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Abstract: As a key component of terrestrial water cycle, evapotranspiration (ET), specifically over
the Amazon River basin, is of high scientific significance. However, due to the sparse observation
network and relatively short observational period of eddy covariance data, large uncertainties remain
in the spatial-temporal characteristics of ET over the Amazon. Recently, a great number of long-term
global remotely sensed ET products have been developed to fill the observation gap. However,
the reliabilities of these global ET products over the Amazon are unknown. In this study, we assessed
the consistency of the magnitude, trend and spatial pattern of Amazon ET among five global remotely
sensed ET reconstructions. The magnitudes of these products are similar but the long-term trends from
1982 to 2011 are completely divergent. Validation from the eddy covariance data and water balance
method proves a better performance of a product grounded on local measurements, highlighting
the importance of local measurements in the ET reconstruction. We also examined four hypotheses
dealing with the response of ET to brightening, warming, greening and deforestation, which shows
that in general, these ET products respond better to warming and greening than to brightening and
deforestation. This large uncertainty highlights the need for future studies focusing on ET issues over
the Amazon.
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1. Introduction

Evapotranspiration (ET), the exchange of water vapor between the land surface and atmosphere
through diffusion, plays a central role in the climate system and connects water, energy and carbon
cycles [1,2]. One of the major sources of global terrestrial ET is the Amazon forests and savannas [3],
which has the capacity to regulate the global climate through biogeophysical and biogeochemical
feedbacks. Amazon ET affects not only regional, but also the global climate patterns [4]. Thus,
an accurate estimation of ET in the Amazon River basin is of high scientific significance.

Several methods have been utilized to estimate ET [5,6]. Among them, the eddy covariance
(EC) method is regarded as one of the best methods for direct latent heat flux measurement, but the
observation network is sparse and the spanning period is relatively short [5]. The water balance
method (WB) is direct and simple [7,8], but it cannot reflect the spatial variability of ET at a fine scale.
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To fill the observation gap, remote sensing technologies were utilized to describe the spatial variability
and magnitude of ET with acceptable accuracy [9]. There are other methods that use a combination
of modeling and remote sensing [10–12] that hold promise. Direct observations from EC, WB and
other remote sensing variables are integrated with machine learning and/or land surface models to
reconstruct grid-scale long-term global ET products [13], including but not limited to MOD16, JUN10,
ZEN14, ZHA15, ZHA16 and GLEAM. By merging ET derived from diagnostic data sets or calculated
by land-surface models, LandFlux-EVAL is considered a global benchmark product for terrestrial
ET [14]. However, whether these global remote sensing ET reconstructions are reliable over the Amazon
River basin is open to doubt. Previous studies revealed large uncertainties in the ET estimates over
the Amazon River basin. In situ measurements of ET from the Large-Scale Biosphere–Atmosphere
Experiment in the Amazon (LBA) range from 2.7 to 6.0 mm/day (986 to 2190 mm/year) [15]. Estimates of
basin-scale mean annual ET reported by multiple process-based models, such as ERA-40, NCEP-NCAR
and NASA GEOS-1 reanalysis gridded evaporation products, are in the range of 3.5 to 4.6 mm/day
(1278 to 1679 mm/year) [16–18]. The uncertainties regarding the spatial-temporal changes of ET over
the Amazon are even larger, but have not been evaluated yet.

Apart from the consistency, the capabilities of the global remote sensing products to reflect
ET response to various drivers are still uncertain. During the past decades, global warming and
increasing anthropogenic activities have accelerated the global water cycle [19], which inevitably altered
ET [20], whose components (plant transpiration (Et), soil evaporation (Es) and canopy interception
(Ei)), respond differently to changing environmental and/or vegetation conditions [21]. There have
been several hypotheses concerning how ET in the Amazon varies under changing conditions. First,
in the context of global warming, Amazon ET is expected to increase because atmospheric evaporative
demand, the determinant of ET, is going to increase with rising air temperature [5]. The second is
net radiation, the primary determinant of ET in the Amazon basin [22]. Researchers have reported
a widespread increase in surface solar radiation (brightening) since the late 1980s [23]. In addition,
it is well-known that deforestation has been occurring in the Amazon River basin over the past three
decades [24,25], which would decrease ET, because deforestation reduces transpiration (Et). Finally,
despite deforestation in the Amazon River basin, the regional leaf area index (LAI) has increased
during the same period, indicating greening in the region [26–28]. Greening might have opposite
effects on ET compared to deforestation.

In this study, eddy covariance data and water balance approach are jointly used to investigate the
reliability of the five published global remote sensing ET products (JUN10, ZEN14, ZHA15, ZHA16 and
GLEAM) (Table 1) in their ET estimates over the Amazon River basin [1,20,21,29–31]. The objectives of
this study are to: (1) Assess the consistency of ET estimates by five global ET reconstructions in terms
of magnitude and spatial-temporal characteristics; (2) Compare the capabilities of these products to
reflect the ET response to different drivers (brightening, warming, greening and deforestation) over
the Amazon River basin.
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Table 1. Description of the five global remote sensing evapotranspiration (ET) reconstructions in
this study.

