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Abstract: Leaf chlorophyll content (LCC) is a pivotal parameter in the monitoring of agriculture
and carbon cycle modeling at regional and global scales. ENVISAT MERIS and Sentinel-3 OLCI
data are suitable for use in the global monitoring of LCC because of their spectral specifications
(covering red-edge bands), wide field of view and short revisit times. Generally, remote sensing
approaches for LCC retrieval consist of statistically- and physically-based models. The physical
approaches for LCC estimation require the use of radiative transfer models (RTMs), which are more
robust and transferrable than empirical models. However, the operational retrieval of LCC at large
scales is affected by the large variability in canopy structures and soil backgrounds. In this study,
we proposed an improved look-up-table (LUT) approach to retrieve LCC by combining multiple
canopy structures and soil backgrounds to deal with the ill-posed inversion problem caused by the
lack of prior knowledge on canopy structure and soil-background reflectance. Firstly, the PROSAIL-D
model was used to simulate canopy spectra with diverse imaging gometrics, canopy structures, soil
backgrounds and leaf biochemical contents, and the canopy spectra were resampled according to the
spectral response functions of ENVISAT MERIS and Sentinel-3 OLCI instruments. Then, an LUT
that included 25 sub-LUTs corresponding to five types of canopy structure and five types of soil
background was generated for LCC estimation. The mean of the best eight solutions, rather than
the single best solution with the smallest RMSE value, was selected as the retrieval of each sub-LUT.
The final inversion result was obtained by calculating the mean value of the 25 sub-LUTs. Finally, the
improved LUT approach was tested using simulations, field measurements and ENVISAT MERIS
satellite data. A simulation using spectral bands from the MERIS and Sentinel-3 OLCI simulation
datasets yielded an R2 value of 0.81 and an RMSE value of 10.1 µg cm−2. Validation performed well
with field-measured canopy spectra and MERIS imagery giving RMSE values of 9.9 µg cm−2 for
wheat and 9.6 µg cm−2 for soybean using canopy spectra and 8.6 µg cm−2 for soybean using MERIS
data. The comparison with traditional chlorophyll-sensitive indices showed that our improved LUT
approach gave the best performance for all cases. Therefore, these promising results are directly
applicable to the use of ENVISAT MERIS and Sentinel-3 OLCI data for monitoring of crop LCC at
a regional or global scale.
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1. Introduction

Leaf chlorophyll plays a vital role in capturing photons and transporting electrons during the
process of photosynthesis [1,2]. Some studies have shown that leaf chlorophyll content (LCC) is a reliable
proxy for leaf photosynthetic capacity [3–5] and can provide crucial information for understanding
photosynthesis potential [6–8], plant stress [9–13] and physiological status [14,15]. Therefore, the
accurate retrieval of LCC is critical for the assessment of plant physiological states, and it is of great
importance in the modeling of vegetation productivity [16–18].

While the traditional laboratory-based destructive determination of LCC is very accurate, the
time-consuming, resource-heavy and destructive nature of these methods prevents the possibility of
monitoring the spatiotemporal dynamics of LCC at large scales [19,20]. However, remote sensing
can provide a way of retrieving LCC at large scales using multispectral and hyperspectral datasets,
particularly by using the narrow bands covering the visible and red-edge regions [21–23]. Such red
edge-related spectral features are sensitive to LCC [7,24–26]. Some instruments, such as the ENVISAT
MEdium Resolution Imaging Spectrometer (MERIS), the Sentinel-3 Ocean and Land Colour Instrument
(OLCI) and the Sentinel-2 MultiSpectral Instrument (MSI) can acquire global multispectral data in the
red-edge region, thus allowing for the possibility of accurately estimating LCC at increasingly fine
spatial scales. The vegetation index is a widely used and straightforward method of estimating LCC
from remote sensing data for its simplicity and computational efficiency [27–29]. However, vegetation
index-based empirical models rely on measured data, and thus they are usually not transferable to
other regions, species and growing stages, which precludes their application over large areas [30].
Currently, machine learning algorithms are also an alternative means of LCC estimation because
of their potential to generate adaptive and robust relationships [31–34]. It is worth noting that the
disadvantage of machine learning algorithms is that training data are required for prediction. Improper
or insufficient selection of training data may lead to deviations or even errors in the model [33].

