Supplementary Material

1. Data set

Table S1: Pleiades images: Bands, wavelengths, and spatial resolution

Bandes	Wavelengths (nm)	Resolution (meters)
Blue	430-550 nm	0.7 m
Green	490-610 nm	0.7 m
Red	600-720 nm	0.7 m
NIR	750-950 nm	0.7 m
Panchromatic	480-830 nm	0.5 m

Table S2: Sentinel-2 images: Bands, wavelengths, and spatial resolution

Band	B1	B2	В3	B4	B5	В6	В7	B8	B8a	В9	B10	B11	B12
Center λ (nm)	443	490	560	665	705	740	783	842	865	945	1375	1610	2190
Width λ (nm)	20	65	35	30	15	15	20	115	20	20	30	90	180
Spatial resoluti on (m)	60	10	10	10	20	20	20	10	20	60	60	20	20

2. Methodology

Table S3: Different indices used for classifications

Indice	Formule	Characteristics / Definitions	Source
EVI (Enhanced Vegetation Index)	2.5*(NIR- Red/(NIR+6*Red- 7.5*Blue)+1)	EVI quantifies vegetation greenness. Vegetation index, more suitable than NDVI for areas with high biomass	Huete et al. (2002), [1].
MCARI (Modified Chlorophyll Absorption in Reflectance Index)	((RedEdge1-Red)-0.2*(RedEdge1-Green))* (RedEdge1-Red)	MCARI gives a measure of the depth of chlorophyll absorption and is very sensitive to variations in chlorophyll concentrations as well as variations in Leaf Area Index (LAI).	Daughtry et al. (2000), [2].

NDPI (Normalized	(MIR1-	NDPI when used in conjunction	Lacaux et al.
Difference Pond Index)	Green)/(MIR1+Green)	with NDVI, provides better discrimination of the aquatic and wetland vegetation from the normal vegetation compared to the NDVI, which detects all types of vegetation.	(2007), [3].
NDTI (Normalized Difference Turbidity Index)	(Red-Green)/(Red+Green)	The NDTI allows the detection of high turbidity (low clarity) water cover.	Lacaux et al. (2007), [3].
NDVI (Normalized Difference Vegetation Index)	(NIR-Red)/(NIR+Red)	Normalized difference between the near infrared (NIR) and visible red reflectance, corresponding respectively to the strong chlorophyll absorption region and high reflectance plateau of vegetation canopies.	Tucker (1979), [4].
NDWI (Gao) (Normalized Difference Water Index)	(NIR-MIR1)/ (NIR+MIR1)	NDWI 1 is sensitive to water content in leaves (so to water stress).	Gao (1996), [5].
NDWI (McFeeters) (Normalized Difference Water Index)	(Green- NIR)/(Green+NIR)	NDWI 2 is used to delineate open water features.	Mc Feeters (1996), [6].
PSSR (Pigment Specific Simple Ratio)	NIR/Red	PSSR is more sensitive to chlorophyll-a concentration than the NDVI and specifically useful for differentiation in stressed and senescent vegetation.	Gitelson et al. (1996), [7].

References

- 1. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. The Moderate Resolution Imaging Spectroradiometer (MODIS): A new generation of Land Surface Monitoring. *Remote Sens. Environ.* 2002, 83, 195–213, doi:10.1016/S0034-4257(02)00096-2.
- 2. Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtreylll, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. *Remote Sens. Environ.* **2000**, *74*, 229–239.
- 3. Lacaux, J.P.; Tourre, Y.M.; Vignolles, C.; Ndione, J.A.; Lafaye, M. Classification of ponds from high-spatial resolution remote sensing: Application to Rift Valley Fever epidemics in Senegal. *Remote Sens. Environ.* **2007**, doi:10.1016/j.rse.2006.07.012.
- 4. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. *Remote Sens. Environ.* **1979**, *18*, 2691–2697.
- 5. Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. *Remote Sens. Environ.* **1996**, *58*, 257–266.
- 6. MacFeeters, S.K. The use of normalized water index (NDWI) in the delineation of open water features. *Int. J. Remote Sens.* **1996**, *17*, 1425–1432.
- 7. Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. *Remote Sens. Environ.* **1996**, *58*, 289–298, doi:10.1016/S0034-4257(96)00072-7.