Product Algorithm Ground-based
Measurements Drivers Spatial

Resolution
Temporal

Resolution Period

JUN10
Machine
learning
(MTE)

EC P, Ta, fAPAR 0.5◦ × 0.5◦ monthly 1982–2011

ZEN14
Machine
learning
(MTE)

WB
P, Ta, R, PS, Vp,

W, Fw, Ff,
NDVI

0.5◦ × 0.5◦ monthly 1982–2013

ZHA15 P–LSH - Ta, R, Vp, W,
CO2, NDVI 8 km × 8 km monthly 1982–2013

ZHA16 PML model
Gash model

WB, EC, field
experiments for

validation

P, Ta, Vp, R, W,
LAI, Ve, Va

0.5◦ × 0.5◦ monthly 1981–2012

GLEAM
Revised

Priestley–Taylor
Equation

EC, soil
moisture sensors

for validation

R, P, Ta, SWE,
VOD, SM 0.25◦ × 0.25◦ daily 1980–2012

2. Materials and Methods

2.1. Five Long-Term Global Remote Sensing ET Products Covering the Period 1982 to 2011

Five global remote sensing ET products, i.e., JUN10, ZEN14, ZHA15, ZHA16, and GLEAM,
were used in this study (Table 1). These five products were chosen for comparison because of their
longer spanning period (from 1982 to 2011), while other products, such as LandFlux-EVAL and MOD16,
can not cover a period as long as 30 years [14,32].

JUN10 is a data-driven monthly ET product at a 0.5◦ resolution from 1982 to 2008 [1]. It integrated
ET measurements from the FLUXNET global network with surface meteorological records and satellite
remote sensing observations in a machine learning method (the model tree ensemble, MTE). In the
reconstruction, precipitation (P), air temperature (Ta) and the fraction of absorbed photosynthetically
active radiation (fAPAR) were used as the explanatory variables. Similar to JUN 10, ZEN14 is also
a machine-learning-based ET product, but it is coupled a WB model [29]. Specifically, by combining
basin-scale averaged ET estimates from the Gravity Recovery and Climate Experiment (GRACE)
with the potential drivers (P, Ta, radiation (R), pressure (PS), vapor pressure (Vp), wind speed (W),
wet day frequency (Fw), frost day frequency (Ff) and Normalized Difference Vegetation Index (NDVI)),
ZEN14 established a monthly ET product with a spatial resolution of 0.5◦ between 1982 and 2009.
In this study, the updated versions of JUN10 (spanning from 1982 to 2011) and ZEN14 (1982–2013)
were utilized.

Different from data-driven ET products like JUN10 and ZEN14, ZHA15, ZHA16 and GLEAM
combined process-based algorithms with observations. ZHA15 applied a remote-sensing-driven ET
algorithm, i.e., the Process-based Land Surface Evapotranspiration/Heat Fluxes algorithm (P-LSH) [20].
P-LSH is an improvement of the Penman–Monteith (PM) approach by taking the influence of changing
wind speed and variable atmospheric CO2 concentrations into account. The dataset used in this study
is at eight-kilometer resolution from 1982–2013. Based on the Penman–Monteith–Leuning (PML)
model, ZHA16 produced actual ET and its two components (Et and Es) at a 0.5◦ spatial resolution
during the period 1981–2012 [21]. The rest component, Ei, is modelled using the Gash rainfall
interception model. Emissivity (Ve) and albedo (Va) are also used as forcing data in this product.
GLEAM (Global Land surface Evaporation: the Amsterdam Methodology) estimated global daily
evaporation by combining a variety of satellite products [30,31]. The use of the revised Priestley–Taylor
(PT) equation, which depends only on two inputs (net radiation (Rn) and air temperature), reduces the
number of model variables. To objectively compare these products, all datasets were resampled to
0.25◦ spatially and the study period was limited to 1982–2011.
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2.2. Eddy Covariance Data

To validate the different remote sensing products at site scale and to investigate the ET response to
deforestation, EC data from two sources were used (Figure 1 and Table 2). The first one is the LBA-ECO
CD-32 Flux Tower Network Data Compilation (Brazilian Amazon: 1999–2006), provided by independent
investigators after automated and manual quality control [33]. Four sites, i.e., tropical rainforest site
K34, tropical moist forest site K67, tropical dry forest site RJA and pasture site FNS, were chosen in this
study. The data are monthly with some missing values, so the annual ET was calculated as the sum
of the average monthly ET. When assessing the accuracy of each model at site level using EC data,
only the months with EC data were compared, as we do not fill the gap. We also gathered an annual
ET record of Sinop site from Vourlitis et al. [34]. The site is located in the semi-deciduous forest in
Brazil and the annual record spans from 2000 to 2006.
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Figure 1. Locations of the five tropical eddy covariance sites in the Amazon.

Table 2. Main characteristics of the five sites in the study.

