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Abstract: Interpreting 3D point cloud data of the interior and exterior of buildings is essential for
automated navigation, interaction and 3D reconstruction. However, the direct exploitation of the
geometry is challenging due to inherent obstacles such as noise, occlusions, sparsity or variance in
the density. Alternatively, 3D mesh geometries derived from point clouds benefit from preprocessing
routines that can surmount these obstacles and potentially result in more refined geometry and
topology descriptions. In this article, we provide a rigorous comparison of both geometries for scene
interpretation. We present an empirical study on the suitability of both geometries for the feature
extraction and classification. More specifically, we study the impact for the retrieval of structural
building components in a realistic environment which is a major endeavor in Building Information
Modeling (BIM) reconstruction. The study runs on segment-based structuration of both geometries
and shows that both achieve recognition rates over 75% F1 score when suitable features are used.

Keywords: feature extraction; unsupervised segmentation; classification; machine learning; BIM;
point clouds; mesh

1. Introduction

The automated interpretation of building environments is a major topic in the current literature [1].
Where modelers used to manually identify building components such as structural elements and
furniture, more unsupervised workflows are proposed for scene interpretation [2]. Applications such
as Scan-to-BIM and indoor navigation of autonomous robots heavily rely on rapid scene interpretation,
making its automation highly desired by the industry [3].

The interpretation of building environments is typically performed on a set of observations such
as imagery or point clouds. From these inputs, a set of relevant features is extracted which is then used
to classify the observations [4]. Generally, structural elements such as walls and slabs are identified
first after which domain-specific components are detected. Also, because structural elements have
more distinct geometry than visual characteristics, the classification is typically performed on the
metric data [5]. Currently, researchers have nearly exclusively worked on point cloud data acquired
from Terrestrial Laser Scanning (TLS), Indoor Mobile Mapping Systems (IMMS) or RGBD sensors [6].
However, researchers have reported that the noise, occlusions, uneven data distribution and sparsity
of point clouds can lead to severe misclassifications [4,7,8]. Alternatively, mesh geometry is becoming
more accessible for building geometry due to the recent advancements in speed, correctness and
detailing of meshing operations [9]. Meshes are not hindered by the above obstacles in point cloud
data and thus could potentially improve the detection rate [10]. However, researchers typically
generate features from their raw input data and overlook the geometry representation opportunities
despite their obvious impact on the feature extraction. As a result, there currently is a gap in the

Remote Sens. 2020, 12, 2224; doi:10.3390/rs12142224 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0001-8526-8847
https://orcid.org/0000-0003-3465-9033
https://orcid.org/0000-0001-6368-4399
http://www.mdpi.com/2072-4292/12/14/2224?type=check_update&version=1
http://dx.doi.org/10.3390/rs12142224
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2020, 12, 2224 2 of 26

literature investigating the impact of geometry representations on the feature extraction in building
environments. The few research papers that do actually compare features mostly focus on the impact
of features on the result without considering the geometry representation [11–13]. In this research, we
specifically target the comparison of mesh segments to point cloud segments, providing a much-needed
empirical study for building interpretation. We extend on the unsupervised segmentation frameworks
proposed in [14,15] for both point cloud and 3D mesh geometries. In summary, the method’s main
contributions are:

1. A theoretical comparison between mesh-based and point-based geometries for classification
2. An empirical study that compares both approaches in terms of feature discriminativeness,

distinctness and classification results
3. An implementation of frequently used building classification features and the validation on the

Stanford 2D-3D-Semantics Dataset (2D-3D-S).

The remainder of this work is structured as follows. The background and related work is presented
in Section 2. In Section 3 we propose a methodology for extracting pertinent features designed for
efficient classification. The workbench design and experimental results are given in Section 4 and
discussed in Sections 5 and 6. Finally, major conclusions are presented in Section 7.

2. Background and Related Work

The typical procedure to interpret building geometry is to first acquire a set of relevant
observations, followed by one or more preprocessing steps to transform the raw data to a set of
useful inputs i.e., mesh segments or voxel octrees. Next, a set of features is extracted from every
observation which is then fed to a classification model that computes the most adequate class label.
The geometry definitions, feature extraction and classification state of the art are discussed below.

2.1. Geometry Representations

Both point cloud data and meshes have different geometry representations depending on the
type of data acquisition system and algorithm that is used to generate them. For point cloud data,
there are the structured and unstructured databases. The representation and processing of the
former is very efficient due to its structure, making it highly desired by navigation and interaction
applications [16,17]. A major advantage of these raw data structures is the inherent sensor information
that is present in the point cloud. The relative location and orientation of the sensor is known in
relation to the points and thus this information can be used for improved scene interpretation and for
the feature extraction [18–20]. However, the feature extraction is contained per setup location, which
severely limits the amount of information (and thus features) that can be extracted from the scene.
These approaches are also bound to a specific sensor which limits the applicability.