Radiative transfer models (RTMs) produce relatively accurate and robust estimates of LCC across
different canopy structures and soil background types without time/space restrictions and the use of
local calibrations [35–37]. Look-up-table (LUT) approaches are commonly used to retrieve canopy
and leaf parameters via RTMs [38–40]. However, the retrieval of LCC from RTMs at large spatial
scales using satellite remote sensing data is still a challenging problem [41–44]. First, the canopy
structure and soil background interact with leaf scattering signals to generate the canopy reflectance.
Different combinations of leaf and canopy parameters can produce similar reflectance spectra, which
can lead to the ill-posed problem of model inversion [45,46]. Second, RTMs require a large number of
specific input parameters, some of which are difficult to obtain accurately [34]. For example, the canopy
structure is unknown in many cases, especially when working at large scales [45]. Xu et al. [47] retrieved
LCC using a vegetation index combination approach in which the canopy structure was assumed to be
ellipsoidal. The need for assumptions such as these limits the range of application to specific conditions.
Third, compared with manned/unmanned aerial platforms, the satellite platform is more susceptible to
weather conditions, even if it is the most effective means of regional and global monitoring.

A previous study has shown the feasibility of retrieving chlorophyll content from MERIS data [48],
which evaluated optical indices derived from MERIS imagery to estimate chlorophyll content in forest
areas. In this study, we aimed to explore an improved LUT method for retrieving LCC through the
inversion of the PROSAIL-D model by combining multiple canopy structures and soil backgrounds.
Field measured data from wheat and soybean were used to test the method at the near-field canopy
level and satellite level. In addition, to evaluate the performance of different band combinations, the
method was compared to red-edge vegetation indices.
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2. Materials and Methods

2.1. Study Sites

The field measurements were conducted at three sites (Figure 1). The first site is located at
the National Precision Agriculture Demonstration Base in Xiaotangshan (XTS) town, Beijing, China.
The size of the XTS is about 167 ha. Winter wheat, planted at this site, is considered one of the most
important crops in China. In the 2002 campaign, the study area was divided into 48 small plots,
each of which was 32.4 m × 30.0 m, separated by a 1-m wide isolation strip from adjacent plots.
Four nitrogen fertilization treatments (0, 150, 300 and 450 kg ha−1), four irrigation treatments (0, 225,
450 and 675 m3 ha−1) and three winter wheat varieties (Jingdong 8, Zhongyou 9507 and Jing 9428) were
used in these experiments. In the 2004 campaign, 21 winter wheat varieties were planted, including
7 relatively straight leaf type varieties, 7 relatively horizontal leaf type varieties and 7 common leaf
type varieties. For each variety, there were two duplicate plots. All 42 plots were normally managed
with the same fertilization and irrigation [49,50]. The other two sites (US-Ne2 and US-Ne3) are located
at the University of Nebraska–Lincoln Agricultural Research and Development Center near Mead,
Nebraska, USA. US-Ne2 is a 65-ha field equipped with a center-pivot irrigation system. US-Ne3 is
about the same size, but depends entirely on rainfall to obtain moisture. US-Ne2 and US-Ne3 are both
planted in a maize (odd years)–soybean (even years) rotation. Further detailed information is shown
in Table 1.
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Figure 1. Schematic diagram of the XTS, US-Ne2 and US-Ne3 study sites.

Table 1. Details of the study sites.

Sites Latitude Longitude Crop Species Field Measurement Dates

XTS 40◦10′48′′ N 116◦26′24′′ E Wheat 04/02, 04/10, 04/18, 05/06, 05/17/2002
04/14, 04/21, 04/28, 05/11, 05/19/2004

US-Ne2 41◦9′54′′ N 96◦28′12” W Soybean 06/13–09/17/2002, 27 measurement campaigns
06/29–09/20/2004, 21 measurement campaigns

US-Ne3 41◦10′47” N 96◦26′23” W Soybean 06/19–09/17/2002, 25 measurement campaigns

2.2. Canopy Reflectance Measurements

At the XTS site, a 1-m2 area of wheat in each plot was selected for canopy spectral reflectance
measurements using an ASD FieldSpec Pro spectrometer (Analytical Spectral Devices, Boulder, CO,
USA) with spectral resolutions of 3 nm from 350 to 1050 nm and 10 nm from 1050 to 2500 nm. To ensure
the accuracy of the data, the measurements were taken under clear weather conditions between 10:00
and 14:00 local time at nadir direction, approximately 1.3 m above the canopy, and with a 25◦ field of
view. The averaged reflectance spectra were obtained for each plot by averaging the spectra acquired
from 20 independent measurements [50].