Site name Vegetation
Description Latitude Longitude Period of Data used

Santarém km 67 (K67) Tropical Moist Forest 2.86◦ S 54.96◦ W Jan 2002–Jan 2006
Manaus KM34 (K34) Tropical Rainforest 2.61◦ S 60.21◦ W Jul 1999–Oct 2006
Reserva Jaru (RJA) Tropical Dry Forest 10.08◦ S 61.93◦ W Mar 1999–Nov 2002

Fazenda Nossa Senhora (FNS) Pasture 10.76◦ S 62.36◦ W Feb 1999–Mar 2002
Sinop-Mato Grosso (Sinop) Semi-deciduous Forest 11.41◦ S 55.32◦ W 2000–2006

2.3. Evapotranspiration Calculation Using Water Balance Method

To assess the magnitude of ET estimated by the five remote sensing ET products at watershed
level, the WB method was used to calculates ET as

ET = P−Q− dw/dt (1)

where P is precipitation, Q is the measured discharge, and dw/dt is the terrestrial water storage change
(TWSC). In the long term, TWSC is negligible for average annual ET at basin scale [6], and Equation (1)
can be simplified as ET = P − R. The average annual ET for a watershed is thus calculated as the
residual between mean annual precipitation and runoff (P minus Q).

In this study, precipitation is estimated using two datasets. Firstly, the Global Precipitation
Measurement (GPM) IMERG V06 product from NASA was used (https://pmm.nasa.gov/data-access/
downloads/gpm). Based on the success of the Tropical Rainfall Measuring Mission (TRMM) [35],
this new generation of GPM precipitation products features higher precision, larger coverage area
and higher spatial and temporal resolution through improvements in the precipitation measurements
world-wide. However, the precipitation data provided by GPM only starts from 2000, which does

https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
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not cover the whole research period. As an alternative, the Global Precipitation Climatology Center
(GPCC) 0.5-grided Full Data Product was used (https://climatedataguide.ucar.edu/climate-data/gpcc-
global-precipitation-climatology-centre) [36]. This product provides monthly gridded precipitation
data for the period 1891 to 2016, which is derived from 67,200 stations globally with a record duration
of at least 10 years [37,38]. However, GPCC data also has a limitation. The number of stations in each
grid in GPCC is variable over time and can be a major inhomogeneity source. In order to make full
use of these two datasets, the GPCC dataset is mainly used in this study, while the GPM dataset was
utilized to validate the quality of the GPCC product. Specifically, the annual precipitation between
the year 2002 and 2012 from both GPM and GPCC were compared. As shown in Figure 2a, these two
datasets have good correlation, with R2 of 0.995, which enables the reconstruction of GPM-based
annual precipitation between 1982 and 1999.
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Figure 2. (a) Annual precipitation from Global Precipitation Measurement IMERG V06 (IMERG V06)
vs. precipitation from Global Precipitation Climatology Center (GPCC). (b) Gauged annual discharge
from HYBAM vs. annual discharge from Global Reach—level A priori Discharge Estimates for Surface
Water and Ocean Topography (GRADES). The solid line represents the linear regression and the dash
line is the 1:1 line.

In terms of discharge, due to a lack of in situ discharge measurements at the downstream of the
Amazon River, it is difficult to directly determine the discharge of the whole basin. As an alternative,
a reconstructed discharge record, Global Reach—level A priori Discharge Estimates for Surface
Water and Ocean Topography (GRADES), is used [39]. GRADES estimates global river discharge at
2.94 million reaches at very high resolutions, and the estimates were constrained by thousands of
gauge observations globally. In order to validate the accuracy of the GRADES discharge estimates,
we first made a comparison between the gauged and modeled discharge over the Obidos sub-basin,
where the measured discharge is available. Discharge data from Obidos, the control gauging station of
the upstream stream, is from SO HYBAM (http://www.ore-hybam.org/index.php/eng/Data). As shown
in Figure 2b, the R2 is 0.681, demonstrating the robustness of the data record for use in the Amazon
River basin. Therefore, after the validation, we expanded the use of the GRADES discharge to the
whole basin.

2.4. Climate Drivers of ET

Two climate drivers were analyzed in this study.
Most parts of the Amazon are energy-limited and ET is highly correlated with Rn [1,22]. Since ET

is part of Rn, we wouldn’t call Rn a “direct” driver. Instead, downward shortwave is considered as

https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
https://climatedataguide.ucar.edu/climate-data/gpcc-global-precipitation-climatology-centre
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a “driver”. In this study, monthly averaged surface net solar radiation data is from ERA5-Land [40],
a reanalysis dataset that provides a detailed record of land variables (https://cds.climate.copernicus.eu/).

Besides, atmospheric evaporative demand is affected by radiation, humidity, air temperature,
and wind speed [41]. Given the availability of data, air temperature is chosen to reflect the response
of ET to atmospheric evaporative demand. In this study, gridded monthly air temperature data
(0.5◦ × 0.5◦) is from the Climatic Research Unit (CRU) [42] (http://badc.nerc.ac.uk/data/cru/).