In contrast, there are unstructured point clouds which represent the entire scene as an arbitrary
collection of Cartesian points. As this is not efficient for processing, these points are also structured with
octrees [21,22] or hybrid indexing methodologies [23]. Initial octrees had a limited voxel depth due to
the dimensionality (O3) of the nodes but recent advancements in computer graphics such as kd-trees
and sparse voxel octrees can efficiently represent the full point cloud [24,25]. As a result, the entire point
cloud can be simultaneously assessed which a popular approach in the literature [26,27]. The generation
of these octrees is computationally demanding, but since it is a one-time operation, researchers have found
it to be highly efficient. An interesting property of these structures is that the voxels themselves can also
be used as the base input for the feature extraction as presented by Poux et al. [14]. Also, the hierarchical
structure of the data tree is used to compute features for multiple voxel sizes, which is a trade-off between
computational efficiency and the loss of information. This approach is becoming increasingly popular
with researchers such as Yang et al. [28], Wang et al. [29], Riggio et al. [30] and Dimitrov et al. [31] all
exploiting the construct of the octree to initially compute coarse features from the point cloud before
fine-tuning the results using the full resolution of the point cloud.
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Aside from point clouds and related data structures, researchers also rely on mesh geometry as
the base input for scene interpretation. A triangle or quad mesh is a surface representation which
is calculated from the point cloud by sampling or computing a set of vertices and defining faces in
between these points. It is a notably different geometric data representation compared to the point
cloud since a mesh is a construct that deals with noise and occlusions and makes assumptions about
the surface of an object in between the observed points. Any geometric features extracted from a
mesh are therefore inherently different from those extracted from a point cloud which will have an
impact on the scene interpretation. The literature presents several ways to compute mesh geometry
including variations of Poisson, Voronoi and Delaunay concepts [32,33]. The driving factors of a mesh
operation are its robustness to noise and occlusions, speed, detailing and data reduction. Speed and
detailing are inversely proportional and so are detailing and data reduction. A careful balance is to be
retained between detailing, noise reduction and the number of vertices/faces which is a prominent
factor in the computational cost of the feature extraction. In recent years, research in computer graphics
have made spectacular advancements, with methods capable of producing a realistic and accurate
mesh with less than 1% of the points in a matter of minutes [9,34]. There have also been significant
advancements in mesh connectivity and the creation of manifold meshes [35]. A major advantage of
photogrammetric meshes is that the geometry can be texturized using the imagery which allows for the
incorporation of computer vision features which has tremendous potential towards data association
tasks [36]. However, analog to the raster data, image information is not always present along with the
point cloud and thus it is not considered in this research.

There are several important differences between meshes and point clouds for the feature extraction.
A first aspect is the number of observations that must be processed. Less observations indicates less
computational costs, and thus potentially more pertinent feature descriptors. A second aspect is the
normal estimation of the points/faces that lies at the base of many geometric features. Meshes are
continuous smooth surfaces and thus have more reliable normal estimation procedures [37] compared
to point clouds, especially in the vicinity of edges. A third aspect is the data distribution. A point
cloud’s density is typically a function of the distance between an object’s surface and the sensor while
the density of a mesh is a function of the surface detailing. As a result, the point cloud density will be
low in variance and more arbitrary while meshes will consistently have lower density in flat areas,
higher density near curvatures and will have a higher variance. This difference in distribution impacts
the nearest neighbor searches in both datasets but if done properly with adaptive search radii [38] or
adjacency matrices, this does not impact the feature extraction.

2.2. Segmentation

Prior to the classification, researchers typically conduct a segmentation of the geometry to increase
the discriminative properties of the features and to reduce the number of observations. The voxel octree
or mesh is partitioned into a set of segments based on some separation criteria i.e., property similarity,
model conformity or associativity. In recent years, numerous methods have been proposed for efficient
point cloud segmentation including region growing, edge detection, model-based methods, machine
learning techniques and graphical models [14,39–45]. Similar to meshing, speed and detailing are
inversely proportional in these procedures. The type of segmentation has a significant impact on the
feature extraction. Not only do the feature values change in function of the segment’s size, the context
also changes based on the hypotheses of the segmentation. There are segmentation methods that
produce supervoxels based on similar property values purely to reduce the number of observations
without altering the context [46–51]. In contrast, segmentation methods partition the data according
to geometric primitives e.g., planes and cylinders [52,53]. For structural building element detection,
planar or smooth segments are the most frequently used primitives since most of the scene corresponds
well to this model [5,54–56].

In addition to the segment type, there are several other important differences between mesh-based
and point-based segments that impact the feature extraction. A first aspect is the inclusion of noise.
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Meshing operations actively deal with noise while segmentation operations assign points to separate
clusters [57]. As a result, point-based segments typically contain more noise than mesh-based segments
which impacts the feature extraction. A second aspect is the topology between neighboring segments.
Recent meshing operations carefully reconstruct edges and produce properly connected geometry [9].
Neighboring segments are thus connected which improves the contextual features. A third aspect
again is the data distribution between point cloud and mesh segments. Because of the large differences
in face sizes in a mesh segment, the feature extraction should be weighted by the face sizes to compute
the appropriate feature values.

2.3. Feature Extraction

There are numerous geometric features that can be extracted from point clouds and meshes,
ranging from heuristic descriptors to deep-learning information. First, there are the local and contextual
features describing the shape of the objects [4]. The most popular local features are based on the
eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0 and the eigenvectors e1, e2, e3 of the covariance matrix of a support
radius, which in segment-based classification are the faces or points inside the segment [12,58,59].
Recent approaches compute this from a weighted PCA with the geometric median which has proven
to outperform the sample mean [7]. The left column in Table 1 shows the different 3D descriptors that
most classification approaches use. In this work, we do not consider hierarchical local features such
as defined by Wang et al. [60] and Zhu et al. [61] since these typically target supervoxels instead of
segment-based classification.

In addition to these transformation invariant features, it is common in building component
detection to compute several absolute metrics from the segments. Popular features include the segment’s
orientation in relation to the gravity or Z-axis, surface area, dimensions and the aspect ratio [4,5,11,62–65].
The most frequently used features are summarized in the right column of Table 1. Notably, most features
are significantly correlated, hence the need for a proper feature weight estimation. Also, these features
impose several assumptions about the appearance as structural elements. Some researchers go as far
to impose Manhattan-world assumptions on the input data, thus only considering features that target
orthogonally constructed elements in a regular layout [53,55,66–68]. However, this does not coincide
with the scope of this research to study the effects of geometry on general detection approaches.
More advanced features e.g., HOG and SHOT are also proposed but these features are more suited
for object recognition than the semantic labeling of generic structural element classes such as floor,
ceilings and walls [69–72].

Table 1. List of common 3D geometric shape features used for building interpretation.

