchronized. We were only able to select a few
high-resolution LST data at particular times to verify the downscaling accuracy.

We concluded that the proposed RF model downscaling method, based on the multi-factor
nonlinear regression of LST and DEM, NDVI, NDBI and Landsat 8 OLI Band 2 to Band 7, was proven
to be effective and flexible in downscaling the LST spatial resolution from 1 km to 100 m for various
seasons in the research region. Compared to the downscaling methods based on the TsHARP model
with single-factor nonlinear regression and the MLR model with multi-factor linear regression, both
statistics and visual analysis supported this conclusion. According to the prediction precision, the RF
model effects in winter and summer were slightly better than those in spring and autumn, and those
at night were better than those during the day. Combined with high-resolution LST, we concluded
that SUHI was spread throughout the city across a large area, with the exception of the hills to the
southwest of West Lake. At night, SUHI shrank sharply in the urban center around West Lake and the
low-temperature area increased. According to the LST difference across the four seasons, we found
that SUHI was the most obvious in autumn and the weakest in winter. Finally, the error distribution
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histogram between the downscaled and real LST supported the conclusion that the RF model can be
applied to downscaling research in highly heterogeneous regions.
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