At the US-Ne2 and US-Ne3 sites, canopy reflectance spectra measurements were performed
between 11:00 and 13:00 local time using a hyperspectral radiometer mounted on “Goliath”, an all-terrain
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sensor platform [51]. Radiometric data with a spectral range of 400–1100 nm and a spectral resolution
of 1.5 nm were acquired using a dual fiber-optic system that included two mutually calibrated Ocean
Optics USB2000 radiometers. One of the radiometers pointed downwards to measure the upwelling
radiance of the soybean at a height of about 5.5 m with a field of view of 25◦. The other was equipped
with a cosine diffuser to yield a hemispherical field of view and pointed upwards to measure the
incident irradiance simultaneously. The canopy reflectance was then calculated based on the measured
radiance and irradiance spectra (see [52] for details).

2.3. Leaf Chlorophyll Content Measurements

At the XTS site, after acquiring the canopy spectra, two fully unfolded leaves at the top of the
canopy of all plants in four 60-cm-long rows per plot (with a row spacing of 15 cm) were harvested on
each investigation date, placed in a black plastic bag under cool conditions to keep the leaves fresh
and prevent moisture loss and transported to the laboratory for measurement of LCC. The LCC was
obtained by standard laboratory spectrophotometry measurements [53]. First, samples of fresh wheat
leaves were mixed with a given volume of 80% alcohol solution. Each sample was put in a cuvette
and kept in darkness at 25 ◦C for 48 h. Next, an L6 ultraviolet-visible spectrophotometer was used to
measure the pigment absorption at 663 and 646 nm. Then, the LCC could be calculated according to
the absorbances of the extract solution at 663 and 646 nm. At the US-Ne2 and US-Ne3 sites, the leaves
were punched and LCC was determined analytically. The leaf pigment was extracted with 80% acetone,
from circular leaf punches with a diameter of 1 cm. The LCC was calculated using a Cary 100 Varian
spectrophotometer and equations by Porra et al. [54]. The statistical analyses of the measured wheat
and soybean LCC are shown in Table 2.

Table 2. Summary statistics of the measured wheat and soybean LCC (µg cm−2).

Sites Crop Species Year n Mean Min Max SD CV

XTS Wheat
2002 223 51.914 32.384 79.940 12.365 0.238
2004 85 54.284 29.449 79.993 8.325 0.153

US-Ne2 Soybean 2002 27 31.361 20.319 44.961 7.601 0.242
2004 21 37.924 12.058 64.876 14.469 0.382

US-Ne3 Soybean 2002 25 32.344 13.328 40.085 7.493 0.232

n, number of samples; Min, minimum value; Max, maximum value; SD, standard deviation; CV, coefficient
of variation.

2.4. ENVISAT MERIS and Sentinel-3 OLCI Datasets

MERIS was one of the main instruments onboard the ENVISAT platform of the European Space
Agency (ESA). MERIS data can be used to measure and monitor vegetation due to their high spectral
resolution, medium spatial resolution and a 2–3-day revisit cycle. Full resolution, 7-day surface
reflectance products for 2004 were acquired from the Climate Change Initiative—ESA. MERIS has
15 bands, spanning the visible to shortwave infrared with a spatial resolution of 300 m. Sentinel-3 is
also an Earth observation satellite constellation launched by ESA. It currently consists of 2 satellites.
Sentinel-3 OLCI, the successor to MERIS, has a resolution of 300 m and 21 wavebands, allowing global
coverage in less than 4 days. MERIS and OLCI images covering the US-Ne2 study site are shown
in Figure 2.