Eigenvector/Eigenvalues Features Segment Features with Building Logic

change in curvature λ3 z-component of the normal vector e3,z
linearity λ1−λ2

λ1
xy-component of the normal vector e3,xy

planarity λ2−λ3
λ1

Dimensions u, v
scatter or sphericity λ3

λ1
Aspect ratio u

v
omnivariance 3

√
λ1λ2λ3 Centre point Coordinates x, y, z

anisotropy λ1−λ3
λ1

Surface area A

eigenentropy ∑3
i=1 λi ∗ ln λi Density |p|

A
sum of the eigenvalues λ1 + λ2 + λ3

For datasets of interior building environments, shape features alone are typically not sufficiently
discriminative to reliably compute the class labels. Therefore, proximity and topology features are
also proposed which describe the relation between the observed segment and its surroundings.
These features test for frequently occurring object configurations in building environments.
An important factor with these features is the selection of the neighbor reference group. Aside from
k-nearest neighbors, attribute-specific reference groups can be used to test for certain topological
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relations i.e., whether there is a large horizontal segment located underneath a vertical segment that
could indicate a floor-wall relation. As such, several class-to-class configurations can be encoded
based on building logic [8]. While the above-defined relations are man-made descriptors, it is
becoming increasingly popular to generate contextual information by convoluting local features
in neural networks. This shows very promising results in computer vision and the classification of
rasterized data [73,74] since these systems are designed to detect patterns in low-level information
inputs (like RGBD imagery). However, its full potential remains to be unlocked for segment-based
classification since current neural networks require a static set of inputs which is inherently different
from the joint meshes or point clouds of a building. As such, current methods feed man-made features
as a static input to the networks which is the same approach as other classification models.

An interesting strategy is to define the contextual features as pairwise or higher order potentials
as part of a probabilistic graphical model such as a Conditional Random Field [75]. Instead of encoding
the features as unary potentials that only contribute to the label estimation of the observation itself,
CRFs define the conditional probability of the class labels over all the segments. As such, not only do
the shape and contextual relations but also the probability of the class labels themselves contribute
to the estimation of the best fit configuration of the class labels or the most likely class of each
segment individually [76]. This approach has been used in several studies with promising results
e.g., [70,77–80] all use CRFs with promising results. However, these constructs are ideally fit to exploit
label associativity between neighboring segments which is often the case in supervoxels but not for
planar segments that already exploit much of this information during the segmentation step [19,81].
We therefore do not consider these features in this research but rather focus on the commonly used
shape, contextual and topology features in building environments.

In addition to geometric features, the radiometric properties of the remote sensing data can be
exploited i.e., RGB, infrared and even multi-spectral features [82]. This is extensive field of research in
image-based classification [83]. Additionally, the Signal-to-Noise ratio (SNR) of LiDAR systems can be
used as it is significantly influenced by the target object’s material properties such as reflectivity [84].
Both point cloud data and mesh data have access to this information depending on the sensors
that were used to capture the base inputs. Overall, meshes can store this information with a higher
resolution as the full resolution of the inputs can be projected onto the mesh faces.

2.4. Comparison of Feature Extractions

We build on several important works to compare the effects of geometric features. First, there is
the study by Weinmann et al. [12,85] and Dittrich et al. [86] in which the issue is addressed of how to
increase the distinctiveness of geometric features and select the most relevant ones for point cloud
classification. It is stated that point cloud features and class characteristics have significant variance
which require robust classification models such as Random Forests (RF) [87] or Bagged Trees. We also
confirm this in our previous research [8,88] and thus in this work we will also use Bagged trees to test
the features of the inputs. A second study that is very relevant to this work is from Dong et al. [11] who
study the selection of LiDAR geometric features with adaptive neighborhoods for classification. Along
with Garstka et al. [13] and Dahlke et al. [89] they also show that the neighborhood selection has a
significant impact on the feature performance. As this is inherently different for both data presentation,
we propose to focus the comparison on the segment-based features since these segments share the
common building logic by which they are obtained.

Most approaches currently employ the point cloud as the basis for the geometry features
despite several studies showing that the lack of consistent point distributions, holes and noise has
a significant impact on the feature extraction. Lin et al. [7] partially compensate this by introducing
weighted covariance matrices which are a non-issue for mesh geometry. The same applies to
Koppula et al. [90] who attempt to smooth the normal estimation in the presence of noise and edges.
Mesh geometry descriptors do not need such compensation and have proven to produce at least as
promising results as their point cloud counterparts [72,91]. However, a rigorous comparison of both
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geometry representations is currently absent in the literature. Indeed, meshing can be seen as a viable
preprocessing step which lowers the computational cost of the segmentation, feature extraction and
classification while simultaneously increasing the feature discriminativeness and detection rate.

3. Active Methodology

The proposed methodology aims at extracting insights on the potential of feature representation
for two widely used geometric data representation: 3D Point Clouds and 3D meshes. More specifically,
we elaborate on the potential features of both geometries as these are the two most commonly
employed geometry types in the literature. In the paragraphs below, we study both the local and
contextual features that researchers can use for scene interpretation, along with their advantages and
disadvantages.

3.1. Unsupervised Segmentation

Numerous segmentation algorithms are proposed in the literature (Section 2) including iterative
region-growing, model-based methods such as RANSAC, Conditional Random Fields and Neural
Networks. A prominent factor is the choice of region type to segment. Mostly planar regions are
preferred for building interpretation since these typically correspond well to the planarity of the
structural elements of a building. In this research, we consider these flexible regions as the inputs for
both the point cloud and the mesh-based classification because of their versatility to represent building
geometry (Figures 1 and 2).

(a) (b)

Figure 1. Overview of the planar segments produced by the point cloud and meshing region growing.
(a) Point cloud; (b) Segmentation.

Figure 2. Point Cloud Segmentation results on Area 1 of the Stanford 2D-3D-Semantics Dataset
(2D-3D-S) [92].