2.5. Vegetation Greenness Proxy

Vegetation is an important determinant of ET. In this work, LAI, the ratio of the total leaf area of
plants to the land area on a certain land area, is chosen to reflect the vegetation condition [43]. It is
often utilized to describe the vegetation canopy structure, especially in the Amazon River basin, as it
controls various biological and physical processes of vegetation. LAI data from 1982 to 2011 were
obtained from Zhu et al. [44]. It was based on GIMMS_LAI-FPAR3g version 2 product. The resolution
for this dataset is monthly temporally and eight kilometers spatially.

2.6. Land Cover Change

Due to the increasing urbanization and agricultural development, the maintenance of the Amazon
forests is threatened by the land cover change during the past 30 years. This kind of conversion from
“forest” into “non-forest” is known as deforestation [45]. To reflect the land cover change during the
past 30 years in the Amazon River basin, we chose the ESA-CCI-LC data, which is provided by the
Climate Change Initiative (CCI) lead by the Europe Space Agency (ESA). Consistent annual global
land cover (LC) maps at a 300 m spatial resolution from 1992 to 2015 were delivered by the CCI-LC
project [46]. The core of the deforestation research is the definition of forest. In this study, regions with
the class code 50, 60, 61, 62, 70, 71, 72, 80, 81, 82, 90, 100, 160 or 170 were defined as forest areas
according to the legend system. The land cover condition in the year 2011 was then compared with that
in 1992. If the percentage of forest in a pixel (resampled to 0.25◦ × 0.25◦) decreased by 20%, then the
pixel is defined as deforestation.

To investigate the ET response to changing environment and/or vegetation conditions, ET over
the regions with and without change are compared. In the definition of regions with significant
change in a certain driver (i.e., surface net solar radiation, temperature and LAI), a robust multi-linear
regression and the Mann–Kendall (MK) non-parametric test were used to estimate and test the temporal
trends [47,48]. To remove the geographical impacts, we calculated the ET values over the corresponding
buffer zone of the changed region. The buffer zone is a neighboring region with a similar size and,
on average, the same latitude, so that the comparison is reasonable.

3. Results and Discussions

3.1. Validation of the Global Remote Sensing ET Products

3.1.1. Validation Using Eddy Covariance Data at Site Level

To validate the five long-term global remote sensing ET products, ET estimates over the pixels
where the EC sites are located were extracted from the five products and compared with the ground-truth
data from four EC sites (Figure 3). In general, the performances of these ET products are better over the
forest sites, as most of the ET estimates are in the uncertainty range of ground-observed ET over site
K34, K67 and RJA, while all the ET estimates are overestimated by the five products over the pasture
site FNS.

https://cds.climate.copernicus.eu/
http://badc.nerc.ac.uk/data/cru/
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Amazon River basin: (a) Santarém km 67 (K67) (b) Manaus KM34 (K34) (c) Reserva Jaru (RJA) and
(d) Fazenda Nossa Senhora (FNS) and ET estimates from five products at pixel level.

Over the three forest sites, JUN10 has the best performance with all the ET estimates within the
uncertainty range, followed by ZHA16 (two sites) and ZHA15 (one site). By contrast, ZEN14 and
GLEAM tend to overestimate ET. This discrepancy is associated with the algorithm and ground-based
measurements used by various products. JUN10 combines EC data in the reconstruction and ZHA16
used EC data for validation, while ZEN14 is based on WB method. As for the variability, JUN10 has
largely underestimated the variation while ZEN14 overestimated it.

3.1.2. Validation Using Water Balance Method at Watershed Scale

Average annual ET (1982–2011) over the whole Amazon basin were reconstructed by five products
(Figure 4). The largest annual ET was reported by GLEAM, up to 1270 ± 22 mm/year, followed by
ZHA15 (1255 ± 18 mm/year) and ZEN14 (1239 ± 82 mm/year). ZHA16 and JUN10 produced a relatively
lower estimate, 1164 ± 28 mm/year and 1113 ± 10 mm/year. The arithmetic mean of the annual ET over
the Amazon from 1982 to 2011 reported by these five products is 1208 mm/year. This estimate agrees
well with the previous studies, which reported a mean annual ET of 767–1642 mm/year over the entire
Amazon River basin [49].

The result is relatively higher than the magnitude produced by the WB method. In this study,
the multi-year (1982–2011) average input of water through rainfall is 2249 mm/year and the output
is 1119 mm/year, so the estimated basin-scale annual ET is 1130 mm/year. According to Zhang et al.,
Amazon ET is around 1153 mm/year and rainfall is about 2160–2182 mm/year during the period
1984–2010 [50]; Pan et al. estimated the Amazon ET to be around 1145 mm/year and rainfall 2173 mm/year
between 1984 and 2006 [51]. It seems that JUN10 and ZHA16 have better performance in the magnitude
estimation. The former also performs well at site level. ZHA16 produces a lower ET estimate that
is close to the WB-based magnitude because it considers the WB based ET estimates over Amazon.
It should be noted that even though it is based on WB, ZEN14 still overestimates ET over the Amazon.
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3.2. Changes of ET for 1982–2011 from the Global Remote Sensing ET Products