The two instruments have the same band settings and similar spectral response functions (Table 3
and Figure 3). Therefore, the inversion methods developed for MERIS can generally be applied to
OLCI datasets. All the MERIS bands except bands 11 (760.625 nm) and 15 (900 nm) (surface reflectance
products lack bands 11 and 15) were used for analysis in this study. Since the red edge is the region
most sensitive to chlorophyll content, different combinations of red-edge bands were selected to find
the optimal combination.
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Table 3. Band specifications of the MERIS and OLCI used in this study.

MERIS OLCI Band Center (nm) Band Width (nm)

B1 B2 412.5 10
B2 B3 442.5 10
B3 B4 490 10
B4 B5 510 10
B5 B6 560 10
B6 B7 620 10
B7 B8 665 10
B8 B10 681.25 7.5
B9 B11 708.75 10
B10 B12 753.75 7.5
B12 B16 778.75 15
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Figure 3. Canopy reflectance spectra for various levels of LCC (Cab 10–80 µg cm−2) together with
MERIS (bands 1–10 and 12) and OLCI (bands 2–8, 10–12 and 16) spectral response curves.

2.5. MERIS and Sentinel-3 Red-Edge Indices

Several vegetation indices (VIs) sensitive to LCC were selected in this study (Table 4). Since the
band settings were similar, we calculated the indices using the MERIS bands only as the results for
MERIS and OLCI would be similar. Simple and normalized difference ratios were used: two chlorophyll
indices based on simple ratios, i.e. CIred-edge and CIgreen [24,55], and the normalized difference ratio
ND705 [56]. These ratios were chosen because of their accurate prediction of LCC in previous
studies [24,56,57]. Combined spectral indices, such as the Transformed Chlorophyll Absorption
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in Reflectance Index (TCARI) normalized by the Optimized Soil-Adjusted Vegetation Index (OSAVI)
(TCARI/OSAVI) and the Modified Chlorophyll Absorption in Reflectance Index (MCARI) normalized
by OSAVI (MCARI/OSAVI), were also selected [58,59]. A reflectance difference ratio, the MERIS
Terrestrial Chlorophyll Index (MTCI) [60], was also used in this study. Empirical models that used
these VIs were built and compared with the LUT-based LCC retrieval that is described below.

Table 4. Vegetation indices used in this study.

Index Formula Reference

MTCI R753.75−R708.75
R708.75−R681.25

Dash and Curran [60]

ND705
R753.75−R708.75
R753.75+R708.75

Gitelson and Merzlyak
[56]

CIred-edge
R778.75
R708.75

− 1 Gitelson et al. [55]
CIgreen

R778.75
R560

− 1 Gitelson et al. [24]

TCARI/OSAVI 3[(R708.75−R665)−0.2×(R708.75−R560)(R708.75/R665)]
(1+0.16)(R865−R665)/(R865+R665+0.16) Haboudane et al. [59]

MCARI/OSAVI [(R708.75−R665)−0.2×(R708.75−R560)](R708.75/R665)
(1+0.16)(R865−R665)/(R865+R665+0.16) Haboudane et al. [59]

2.6. The PROSAIL-D Radiative Transfer Model

The PROSAIL-D model was used to simulate MERIS observations and to assess the LCC retrieval
performance in this study. PROSAIL-D—a combination of the leaf model PROSPECT-D [61] and
the canopy model SAIL [62]—is widely used for the retrieval of vegetation parameters [45,63–66].
The PROSPECT-D model has 7 input parameters, as shown in Table 5. The output parameters are the
leaf spectral reflectance and transmittance. The SAIL model requires several parameters that describe
the canopy structure, the soil background and observation-related variables, as well as the leaf spectral
reflectance and transmittance to simulate the canopy reflectance.