The main difference is the parameter supervision for the mesh segmentation, whereas the
approach proposed by Poux et al. [14] chosen for the point cloud segmentation is fully unsupervised.
Thus, from raw data to segments, the point cloud is preferred at this step for full automation.
Both datasets are pre-segmented into regions with similar properties. The meshes were processed by
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an efficient region-growing algorithm developed in previous work [93] that extracted smooth surfaces.
The point clouds were clustered in an unsupervised fashion following the work of Poux et al. [14].

3.2. Segment-Based Feature Extraction

The obtained segments constitute the base for the feature extraction. These are referred to as
region-based or segment-based features similar to [43] and obtain more distinct features. Three types
of features are used in this research i.e., shape, proximity and topology features. Each type is
explained below.

3.2.1. Shape Features

Shape features encode information about the segment itself and its surroundings. As such,
it includes both local and contextual information. The local characteristics such as the surface area
are an important queue for the presence of structural elements. Also, the dimensions and the aspect
ratio give information concerning the shape of the object [4] e.g., long slender segments have a higher
probability of being a beam. In indoor datasets, local features alone generally do not have sufficient
discriminative power to determine the class labels. Therefore, contextual features are also included
which describe the attributes of a cluster with respect to its surroundings. Typically, relationships are
established with nearby neighbors of the observation. However, higher order neighbors may also be
used along with specific reference groups. Table 2 provides the mathematical notation and graphical
overview of the shape features used in the experiments.

Table 2. Shape features extracted from each mesh/point cloud segment si ∈ S.

Description Definition Feature x ∈ Xsi Representation

Shape: Surface
Area f (si) := Area(si)

Shape:
Orientation f (si) := Z

(−−→
n(si)

)

Shape: Width f (si) := Dimxy(si)
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Table 2. Cont.

Description Definition Feature x ∈ Xsi Representation

Shape: Height f (si) := Dimz(si)

Shape: Normal
similarity

R = peaks
(−−→

n(S)
)

f (si) :=
{∣∣∣−−→n(si) · −→r

∣∣∣ ∣∣∣∣r = argminr∈R

(∣∣∣−−→n(si) · −→r
∣∣∣)}

3.2.2. Proximity Features

These continuous metrics describe the distance of si to specific reference observation r in the
structure that is likely to belong to a certain structural class. For instance, the distance from si to the
border of the nearest large vertical segment is an indicator for a floor-wall or floor-ceiling configuration.
In addition to the size, reference segments are defined based on their orientation and proximity with
respect to si. The concepts formalized in Table 3 correspond to the following intuitive definitions:

1. Distance to the nearest vertical segment: Structural elements typically have their borders near
large non-horizontal segments such as the edges of walls and beams. As such, this distance
between si and a reference segment r differentiates structural from non-structural observations.

2. Vertical distance to the nearest horizontal segment above: Analog to the feature above, structural
elements are more likely to have their borders near large near-horizontal segments such as
floors and ceilings. Together with the feature below, these values are important to identify large
non-structural observations which are prone to mislabeling due to their feature associativity to
structural classes. Instances such as blackboards, closets and machinery are less likely to connect
to a ceiling opposed to wall geometry.

3. Vertical distance to the nearest horizontal segment underneath: This feature supports the above
descriptor as structural objects are typically supported underneath.

4. Average distance to R nearest large segments: This feature encodes the characteristic of structural
elements which are more likely to be connected to multiple significantly large observations.
As they are part of the structure, they are less likely to be isolated from other structural elements.
The average distance to large observations serves as a measure for this characteristic.



Remote Sens. 2020, 12, 2224 9 of 26

Table 3. The proximity features extracted from each si ∈ S with respect to nearby reference segments R.

Description Definition Feature x ∈ Xsi Representation

Proximity:
Coplanar

distance to
parallel segment

R =
{

sj ∈ Sl

∣∣∣ ∣∣∣−−→n(si) ·
−−→
n(sj)

∣∣∣ ≥ tn ∧ d⊥(si, sj) 6= ∅
}

f (si, r) :=
{

d⊥(si, r)
∣∣∣sj ∈ R : r = argminsj

(
d⊥(si, sj)

) }

Proximity:
Distance to the
nearest vertical

segment

R =
{

sj ∈ Sl

∣∣∣Z (−−→n(si)
)
≤ tz

}
f (si, r) :=

{
d(si, r)

∣∣∣sj ∈ R : r = argminsj

(
d(si, sj)

) }

Proximity:
Vertical distance

to the nearest
horizontal

segment above

R =
{

sj ∈ Sl

∣∣∣Z (−−→n(si)
)
≥ tz ∧ dv(si, sj) ≥ 0

}
f (si, r) :=

{
dv(si, r)

∣∣∣sj ∈ R : r = argminsj

(
d(si, sj)

) }

Proximity:
Vertical distance

to the nearest
horizontal
segment

underneath

R =
{

sj ∈ Sl

∣∣∣Z (−−→n(si)
)
≥ tz ∧ dv(si, sj) ≤ 0

}
f (si, r) :=

{
|dv(si, r)|

∣∣∣sj ∈ R : r = argminsj

(
d(si, sj)

) }

Proximity:
Average

distance to n
nearest large

segments

R =

Sj ⊂ Sl

∣∣∣|Sj| ≤ n : Sj = argminSj

 ∑
sj∈Sj

d(si, sj)


f (si, R) := ∑

sj∈R

d(si, sj)

|R|

3.2.3. Topology Features

Several topological relations are also evaluated. These features encode the presence of reoccurring
object configurations within the vicinity of the observed surface. Although they have poor classification
capabilities by themselves, these Boolean predictors are valuable discriminative features between
classes e.g., a horizontal segment is more likely to be a ceiling when there are horizontal segments
directly above it. Also, the presence and location of clutter is considered. Based on the expected
occlusions of the different object classes, the presence of clutter is used to identify objects. For instance,
a floor is expected to occlude objects underneath it. This information is typically extracted from
the sensor’s position [4] but as previously discussed, we exclude this information for generalization
purposes. Five topological relations are observed of which the mathematical representation is given in
Table 4. These correspond to the following intuitive definitions:
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1. Number of connected segments: This feature targets the identification of clutter and non-structural
observations as it makes up over 90% of building interiors. Much like spatial filters used in point
cloud cleanup methods, segments with no direct neighbors are less likely to belong to a structural
object class.