3.2.1. Inconsistent Estimates of the Trend of ET

Despite the similar magnitudes, the multi-year (1982–2011) ET trends estimated by five remote
sensing products over the Amazon River basin lack consistency (Figure 5a). The maximum rate
of increase in ET was reported by ZEN14, up to 76.4 mm/year per decade, followed by ZHA15
(9.0 mm/year/decade). Both of these upward trends were statistically significant (P < 0.05). By contrast,
GLEAM reported a significant ET decrease, up to −21.2 mm/year per decade. JUN10 also estimated
a downward trend, although it is not statistically significant. It is interesting to see that the trend
reported by ZHA16 is completely different from others. During the period of 1982 to 1998, ET over the
Amazon River basin increased dramatically, with a linear trend of 49.6 mm/year per decade. However,
a turning point appeared in 1998. After that, ET began to drop significantly (35.0 mm/year/decade).

3.2.2. Spatial Pattern of ET

The spatial distribution of the multiyear (1982–2011) average annual ET from the five global ET
products is shown in Figure 5. As can be seen from the figure, there are some similarities among
the estimates of ET from the five products. Nearly all products reported the lowest annual mean ET
alongside the southwest of the Amazon River basin. In addition, for each product, the highest annual
ET occurs in the areas near the equator, specifically, between 5◦ N and 5◦ S. However, it is clear to see
that large discrepancies exist in the spatial pattern of the multiyear average annual ET. In general,
ET estimates from ZEN14 and GLEAM are higher than those from the other three (JUN10, ZHA15 and
ZHA16). These two products also show large spatial heterogeneity over the whole basin, whereas ET
presented by the other three products were more evenly distributed in space. It should be noted that
ZEN14 produced a high estimate of ET (above 1400 mm/year) in the southeast of the Amazon River
basin, which is quite different from the results from other products.
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Figure 5. Basin-average multi-year trend of ET(a1–a5), spatial pattern of multi-year average ET(b1–b5)
and ET trends (c1–c5) between the period 1982–2011 in the Amazon River basin from (1) JUN10,
(2) ZEN14, (3) ZHA15, (4) ZHA16, and (5) GLEAM. Details of the five products can be found in Table 1.
Dots in (c1–c5) represent significant trend (P < 0.05).

3.2.3. Spatial Pattern of ET Trend

In terms of the spatial distribution of ET trends, both similarities and discrepancies are examined.
Nearly all products reported a significant decreasing trend in the southern part of the Amazon River
basin, whereas ZHA15 presented an upward trend over the entire basin, leading to the significant
basin-scale increasing trend. ZEN14 reported the sharpest upward trend, more than 200 mm/year per
decade, in the northwest of the basin. However, according to GLEAM and JUN10, Amazon experienced
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a remarkable ET decline in this region. Even between these two products, the estimates of the ET
trend are different. The former reported a declining trend in the majority of the Amazon River basin,
resulting in a significant downward basin-scale ET trend. By contrast, JUN10 presented a rising trend
in the southeast, which neutralized the declining trend in the northwest.

In order to figure out the reason for the discrepancies between the ET estimates reported by
the five global remote sensing ET products, four hypotheses were put forward to examine these
products’ capability to reflect the response of ET to different factors (brightening, warming, greening
and deforestation). Details can be found in Sections 3.3–3.6.

3.3. H1: Brightening Leads to Higher ET—Not Evident across Different Products

By slope analysis and MK significance detection, it is found that brightening mainly occurred in the
western parts of the Amazon River basin. Long-time series of ET in the brightening regions (ETbright)
and that over the buffer zone (ETbright_buf) from the five products were compared (Figure 6b–f).
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Figure 6. Response of ET to brightening. (a) Distribution of brightening regions in the Amazon
River basin between 1982 and 2011 and the corresponding buffer zone (shown in the insert plot).
(b–f) Annual average ET over the buffer zone (ETbright_buf, blue line) and that over the brightening
regions (ETbright, red line) were compared using five products. Grey bar is the difference between
ETbright and ETbright_buf (ETbright minus ETbright_buf). Z statistic is the Z value of the MK analysis of
the difference.

Theoretically, brightening means less cloudiness and more sunlight, which lead to more
photosynthesis. As a result, the time when the stomata are open is more, meaning more ET from
transpiration. As Et dominates ET (more than 60%) [52–54], its growth will increase ET.

According to this hypothesis, the gap between ETbright and ETbright_buf (ETbright minus ETbright_buf)
should be increasingly wider. However, as shown in Figure 6b–f, the differences reported by the five
products are becoming significantly narrow, indicating that none of the products performed well in
reflecting the response to brightening. This kind of misrepresentation may result from the driving
factors chosen by different products. Four of the products, except for ZHA15, included precipitation
as the forcing data of their algorithms. However, according to previous studies [1,22], net surface
radiation, rather than precipitation, is the primary determinant of ET in the Amazon basin. The soil is
always wet over the Amazon, meaning little influence on soil water moisture caused by precipitation.
As for ZHA15, although it included radiation as an input, uncertainty still arises as the global net
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radiation product may have large uncertainty over the Amazon basin, where satellite precipitation
products may reflect radiation better.