As shown in Table 5, in the simulation, the leaf carotenoid content was simply set to 25% of the
LCC because it mainly affects the reflectance of the blue bands, which were not used to retrieve the LCC.
Plants assumed to have an erectophile distribution were not considered because of the underestimation
of the LCC, which causes a big error in the overall inversion results [47]. The values of LAI were
ranged from 0.25 to 8, representing different levels of vegetation coverage. The soil backgrounds
were simulated using the field-measured spectra of bare, dry soil multiplied by different brightness
coefficients (Figure 4). The values of the solar zenith angle were set from 0◦ to 60◦, with a step of
10◦. The fraction of diffuse incoming solar radiation (skyl) was set to correspond to different incident
light conditions. It should be noted that canopy spectra resampling was carried out to match the
corresponding full width at half maximum (FWHM) and central wavelengths of the MERIS and OLCI
bands used for retrieving LCC from the simulated dataset.
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Table 5. Specific parameters input to the PROSAIL-D model for generating simulated spectra and
the LUTs.

Parameter Description Unit Value/Source

Leaf optical properties model (PROSPECT-D)
N Leaf structural parameter — 1.5
LCC Leaf chlorophyll content µg cm−2 10–80, step 10
Car Leaf carotenoid content µg cm−2 25% LCC
Cw Equivalent water thickness cm 0.02
Cm Dry matter content g cm−2 0.004
CAnt Leaf anthocyanin content µg cm−2 2
Cbrown Leaf brown pigment content — 0
Canopy reflectance model (SAIL)
LIDFa, LIDFb Average leaf inclination angle — [1,0], [0,−1], [0,1], [−0.35, 0.15], [0,0]
LAI Leaf area index m−2 m−2 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 3, 4, 5, 6, 7, 8
hspot Hot spot parameter m m−1 0.05
ρsoil Soil reflectance — As shown in Figure 4
tts Solar zenith angle Deg 0, 10, 20, 30, 40, 50, 60
tto View zenith angle Deg 0
psi Relative azimuth angle Deg 0
skyl Fraction of diffuse incoming solar radiation — According to incident light conditions

[1,0], planophile; [0,−1], plagiophile; [0,1], extremophile; [−0.35,−0.15], spherical; [0,0], uniform.

2.7. Model Inversion

As shown in Figure 5, a LUT that included 25 sub-LUTs corresponding to 5 types of canopy
structure and 5 types of soil background was generated. To further deal with the ill-posed problem and
to improve the LCC inversion accuracy, we used the prior knowledge of solar zenith angle that can be
calculated according to the measurement date to generate a second group of 25 sub-LUTs. To find the
estimated value of the inversion, the RMSE for the sub-LUT was calculated using

RMSE =

√∑n
i=1(Rmeasured(λi) −Rsimulated(λi))

2

n
(1)

where n is the number of wavebands used in the retrieval, Rmeasured is the measured reflectance,
Rsimulated is the simulated reflectance and λ is the corresponding spectral band. In the traditional
inversion process, the single solution with the smallest RMSE value would be used as the inversion
result. However, in this study, except for the single solution obtained for the smallest RMSE value, the
means of the best 3, 5, 8, 10 and 15 solutions were also examined in each sub-LUT. For example, the best
3 solutions refer to the 3 chlorophyll inversion values corresponding to the first 3 smallest RMSE values
in the process of inverting the LCC in each sub-LUT. It was found that the mean of the best 8 solutions
produced the lowest RMSE for the LCC retrieval. Therefore, instead of the single best solution with the
smallest RMSE value, the mean of the best 8 solutions was selected as the retrieval of each sub-LUT.
By combining multiple types of canopy structure and soil background, the final inversion result was
the one obtained by averaging the retrievals of the 25 sub-LUTs. Multiple averages will reduce the
ill-posed inversion problem, improve the robustness of the inversion method, and thus improve the
applicability to different canopy structures and soil backgrounds.

In addition, inversion results based on different inversion strategies, such as considering one
canopy structure with five types of soil background and one type of soil background with five types
of canopy structure, were also assessed. For convenience, the method in which the inversion results
for five different canopy structures and five different soil backgrounds were averaged is labeled here
as M-M.