2. Unobstructed nearby segment in front or behind: This feature observes the relation between si and
a large nearby segment r with a similar orientation. If the pair is unobstructed i.e., no segments
are located in between, this implies that the space between si and r is a void, and thus si and sr

are likely to belong to the same class e.g., a portion of both sides of a wall face. Moreover, it is an
important feature to detect large segments of objects of no interest as these are more likely to be
surrounded by clutter and thus have no such unobstructed relations.

3. Presence of a large nearby segment above: This feature (together with the features below) observes
the configuration of potential ceilings, floor and roof segments. For instance, in a fully documented
building, it is likely that floors overlay ceilings.

4. Presence of a large nearby segment below: Complementary to the feature above, the presence of a
segment below increases the likelihood of si to belong to a floor or roof.

5. No presence of any segments above: This feature specifically is a discriminative property of roof
segments that typically do not have any overlaying segments. As this does also apply to floor
surfaces on a building’s exterior, this feature is also dependent on other characteristics.

Please note that some of the contextual and topology features do not apply to certain si ∈ S.
e.g., the feature observing the presence of any segments above si only applies to non-vertical segments.
For these features, the value is automatically returned as the non-associative value to avoid false positives.
Additionally, the feature values of all si are normalized and mapped on a Gaussian distribution with
a maximum score of 1 to allow for a better division of the feature space and to smooth out extreme
feature values.

Table 4. The topology features extracted from each si ∈ S with respect to a nearby reference segment r.

Description Definition Feature x ∈ Xsi Representation

Topology:
Number of
connected
segments

R =
{

sj ∈ S
∣∣∣Intersect(si, sj) 6= ∅

}
f (si, R) := |R|

Topology:
Unobstructed

nearby segment
in front or

behind

R =
{

sj ∈ Sl

∣∣∣ ∣∣∣−−→n(si) ·
−−→
n(sj)

∣∣∣ ≥ tn ∧ d⊥(si, sj) 6= ∅
}

r = argminsj∈R

(
d⊥(si, sj)

)
f (si, r) :=

1, Intersect
(

S \ {si, r}, BBox(si, r)
)
= ∅

0, else

Topology:
Presence of a
large nearby

segment above

R =
{

sj ∈ Sl

∣∣∣Z (−−→n(si)
)
≥ tz ∧ dv(si, sj) ≥ 0

}
r = argminsj∈R

(
d⊥(si, sj)

)
f (si, r) :=

{
1, d⊥v(si, r) ≤ th

0, else
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Table 4. Cont.

Description Definition Feature x ∈ Xsi Representation

Topology:
Presence of a
large nearby

segment below

R =
{

sj ∈ Sl

∣∣∣Z (−−→n(si)
)
≥ tz ∧ dv(si, sj) ≤ 0

}
r = argminsj∈R

(
d⊥(si, sj)

)
f (si, r) :=

{
1, d⊥(si, r) ≤ th

0, else

Topology: No
presence of any
segments above

R =
{

sj ∈ Sl

∣∣∣Z (−−→n(si)
)
≥ tz ∧ dv(si, sj) ≥ 0∧

d⊥(si, sj) 6= ∅
}

f (si, r) :=

{
1, R = ∅
0, else

3.3. Compatibility to Instance Segmentation

Following the segment-based feature extraction presented in Section 3.2, our method proposes
an empirical study to compare the achievable classification performance using shape, contextual and
topology features from both the point cloud data and mesh data. As we reason at the segment level,
we propose to simply represent each segment from the point cloud data by its associated convex-hull
geometry. It is to note that other representations such as alpha shape provide a better representativity
but can put additional calculation load as well as parameters inclusion that can hurt the unsupervised
framework. Given a realistic benchmark dataset, a classification model is trained and tested using a
flattened segment-based feature set for both point cloud and mesh datasets, as illustrated in Figure 3.

Figure 3. From left to right: a segmented point cloud following [14]; The Classification results on
segment-based features.

In the experiment, each observation is assigned one of ζ class labels given their shape, contextual
and topology feature vectors xsi ∈ X. We specifically target the structural building element classes of
a building i.e., the walls, floors, ceilings and beams. These are essential classes that that are present
in nearly every building and can be used for further scene interpretation. In the following sections,
a detailed implementation along with the results is given.

4. Experiments

The performance of both geometries is tested on three aspects. First, an empirical study is
conducted of the feature extraction in terms of distinctness and discriminativeness for the different
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classes. Second, a general classification test is conducted. For each geometry type, a machine learning
classifier was pre-trained using test data from previous work [8] and validated on the same benchmark
data. Third, a visual inspection is conducted on the test results to give a more in-depth overview of the
classification differences between both methods.

4.1. Feature Analysis

The feature analysis is conducted using the shape features from Table 2. These features are
selected for two reasons. First, shape features are robust descriptors for a segment’s geometry and
will be impacted the most by changes in the shape of the segments. Second, these features give a
proper overview of the feature discriminativeness for the different classes. Notably, the topology and
proximity features are not considered in this section as these are more nuanced features which do not
properly reflect the geometric differences between the segments. Additionally, these features are better
suited for multi-story buildings and thus do not represent the distribution of the 2D-3D-S dataset.