3.4. H2: Warming Results in the Increase in ET—Evident in All Five Products

By means of the same methods mentioned above, regions experiencing air temperature increase
(warming) and decrease (cooling) were detected. As shown in Figures 7a and 8a, the majority of the
Amazon River basin (the north-east) saw a statistically significant increase in the long-term annual air
temperature, whereas only the southern part experienced a significant decline.
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(ETwarm_buf) were compared. Obviously, the magnitude of the former was much larger than that of the 
latter, no matter which product was chosen (Figure 7b–f). We further analyzed the trend of the 
difference between ETwarm and ETwarm_buf (ETwarm minus ETwarm_buf). According to the MK analysis, a 
significant upward trend of the difference was detected according to ZEN14, ZHA15 and ZHA16, 
with Z values greater than 1.69 (p < 0.05). The other two products also presented similar trends, but 
the trends are not significant. That is to say, ET over the warming regions increased faster than ET 

Figure 7. Response of ET to warming. (a) Distribution of the warming in the Amazon River basin
during the period from 1982 to 2011 and the corresponding buffer zone (shown in the insert plot).
(b–f) Annual average ET over the buffer zone (ETwarm_buf, blue line) and that over the warming regions
(ETwarm, red line) were compared using five products. Grey bar is the difference between ETwarm and
ETwarm_buf (ETwarm minus ETwarm_buf). Z statistic is the Z value of the MK analysis of the difference.

The averaged ET over the warming regions (ETwarm) and that over the corresponding buffer zone
(ETwarm_buf) were compared. Obviously, the magnitude of the former was much larger than that of
the latter, no matter which product was chosen (Figure 7b–f). We further analyzed the trend of the
difference between ETwarm and ETwarm_buf (ETwarm minus ETwarm_buf). According to the MK analysis,
a significant upward trend of the difference was detected according to ZEN14, ZHA15 and ZHA16,
with Z values greater than 1.69 (P < 0.05). The other two products also presented similar trends, but the
trends are not significant. That is to say, ET over the warming regions increased faster than ET over
the buffer zone. This performance seems to be reasonable. In theory, with higher air temperature,
evaporation intensified as water molecules can get more energy that allows them to escape from the
liquid surface [55]. In addition, transpiration is also affected by air temperature.
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Figure 8. Response of ET to cooling. (a) Distribution of the air temperature decline in the Amazon River
basin from 1982 to 2011 and the corresponding buffer zone (shown in the insert plot). (b–f) Annual
average ET over the buffer zone (ETcool_buf, blue line) and that over the air temperature -decline regions
(ETcool, red line) were compared using five products. Grey bar is the difference between ETcool and
ETcool_buf (ETcool minus ETcool_buf). Z statistic is the Z value of the MK analysis of the difference.

Using the same methods, we compared ET over the cooling regions (ETcool) and its corresponding
ETcool_buf. It is clear that ETcool was much lower than ETcool_buf and the difference between these two
is becoming larger (Figure 8b–f), suggesting that ET over the cooling regions declined much more
quickly than that over the corresponding buffer zone. It agreed well with our hypothesis that lower air
temperature reduces ET. Overall, all five products can respond to the changes in air temperature.

It should be noted that factors influencing atmospheric evaporative demand are more than just
air temperature. Generally speaking, higher air temperature, lower humidity, greater wind speed
and lower pressure can all increase atmospheric evaporative demand [56]. In this case, if only air
temperature was considered as the surrogate for atmospheric evaporative demand, uncertainty may
arise and the product may overestimate the response of ET to warming [57]. However, the Amazon
is a different thing. The canopy is too dense, so wind speed only influences the top of the canopy;
relative humidity (RH) is always “high”, so it is also not a factor.

3.5. H3: Vegetation Greening Promotes Increase in ET—Evident in Two Products

Terrestrial vegetation is also an important determinant of terrestrial ET, which links soil moisture
to the atmosphere through roots and leaf stomata [13]. Using the methods mentioned above, the area
with a significant LAI increase was defined (greening). As shown in Figure 9a, greening is significant
and extensive in the northern and western parts of the Amazon River basin, indicating that vegetation
growth has significantly enhanced in these regions over the past 30 years. Many reasons may account
for the increase in LAI, such as increasing CO2 fertilization effect, global warming, nitrogen deposition
and land cover change [28].
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(ETgreen, red line) were compared using five products. Grey bar is the difference between ETgreen and
ETgreen_buf (ETgreen minus ETgreen_buf). Z statistic is the Z value of the MK analysis of the difference.

Long-time series of ET, in the greening regions (ETgreen) and over the buffer zone (ETgreen_buf),
from the five products were compared (Figure 9b–f). In theory, vegetation greening may lead to higher
ET, as more vegetation means more leaf stomata, which enables more movement of water vapor and
other gases through diffusion (Et) [58]. On the other hand, higher LAI also means more shading
of the land surface, as well as less land–atmosphere connection [21], which may reduce the direct
evaporation from the soil (Es). Due to the unclear understanding of the ET partitioning (the ratio of
Et to ET), we cannot conclude that greening leads to higher ET directly. However, as Et dominates
ET (more than 60%) [52–54], we can assume that greening intensifies terrestrial ET. Based on this
hypothesis, the difference between ETgreen and ETgreen_buf should become increasingly wider. As can
be seen from Figure 9, only ZEN14 and ZHA16 presented such a trend, which demonstrated their
capability to reflect the response of ET to greening in the Amazon River basin.