3. Results

3.1. LCC Estimation Using the Simulated Dataset

The determination coefficient (R2), RMSE and normalized RMSE (NRMSE = RMSE/range) values
were selected to assess the inversion accuracy obtained using the LUT approach with the simulated
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dataset. Figure 6 exhibits the relationships between the measured LCC and that estimated using the
LUT approach (R2 = 0.81, RMSE = 10.1 µg cm−2 for MERIS; and R2 = 0.81, RMSE = 10.1 µg cm−2

for OLCI).
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Figure 5. Flowchart of the algorithm used for LCC retrieval. C1 to C5 represent the canopy structures
planophile, plagiophile, extremophile, spherical and uniform, respectively. S1–S5 represent the soil
backgrounds soil1, soil2, soil3, soil4 and soil5, respectively. The abbreviation “tts” refers to the solar
zenith angle. The relationship between the two dashed boxes indicates the order. The first run means
using the prior knowledge (tts) to generate a second group of 25 sub-LUTs. Input the measured spectra
in the second run and compare them with the simulated spectra to obtain the inversion value.

For comparison, the LCC was also estimated using the selected VIs. First, empirical regression
models between the LCC and the VIs were established using the simulated dataset. For each VI, the
strongest regression relationship among the linear, polynomial, power, logarithmic and exponential
relationships was then chosen. As shown in Figure 7, MTCI exhibited the highest R2 value (0.81),
followed by MCARI/OSAVI (R2 = 0.54) and CIred-edge (R2 = 0.51). Unexpectedly, ND705, CIgreen and
TCARI/OSAVI did not perform well in this study, producing R2 values lower than 0.5. Figure 8 shows
the inversion performance obtained using the VI approach for the validation dataset. Consistent with
the modeling results, the MTCI vegetation index yielded the highest prediction accuracy, giving the
highest R2 (0.74), the lowest RMSE (12.5 µg cm−2) and NRMSE values (17.8%). The LCC inversion
results suggested that the LUT approach had the greatest potential to retrieve LCC using the simulated
dataset. Because of the low inversion accuracy of the other VIs, only the MTCI was adopted for
comparison with the LUT approach in terms of the retrieval of the LCC using field-measured canopy
spectra and satellite data.
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3.2. LCC Estimation Using Field-Canopy Reflectance Measurements

Field-measured canopy spectra convolved with the MERIS spectral response function were used
to simulate the MERIS band reflectance. As shown in Figure 9a,c, both for wheat and soybean, the
regression lines were close to the 1:1 line, with an RMSE value lower than 10 µg cm−2. For comparison,
the LCC was also retrieved using the MTCI. The inversion results produced a large overestimate of
the LCC for both wheat and soybean. Furthermore, even when the data for wheat and soybean were
put together, they still produced a good inversion accuracy (Figure 9e). As shown in Figure 10, the
overall distribution of the measured and estimated LCC histogram was similar. Although the results
in Figure 9 show that the inversion accuracy of soybean LCC was slightly higher than that of wheat,
from the perspective of numerical distribution, the distribution of wheat LCC estimates was closer
to the measured values. These results indicate that the LUT approach yielded great potential for
estimating the LCC using field-measured canopy spectra of wheat and soybean.
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3.3. LCC Estimation Using MERIS Satellite Data

For the verification of the method using real satellite data, the dataset from US-Ne2 acquired
in 2004 was selected because it was aligned with the MERIS acquisitions. In contrast, the dataset
acquired at the XTS site lacked a sufficiently long time series. Thus, data from the XTS site were not
used for verification at this scale. The relationship between the measured LCC and that estimated
using the LUT approach is shown in Figure 11a. The improved LUT method yielded reasonable
results, with an R2 value of 0.68 and an RMSE value of 8.6 µg cm−2. The estimation performance
achieved using the MTCI was also examined, and the results show that this method produced an
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overestimate. These results suggest that, using MERIS satellite data, the LUT approach performed
better LCC retrievals than the MTCI-based approach.
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4. Discussion

It has already been stated that parameter retrieval methods using LUTs are ill-posed because
different combinations of canopy and leaf parameters may produce similar spectra [67,68].
Prior knowledge is very useful for constraining parameters. However, the specific local circumstances
limit its applicability to larger scales and other areas. For instance, in previous studies, the canopy
structure has been assumed to be ellipsoidal for specific crops [47,69]. Such an assumption is reasonable
under specific conditions but cannot be applied at large scales. In our study, the leaf biochemical
parameters which influence the bands of the canopy spectra that are insensitive to LCC were also
constrained. In contrast, we selected relatively wide ranges of values and types for the LCC, LAI,
canopy structure and soil background. A main LUT, covering different types of canopy structure
and soil background that represent the expected ranges of typical crop conditions, was used. In the
inversion process, firstly the eight best inversion results of each sub-LUT were averaged, and then
the mean value of the LCC inversion result of 25 sub-LUTs was considered as the retrieval. Multiple
averages will improve the robustness of the inversion method, and thus improve the applicability to
different canopy structures and soil backgrounds. The inversion results of all canopy types and soil
backgrounds were averaged to reduce the inversion deviation caused by uncertainty.