For every feature, a boxplot is generated per class for both methods based on the above established
segments and the ground truth labels. The median and interquartile range (IQR) of each boxplot serve
as the primary statistic to evaluate the feature distinctness. Additionally, the overlapping coefficient
(OVL) of the IQR between the different classes serve the main indicator for the feature discriminative
power. For instance, a feature with a different median and a small IQR for every class is considered
a more distinct feature, and will therefore positively impact the classification. e.g., the surface area of
segments labeled as “other” are systematically smaller than segments belonging to structural classes.
In contrast, features with overlapping IQRs between classes have a lower discriminativeness which
can lead to misclassifications. e.g., the height of both floors and ceilings are similar, and thus a
proper separation cannot be made between both classes for this feature. Please note that not every
feature is equally distinct for every class nor should this be the case. A properly trained classification
model assigns weights to different features for every class. Also, a normal distribution is not always
the best representation of the data, as can be derived from the skew ([Q1; Q2] vs [Q2; Q3]) of the
boxplots. For instance, beams, which can be horizontal or vertical, are significantly skewed and have a
larger feature dispersion because of their class definition. However, this is not an issue as there are
classification models which allow multiple feature value intervals to be associated with a class. Overall,
each class that has at least several distinct and discriminative features will be properly identified.

4.2. Classification Test

To evaluate the impact of the feature value discrepancy, both datasets are classified by a pre-trained
Bagged Trees classifier which has proven to be very well suited to deal with building geometry
observations. The MATLAB Bagged Trees algorithm is implemented for both approaches similar to
Munoz et al. [94], Vosselman et al. [94] and Niemeyer et al. [76]. The training data, which was acquired
in previous work [8], is copied into M different bootstrapped datasets along with a subset of the feature
variables. For every subset, a discriminative decision tree is trained. The final classification model
consists of the aggregate of the decision trees. New observations are then classified by the majority
vote over the trained decision trees.

4.3. Visual Inspection

The visual inspection is conducted on the final classification of both datasets. First, both geometries
are metrically compared to each other. The Euclidean distance is determined between both datasets
and the deviation metrics are evaluated. Next, a visual study is conducted of the classification of both
datasets. Several callouts are made of the different areas of the Stanford dataset and compared for both
methods. The target of the visual inspection is to confirm the metrics of the classification tests and to
evaluate false positives.
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5. Results

The experiments are conducted on the Stanford 2D-3D-Semantics Dataset (2D-3D-S) [92].
It contains 6 large indoor spaces of 3 buildings on the Stanford campus. It was captured using the
Matterport Gen1 RGB-D sensor resulting in a point cloud with 695,878,620 points linked to 6 meshes
with a total of 648,698 faces. Each dataset is composed of the raw 3D point clouds, the extracted
mesh geometry and the semantic labels. The mesh and point clouds serve as the main input to the
interpretation pipeline while the semantic labels serve as the ground truth for the classification. Overall,
the datasets pose a challenging test for classification procedures. The environments were captured
under realistic conditions and contain significant clutter, occlusions and many different instances of
each class. The point clouds were manually annotated per area by [92] with a wide variety of classes,
which in this experiment are restructured into ceiling, floor, wall, beam and other (including all the
furniture classes, the windows and the doors).

Prior to the tests, each dataset is segmented into smooth planar segments as shown in Table 5 and
Figures 4–6. Both datasets were segmented with similar parameters to achieve a proper segmentation
of the building interiors. Table 5 depicts the number of segments that was created for each class.
Overall, proper segments are extracted from both datasets. However, there are several differences
between both procedures. First, the processing times of the point clouds are significantly higher than
those of the meshes. This is expected since the meshing (of which the processing time is not included
here) reduces the number of observations by over 90% compared to the initial point cloud. Second,
the number of segments created from the point clouds are significantly higher than with the meshes
due to the increased noise, observations and holes. Floors are an exception to this as these segments
contain little curvature and detailing and are less obscured by other objects in comparison to other
object types. These differences impact the processing time of the segmentation and the classification of
the point clouds. However, this is counter-balanced by the fact that the point cloud does not necessitate
any preprocessing step to transform it into a mesh, which is often a very time-consuming process.
The resulting point-based and mesh-based segments S are the main input for the feature extraction,
the classification and the visual inspection.

Table 5. Object class statistics of the segments produced by the point- and mesh-based segmentation
procedures. The top, middle and bottom row depict the number of segments that was generated per
object class for respectively the ground truth, the point-based and the mesh-based approach. The right
column shows the average number of segments created per object compared to the ground truth.

Datasets
# Segments

Ceiling Floor Wall Beam Other Average

Area 1
55 45 235 62 120 1
72 28 630 115 2228 5.9
68 85 374 67 1247 3.6

Area 2
82 51 284 62 770 1
224 23 448 28 2348 2.4
132 76 309 13 1214 1.4

Area 3
38 24 160 14 211 1
44 8 287 28 960 3.0
37 30 278 26 692 2.4

Area 4
74 51 281 4 514 1
90 6 731 12 2250 3.3
73 103 509 7 1092 1.9

Area 5
77 69 344 4 868 1
423 16 880 3 3224 3.3
114 117 600 6 1029 1.4

Area 6
64 50 248 69 515 1
119 13 575 146 2154 3.2
81 134 402 92 717 1.5
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Area 1 Point-based Mesh-based

Ground truth
44,196,635 points 89,693 faces

Runtime
Segmentation 142.3 s 21.3 s

# segments 3073 1841

Feature extraction 38.4 s 23.2 s
Classification 3.2 s 1.7 s

F1-score 74.2 77.4

Area 2 Point-based Mesh-based

Ground truth
47,315,372 points 127,306 faces

Runtime

Segmentation 139.2 21.6 s
# segments 3071 1744

Feature extraction 33.2 s 23.8 s
Classification 2.2 s 1.9 s

F1-score 77.6 74.6

Figure 4. Process information of the point-based and mesh-based procedures.
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Area 3 Point-based Mesh-based

Ground truth
18,662,173 points 128,899 faces

Runtime
Segmentation 50.1 s 12.9 s

# segments 1327 1063

Feature
extraction 16.7 s 14.1 s

Classification 1.9 s 1.7 s
F1-score 78.5 73.5

Area 4 Point-based Mesh-based

Ground truth
43,470,014 points 165,432 faces

Runtime
Segmentation 132.2 s 30.5 s

# segments 3089 1784

Feature
extraction 38.3 s 24.5 s

Classification 3.1 s 2.0 s
F1-score 76.2 71.8

Figure 5. Process information of the point-based and mesh-based procedures.
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Area 5 Point-based Mesh-based

Ground truth
78,719,063 points 87,629 faces

Runtime
Segmentation 241.2 s 17.8 s

# segments 4546 1866

Feature
extraction 38.5 s 18.5 s

Classification 3.2 s 1.8 s
F1-score 71.8 74.5

Area 6 Point-based Mesh-based

Ground truth
41,353,055 points 49,739 faces

Runtime
Segmentation 122.8s 16.8s

# segments 3007 1426

Feature
extraction 31.8s 22.6s

Classification 2.3s 1.7s
F1-score 76.9 81.2

Figure 6. Process information of the point-based and mesh-based procedures.