Nevertheless, it should be noted that apart from LAI, there are some other indices that can
represent the changes in physiological characteristics of vegetation, such as the NDVI and fAPAR [43].
Almost all these global remote sensing ET products utilized only one or two indices, which may lead
to a large discrepancy in our analysis. Specifically, ZHA15 used LAI as the vegetation driver, which is
the same as the index used in this study. In contrast, JUN10 used fAPAR; ZEN14 and ZHA16 used
NDVI. Despite the relatively better performance in reflecting the ET response to greening in this study,
NDVI should be treated with caution when used in tropical areas. According to previous studies [59],
NDVI has a limitation due to “saturation effect” in tropical areas, where vegetation is dense (LAI > 1).
Under this circumstance, the reflectance of the red band remains insensitive and nearly unchanged with
increased leaf area index. As a result, NDVI becomes saturated when the red band starts to saturate.

3.6. H4: Deforestation Results in a Decrease in ET—Not Evident across All Five Products

By comparing the land cover in the year 1992 and 2011, the deforestation area was defined.
As can be seen from Figure 10a, deforestation mainly occurred in the southeastern part of the Amazon
River basin. Many reasons may account for the extensive deforestation, such as cattle and soybean
production and urbanization [28].



Remote Sens. 2020, 12, 2211 14 of 19

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 19 

 

River basin. Many reasons may account for the extensive deforestation, such as cattle and soybean 
production and urbanization [28]. 

 
Figure 10. Response of ET to deforestation. (a) Distribution of deforestation in the Amazon River basin 
during the period from 1992 to 2011 and the corresponding buffer zone (shown in the insert plot). (b–
f) Annual average ET over the buffer zone (ETdef_buf, blue line) and over the deforestation regions 
(ETdef, red line) were compared using five products. Grey bar is the difference between ETdef and 
ETdef_buf (ETdef minus ETdef_buf). Z statistic is the Z value of the Mann–Kendall (MK) analysis of the 
difference. 

The number of deforestation pixels in the four stages were counted (Figure 11a). During the past 
19 years, there were 687 pixels (0.25° × 0.25°) in total experiencing deforestation. To simplify the 
calculation, we treated 0.25° as 25 kilometers and estimated the total deforestation area of 429,375 
km2 (1992–2011). The result is in line with that of Eric et al. [24], which reported a deforestation area 
of 383,000 ± 15,500 km2 from 1995 to 2017. Besides, the deforestation rate in each stage is different, 
with the highest between 2003 and 2007. After 2008, deforestation slowed down, which may be 
explained by the policies implemented by Brazil in 2004, with the purpose of deforestation reduction 
and conservation promotion [25]. 

Annual ET measured by EC sites were compared as well. As shown in Figure 11b, ET over the 
moist forest (K67) is highest, up to 1120 mm/year, followed by rainforest (K34, 1105 mm/year) and 
dry forest (RJA, 1043 mm/year). By contrast, ET of the semi-deciduous forest (Sinop) and pasture 
(FNS) are much lower, only 966 and 785 mm/year. In order to quantify the influence of deforestation 
on ET, we calculated the difference between the annual ET of forest and that of pasture as the effects 
of deforestation (conversion from “forest” into “pasture”). To simplify the calculation, we used the 
arithmetic mean of the moist forest, rainforest and dry forest as the mean annual ET of forest and the 
value is 1089 mm/year. The difference (304 mm/year) indicates that deforestation leads to the ET 
reduction of 304 mm/year per unit. The result is in agreement with Paca’s finding, which showed that 
ET is highest for dense forests and much lower in bare areas and mosaic grassland [9]; land use 
converting from “forest” into “non-forest”, such as field, agricultural, grazing, and secondary forests, 
reduces ET in the Amazon. 

Figure 10. Response of ET to deforestation. (a) Distribution of deforestation in the Amazon River
basin during the period from 1992 to 2011 and the corresponding buffer zone (shown in the insert
plot). (b–f) Annual average ET over the buffer zone (ETdef_buf, blue line) and over the deforestation
regions (ETdef, red line) were compared using five products. Grey bar is the difference between ETdef

and ETdef_buf (ETdef minus ETdef_buf). Z statistic is the Z value of the Mann–Kendall (MK) analysis of
the difference.