4.1. LCC Retrieval Performance Using Different Combinations of MERIS Bands

It is well known that using only a selection of spectral bands may yield a better inversion accuracy
than using all the bands. Consequently, the selection and performance of specific bands are critical for
an accurate LCC inversion using the LUT method. Here, we assessed the potential of LCC retrieval
using different combinations of MERIS bands. As shown in Table 6, first, all bands were selected,
which resulted in RMSE values greater than 11 µg cm−2, except for the wheat site. When only red-edge
bands were used, it can be seen from a comparison between the G4 and G5 combinations that there
was a large decrease in the inversion accuracy when band 9 was replaced by band 10, indicating
that band 9 plays a pivotal role in the retrieval of LCC from MERIS data. Surprisingly, the addition
of near-infrared band information did not improve the inversion accuracy of LCC even though the
near-infrared bands are sensitive to LAI. In addition, the different combinations of VIs listed in Table 4
were also tested, but the results were not as accurate as those obtained using red-edge band reflectance
(these results are not shown). Therefore, it may be concluded that the retrieval of LCC using red-edge
band reflectance outperforms that using the VIs sensitive to LCC. The results also demonstrate that the
combination of bands 7 (665 nm), 8 (681.25 nm) and 9 (708.75 nm) is the optimal combination for LCC
retrieval from MERIS and OLCI data.
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Table 6. Comparisons of LCC retrieval performance using different combinations of MERIS bands.

Combination Bands Used PROSAIL Simulation Measured Wheat Measured Soybean MERIS Soybean

R2 RMSE
(µg cm−2)

R2 RMSE
(µg cm−2)

R2 RMSE
(µg cm−2)

R2 RMSE
(µg cm−2)

G1 band 1–10,
12–14 0.763 11.811 0.401 8.996 0.334 11.708 0.343 11.562

G2 band 1–10, 12 0.772 11.282 0.416 9.149 0.341 11.498 0.393 11.282
G3 band 7–10 0.773 11.112 0.405 10.709 0.339 12.162 0.509 10.316
G4 band 7–9 0.808 10.092 0.437 9.859 0.452 9.578 0.682 8.577
G5 band 7, 8, 10 0.361 18.324 0.366 11.025 0.061 14.275 0.089 15.213
G6 band 7, 9, 10 0.783 10.887 0.413 10.830 0.343 12.218 0.517 10.442
G7 band 8–10 0.785 10.863 0.415 10.843 0.340 12.207 0.522 10.467
G8 band 8, 9, 12 0.797 10.791 0.404 10.424 0.434 12.321 0.578 10.520

PROSAIL simulation represents that the data used were the simulation spectra convolved with the MERIS spectral
response function. Measured wheat represents that the data used were the field-measured wheat canopy spectra
convolved with the MERIS spectral response function. Measured soybean represents that the data used were the
field-measured soybean canopy spectra convolved with the MERIS spectral response function. MERIS soybean
represents that the data used were the soybean canopy spectra from the MERIS satellite.

4.2. LCC Retrieval Performance Using Different Inversion Strategies

To quantify that the inversion strategy combining multiple types of canopy structure and soil
background can improve the inversion accuracy, the retrieval of LCC from both field canopy spectra
and MERIS satellite data using different strategies was compared. M-M represents the method in which
the inversion results for five types of canopy structure and five types of soil background were averaged.
As shown in Table 7, for wheat, M-M had the lowest RMSE value. Among the inversion results
obtained for different soil backgrounds, the R2 value for M-M was second only to M-S3 and the RMSE
value was the lowest. Comparing the results for the inversion of soybean LCC using field canopy
spectra, the RMSE value of M-M was also found to be the lowest. Finally, the inversion results using
satellite data illustrated that the M-M combination did not differ much from the best results. Therefore,
it can be concluded that the use of the LUT approach combining multiple canopy structures and
soil backgrounds has great potential for estimating LCC, although the inversion accuracy is likely to
be better if the canopy structure is known. Moreover, the difference in inversion accuracy may be
acceptable when the difficulty of obtaining information about canopy structure and soil background
over large areas is taken into consideration.