The results of the feature evaluation are listed in Tables 6 and 7. It is observed that several features
take on extreme values which is expected as the feature extraction is not normally distributed and focus
on discriminativeness. The IQRs of both methods have little overlap between classes and the IQRs
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themselves have limited ranges for most classes. For instance, observations of walls and ceilings are
systematically larger and have higher normal similarity than observations of clutter which is marked
by randomness. When combined, these features are also useful to identify error prone segments
such as doors, which have a distinct aspect ratio (height and width). Based on the boxplots, it is
expected that both approaches will provide promising classification results. Despite their individual
performance, there are significant differences between the feature values of both methods due to the
differences between the point-based and the mesh-based segments. First, the median, IQR and skew
of each class significantly deviate depending on the feature. Table 7 reports maximum feature score
deviations of 0.17 for the median, 39% for the average skew and 0.19 for the IQR. As a result, there
are differences in OVL of up to 0.23 between the classes and only 0.01 OVL between the methods as a
whole. These differences are caused by the segment’s shape as well as by their context. For instance,
the surface area feature reveals that mesh-based segments on average score 0.13 higher than their
point-based counterparts indicating an increased size. This significantly affects the number of segments
created (which is up to 2 times higher for the point clouds) which in turn impacts the IQR of each
class. On average, the point-based segments generate 0.19 larger IQRs than the mesh-based segments,
which can affect the classification. While these differences vary depending on the feature, Table 7
shows that there are systematic deviations between the segments of both methods. Overall, the IQRs
of mesh-based segments are 0.07 smaller and have 0.08 less overlap, making them respectively more
distinct and discriminative.

Table 8 shows the result of the classification and Tables 4–6 show the processing times. Each column
in Table 8 depicts the F1 score for each method for the different classes. Overall, both methods were able
to classify the segments generated on the in total 300 million points and 700,000 meshes. The average
F1 score for the point-based and the mesh-based method are respectively 75.9% and 75.5%, which
is promising considering the obstacles of the benchmark data and that the data was solely used
for validation and not training. Both F1 scores are similar which indicates that the classification
model was properly trained for the point-based segments despite the discrepancy in feature values.
This can be attributed to the Bagged Trees capacity to deal with high variance datasets such as building
environments. However, the F1 scores in Table 8 only provide the overall statistics of the classification,
of which the clutter is a significant part. To make an in-depth comparison between both methods,
a visual inspection is required.

The results of the visual inspection are shown in Figure 7. The maximal deviation of the mesh
geometry is 13 cm from the point cloud, but on average, the standard deviation is under 2.5 cm Figure 8.
Concerning structural elements, this error is less than 1 cm, due to their planar shape. However, we note
that the meshing is prone to providing incomplete geometries due to the partial uneven sampling of
the point geometry, which results in less triangles but more reliability of the mesh surface. We can
see that both methods perform well on the varying scenarios and challenges posed by the datasets.
The first thing to note, is that the point cloud presents an overall higher consistency due to “complete”
nature of the spatial representation. Its mesh counterpart, as highlighted in the previous section, is less
complete, but the accuracy of the classification is not highly impacted. The second thing to note, is that
both methods largely agree for the main parts (walls, ceilings, floors), and the differences are mainly
noticeable for elements connected to structural classes such as the clutter, bookcases and tables as
illustrated in Diff1 from Figure 7. We also note that some beam elements are identified in the mesh
modality whereas it is classified as wall in the point cloud dataset. Finally, we note that independent
objects with a clear distinctiveness from wall elements (e.g., chairs) are correctly handled in both
datasets with very little visual difference between modalities.
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Table 6. Boxplot representation of the shape feature values produced by both methods for the different
classes: (left) point-based classification and (right) the mesh-based classification.
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Table 7. Table with the boxplot statistics of the feature extraction from the segments of the point-based
and the mesh-based method. Notes: 1 The difference between medians

(
Q2(Sm)−Q2(Sp)

)
is a

measure for data associativity, 2 The average skew is a measure for the symmetry of the feature
values, 3 The average IQR per method is a measure for the data dispersion between both methods,
4 the difference in OVL over all the classes for each method is a measure for difference in the feature
discrimitiveness, 5 the difference in OVL per class between both methods is a measure for the feature
value similarity.

Feature Comparison 4 Median 1 Mean Skew 2 [%] 4 IQR 3 OVL Class 4 OVL Methods 5

Surface Area m 0.13 5 −0.19 0.15 0.40p −11 0.38

Orientation m −0.01 −10 −0.05 0.08 0.35p 4 0.10

Width m 0.11 10 −0.18 0.05 0.22p −10 0.19

Height m 3 −3 −0.06 0.01 0.10p −21 0.03

Normal similarity m −0.17 5 0.14 0.02 0.01p 39 0.01

Average m 0.02 1.4 −0.07 0.06 0.21p 0.2 0.14

Table 8. F1-scores of the point-based (top row) and mesh-based (bottom row) classification of the
2D-3D-Semantics Dataset of Stanford [95].