The number of deforestation pixels in the four stages were counted (Figure 11a). During the
past 19 years, there were 687 pixels (0.25◦ × 0.25◦) in total experiencing deforestation. To simplify the
calculation, we treated 0.25◦ as 25 kilometers and estimated the total deforestation area of 429,375 km2

(1992–2011). The result is in line with that of Eric et al. [24], which reported a deforestation area of
383,000 ± 15,500 km2 from 1995 to 2017. Besides, the deforestation rate in each stage is different,
with the highest between 2003 and 2007. After 2008, deforestation slowed down, which may be
explained by the policies implemented by Brazil in 2004, with the purpose of deforestation reduction
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Figure 11. (a) Deforestation area in the four stages between 1992 and 2011 over the Amazon River
basin. (b) Annual ET from the five eddy covariance sites.

Annual ET measured by EC sites were compared as well. As shown in Figure 11b, ET over the
moist forest (K67) is highest, up to 1120 mm/year, followed by rainforest (K34, 1105 mm/year) and
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dry forest (RJA, 1043 mm/year). By contrast, ET of the semi-deciduous forest (Sinop) and pasture
(FNS) are much lower, only 966 and 785 mm/year. In order to quantify the influence of deforestation
on ET, we calculated the difference between the annual ET of forest and that of pasture as the effects
of deforestation (conversion from “forest” into “pasture”). To simplify the calculation, we used the
arithmetic mean of the moist forest, rainforest and dry forest as the mean annual ET of forest and
the value is 1089 mm/year. The difference (304 mm/year) indicates that deforestation leads to the ET
reduction of 304 mm/year per unit. The result is in agreement with Paca’s finding, which showed
that ET is highest for dense forests and much lower in bare areas and mosaic grassland [9]; land use
converting from “forest” into “non-forest”, such as field, agricultural, grazing, and secondary forests,
reduces ET in the Amazon.

According to this theory, ET over the deforestation area (ETdef) grows more slowly than that
over the buffer zone (ETdef_buf), resulting in a larger gap between ETdef and ETdef_buf. As shown in
Figure 10b–f, the differences reported by the five products presented no such patterns. Besides, if the
magnitude of the difference between ETdef and ETdef_buf was taken into consideration, we can conclude
that none of these products performed well. As mentioned above, deforestation during the period
1998–2002 and 2003–2007 was more extensive, indicating a larger reduction in ET. However, none of
these three remote sensing ET products can capture such a dynamic variation.

To conclude, no global ET reconstructions used in this study respond well to deforestation. It is
probably because none of these remote sensing products truly took land cover change into account,
although ZHA15 claimed that it considered the effect of land use and irrigation on ET by using
the satellite-observed NDVI data, which can account for the effect of local perturbations to some
extent [20]. This argument may not be completely correct, as NDVI can only represent the condition of
the un-affected vegetation, rather than the conversion from forest to non-forest.

4. Conclusions

In this study, we investigated the reliability of global remote sensing ET products over the Amazon
River basin. The magnitude of ET is evaluated using eddy covariance data at site level and using a water
balance method at basin scale. At site level, the performances of these ET products are better over the
forest sites than over the pasture site. As for the magnitude, at both site level and basin scale, JUN10 has
the best performance, followed by ZHA16, highlighting the importance of local measurement in the
ET reconstruction. However, as for the variability, JUN10 has largely underestimated the variation
while ZEN14 overestimated it.

In terms of the long-term change, the five global ET reconstructions produced divergent ET trends
over the past 30 years (i.e., ZEN14 and ZHA15, significant increase; GLEAM, significant decrease;
JUN10, decrease, not significant; ZHA16, decrease after increase until 1998). In addition, the spatial
distributions of ET and ET trends estimated by the five remote sensing products lack consistency.

In order to figure out the potential reason for the discrepancies between the ET estimates
reported by the five global remote sensing ET products, four hypotheses were put forward to examine
these products’ capability to reflect the response of ET to different factors (brightening, warming,
greening and deforestation). In general, these ET products respond better to warming and greening
than to brightening and deforestation. The misrepresentation of ET response to deforestation may be
explained by the fact that none of these five remote sensing products take the influence of deforestation
into account. As for the specific product, ZEN14 and ZHA16 perform better, as they can respond
well to three out of five factors (warming and cooling are treated as two different factors). Given the
large uncertainties, the trend and pattern of ET over the Amazon River basin are still uncertain,
which highlights the need for future tailored studies focusing on ET issues there.

There are a few points that deserve further study. First, GRACE data may be useful to improve
the water balance method based estimate of ET by incorporating observations for the terrestrial water
storage anomalies (TWSA). Second, updated precipitation and discharge reconstructions, as well as the
ongoing flux tower observations, may be useful to evaluate and constrain the previous data-driven ET
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data sets. Besides, more spatial and temporal analyses will focus on the regions with different changes
in precipitation, net radiation, and vegetation coverage and activity. With sufficient observation
data, we will construct a regional water-balance-based ET model in South America. In addition,
future work can use advances in downscaling that have resulted in high resolution soil moisture
data sets using a combination of active and passive sensors [60,61] or visible and near infra-red
sensors [62–64]. These high soil moisture data sets used in conjunction with meteorological inputs
and hydrological models can help estimate evapotranspiration at high spatial resolution and temporal
repeat. Yet, we believe this is a pilot study to highlight the divergent patterns of ET estimates across
the Amazon River basin, upon which future refined analyses can be performed.
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