Table 7. Comparisons of LCC retrieval performance using different inversion strategies. The results in
bold are the results obtained using the inversion strategy proposed in this study.

Strategy Measured Wheat Measured Soybean MERIS Soybean
R2 RMSE (µg cm−2) R2 RMSE (µg cm−2) R2 RMSE (µg cm−2)

M-M 0.437 9.859 0.452 9.578 0.682 8.577
M-C1 0.426 10.540 0.421 9.739 0.670 10.194
M-C2 0.433 10.385 0.457 10.113 0.679 8.212
M-C3 0.432 10.881 0.463 10.709 0.651 8.382
M-C4 0.428 10.722 0.427 9.752 0.687 10.335
M-C5 0.435 10.654 0.463 10.396 0.680 8.075
M-S1 0.309 23.088 0.428 13.875 0.381 21.251
M-S2 0.396 19.954 0.412 13.963 0.377 20.338
M-S3 0.451 12.504 0.411 13.035 0.597 9.737
M-S4 0.411 15.493 0.348 12.960 0.600 13.498
M-S5 0.391 17.582 0.269 16.098 0.652 18.528

M-M represents the method in which the inversion results for five types of canopy structure and five types of soil
background were averaged. M-C1–M-C5 represent the methods in which the inversion results only for the canopy
structure planophile, plagiophile, extremophile, spherical and uniform were averaged, respectively. M-S1–M-S5
represent the methods in which the inversion results only for the soil backgrounds soil1, soil2, soil3, soil4 and soil5
were averaged, respectively.

Although MEIRS is no longer in operation, it is helpful to produce products with long time series.
This study did not consider the clumping effect. Such effect is relatively small for crops, while, for
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other vegetation types, such as forests, the clumping effect would have a larger impact. Therefore,
future work will consider LUTs created by 3D radiative transfer models such as 4-Scale or DART to
test these methods over more species and regions, evaluating their accuracy and robustness.

5. Conclusions

Leaf chlorophyll content is a significant indicator for monitoring plant physiological status. In this
study, we proposed an improved LUT approach to retrieving LCC through the inversion of the
PROSAIL-D model by combining multiple canopy structures and soil backgrounds. The inversion
results demonstrate that, using an LUT approach, the use of the red-edge bands produced better
estimates of LCC than the use of red-edge vegetation indices alone. First, the LCC estimation results
for a simulated dataset built with simulated spectra showed that the use of the LUT approach with
MERIS/OLCI spectral bands had good potential for estimating LCC and produced an R2 value of 0.81
and RMSE value of 10.1 µg cm−2 for MERIS and an R2 value of 0.81 and RMSE value of 10.1 µg cm−2

for OLCI. Next, further validation of the proposed approach was carried out using field-measured
canopy spectra and MERIS satellite data to retrieve LCC. This yielded an RMSE of 9.9 µg cm−2 for
wheat and 9.6 µg cm−2 for soybean using canopy spectra simulating MERIS bandsets; for soybean,
using MERIS data, the RMSE was 8.6 µg cm−2. Furthermore, an empirical method using red-edge
vegetation indices and a physical method using the PROSAIL-D model were compared. The results
indicate that the LUT approach using MERIS bandsets provided accurate and robust estimates of
LCC. These results demonstrate the feasibility of LCC estimation using the physical model inversion
method from MERIS, as well as its applicability to Sentinel-3 OLCI satellite sensor for large monitoring
of chlorophyll content in crops. The improved LUT approach to retrieving LCC proposed in this
study could reduce the ill-posed inversion problem caused by the lack of prior knowledge on canopy
structure and soil background, improve the robustness of the inversion method, and, consequently,
improve the accuracy of LCC retrieval.
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