Datasets
F1-Scores

Ceiling Floor Wall Beam Clutter Average

Area 1 72.5 75.7 81.0 39.1 77.8 74.2
95.0 69.6 74.3 39.4 81.1 77.4

Area 2 83.3 72.7 77.7 34.8 80.4 77.6
96.4 77.7 73.8 36.9 71.4 74.6

Area 3 88.5 77.2 77.5 36.6 77.3 78.5
77.9 71.4 63.3 39.4 75.6 73.5

Area 4 77.3 80.9 77.0 30.5 76.2 76.2
90.7 71.3 65.4 35.3 71.9 71.8

Area 5 70.1 50.8 77.4 29.3 71.4 71.8
76.7 47.2 71.4 31.2 76.2 74.5

Area 6 73.7 77.8 79.1 30.1 71.1 76.9
93.5 85.4 77.3 33.3 84.5 81.2
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Description Point-Based Mesh-Based

Diff1: False positives

Diff2: Confusion

Figure 7. Visual inspection of the classification differences between the point-based and the mesh-based
segments approach: (top) False positives between clutter and structural classes and (bottom) confusion
between structural classes.

Figure 8. Overview deviation analysis: (left) a point cloud extract of Area 6, (right) the singed
Euclidean distance between both datasets ranging from −0.12 m in blue to 0.12 m in red.
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6. Discussion

In this section, the pros and cons of the point-based and the mesh-based approach are discussed.
First, we study the impact of the geometry on the feature extraction between the point-based and the
mesh-based method. A first major difference to discuss is that the mesh-based segments have smoother
geometries with less noise, less holes and thus is more consistently connected to other segments.
As a result, mesh segments are typically larger with more distinct local and contextual information.
The experiments clearly show that meshing can positively impacts the feature extraction and leads
to more discriminative shape features. In contrast, the point-based segments better represent the
raw information of the point cloud without interpolation. While these segments contain noise or are
affected by occlusions, they are not prone to potential errors that plague meshing operations, and are
better suited for unsupervised workflows with minimal serialized breaking points. Instances such as
falsely connected segments, falsely closed holes, non-manifold mesh faces and oversimplification of
the scene can have a negative impact on the feature extraction and the subsequent classification. It is
argued that with each added step to the process, additional errors are injected thus working close to
the point clouds is recommended in this case. However, if the meshing is performed appropriately,
more distinct and discriminative features values can be extracted from the segments.

The second difference between both methods is the impact on the classification results. To this
end, one should consider both the F1 scores of the classification and the visual inspection of the
different areas in the 2D-3D-S dataset. The experiments reveal that both geometric modalities deliver
over 75% F1-scores. However, the metrics are nuanced as there is a major difference between small
and large segments. The visual inspection in Figure 7 shows that the classification of the larger
segments in the scene is near-identical. Therefore, the difference in F1 scores is mainly due to smaller
segments where noise, occlusions and differences in surface area have a much higher impact. As these
segments only make up a small portion of the total surface area of the scene, their significance is very
limited. However, there are some occurrences of larger segments that are misclassified. For instance,
some doors that were identified in the mesh-based classification are labeled as walls in the point-based
classification. These errors are critical as they lead to an excess of walls in the project. However,
it is revealed that despite the mesh-based approach properly identifying more of these occurrences,
it still produces some of the same false positives as the point-based segment approach. For instance,
the built-in closet in FIgure 7 is misclassified by both methods due to its geometric similarity to a wall.
This showcases the limitations of geometry-based classification tasks which are complementary to
computer vision classification.

In summary, both methods are very capable of properly interpreting the majority of building
environments through the proposed feature set. While meshing does improve the feature extraction and
classification performance, one should consider the gain of adding such a preprocessing layer (meshing
operation) for offline processes (which mesh-based classification are stuck to). As classification
score performance goes, no distinct recommendation is emitted, as both obtain good scores under
1% difference.

7. Conclusions

This paper presents an overview of the impact of geometry representations on the classification
of building components. More specifically, a comparison is made between point clouds and meshes
which are the two most common geometry inputs for classification procedures. The goal is to study
the differences between the two geometry types with respect to the segmentation, feature extraction
and the classification. It is hypothesized that the difference in noise, holes, size and the amount of data
can impact these procedures and by extent the success rate of geometry interpretation tasks. Through
this study, developers and researchers can now make an informed decision about which geometry
type to choose during classification procedures to achieve the desired result. This study is focused on
the structural components of a building i.e., the floors, ceilings, walls and beams as these form the core
of any structure and are the target of numerous classification procedures.
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The following conclusions are derived from the experiments on the Stanford 2D-3D-Semantics
Dataset (2D-3D-S). In terms of feature extraction, the experiments show improved feature
discriminativeness and distinctness for the mesh-based features due to the reduced amounts of
noise and holes compared to point clouds. On average, mesh-based segments are larger, have fewer
overlapping features and have a lower dispersion than their point cloud counterparts. However,
the impact on the overall classification itself is minimal based on the observed F1 scores. Overall,
both methods have promising results (75.9% for point clouds and 75.5% for meshes) despite the clutter
in the scenes. This shows that machine learning models such as Bagged Trees are robust against high
variance datasets that are building environments. The final experiment is a visual inspection, which
revealed that both methods can deal with typical false positives such as doors and closets. Overall,
it is concluded that the preprocessing of point clouds to mesh geometry leads to more distinct and
discriminative features but not necessarily to a better classification. However, the significant data
reduction which is achieved during the meshing allows for more complex features to be computed from
the segments while maintaining performance. In procedures which cannot afford this preprocessing or
to limit the serialization of potential break points in unsupervised workflows, methods using point
cloud segments also offer promising classification results.

In terms of future work, there are several research topics that can be further investigated.
For instance, an interesting field of research is the switch from human driven features to machine
generated features much like the ones used in computer vision. Significant work also must be done to
extend the generalization of building classification to make the method more robust to the variety of
objects in the scene. The retrieval of windows and doors is also considered to be the next step in the
classification procedure, which can use the structure information as prior knowledge.
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