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Abstract: Traditional methods for individual tree-crown (ITC) detection (image classification,
segmentation, template matching, etc.) applied to very high-resolution remote sensing imagery have
been shown to struggle in disparate landscape types or image resolutions due to scale problems
and information complexity. Deep learning promised to overcome these shortcomings due to its
superior performance and versatility, proven with reported detection rates of ~90%. However, such
models still find their limits in transferability across study areas, because of different tree conditions
(e.g., isolated trees vs. compact forests) and/or resolutions of the input data. This study introduces a
highly replicable deep learning ensemble design for ITC detection and species classification based
on the established single shot detector (SSD) model. The ensemble model design is based on
varying the input data for the SSD models, coupled with a voting strategy for the output predictions.
Very high-resolution unmanned aerial vehicles (UAV), aerial remote sensing imagery and elevation
data are used in different combinations to test the performance of the ensemble models in three study
sites with highly contrasting spatial patterns. The results show that ensemble models perform better
than any single SSD model, regardless of the local tree conditions or image resolution. The detection
performance and the accuracy rates improved by 3–18% with only as few as two participant single
models, regardless of the study site. However, when more than two models were included, the
performance of the ensemble models only improved slightly and even dropped.

Keywords: tree-crown detection; deep learning; ensemble model; object detection; single shot detector

1. Introduction

The identification of individual tree-crowns (ITC) is an important research topic in forestry, remote
sensing and computer vision [1]. It is a requirement in forest management and monitoring as it
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provides key forest inventory information [2]. Accurate ITC information can also sustain basic research,
such as the metabolic theory of ecology [3].

The increasing availability of very high-resolution remote sensing data has stimulated the
development of automated techniques for ITC identification [4]. Light Detection and Ranging (LiDAR)
data, either in the form of rasterized 2D models or as a point cloud, enables the accurate identification
of trees, as well as quantifying other structural parameters [5]. Thus, LiDAR technology, and mainly
its aerial version (aerial laser scanning—ALS) has been the main source of data for ITC studies [1].
A more affordable alternative to the expensive LiDAR data is image-based point clouds, which provide
three-dimensional information comparable in accuracy to ALS [6]. Therefore, the last decade has
witnessed an increasing interest in photogrammetry [7], with a growing number of structure from
motion (SfM) applications in forestry. These SfM applications have been facilitated by the new
possibilities offered by unmanned aerial vehicles (UAV) in the acquisition of very high-resolution aerial
images [8]. The integration of photogrammetric and ALS data is considered a cost-efficient solution for
monitoring purposes [7].

Larsen et al. [9] reviewed and compared six techniques for ITC detection, namely local maxima
detection, valley following (VF), region growing (RG), template matching (TM), scale-space (SS) theory
and techniques based on stochastic frameworks. The results of this comparison showed that no single
technique is optimal for all types of images and forest conditions. Therefore, a region should be
partitioned into homogeneous forest stands, and the most appropriate ITC detection algorithm should
be applied to each stand. Understory trees can be accurately mapped using sufficiently dense point
clouds [10], but very high-resolution UAV data have successfully been employed in this task [11,12].

Recently, deep learning has emerged as a powerful tool for the remote sensing community due to
its superior performance in terms of the accuracy and versatility of the models. Deep learning brought
improvement and introduced new methods to the most common remote sensing analysis tasks such as
image pre-processing, change detection, accuracy assessment and classification [13]. ITC detection
has been a common study subject for deep learning applications ever since the breakthrough of deep
learning in remote sensing. For example, the authors of [14] implemented a deep learning algorithm
for tree species detection and classification in an urban environment using mobile LiDAR data, which
led to improvements in the classification performance compared to other more traditional methods; the
authors of [15] improved the performance of tree classification in 3D point clouds using a voxel-based
rasterization and a deep learning model; the authors of [16] applied deep learning to detect palm oil
trees in high-resolution remote sensing imagery and reported very high accuracies even in complex
environments where traditional methods often struggle. Since 2018, studies which employ deep
learning in remote sensing data have multiplied [13], leading to a diversification of methods and
algorithms for ITC detection as well as to case studies in diverse landscapes. For instance, the authors
of [17,18] implemented deep learning fusion algorithms of hyperspectral/WorldView imagery and
LiDAR data for tree species mapping with significantly better results than traditional methods or older
deep learning algorithms; the authors of [19] implemented a cascade neural network for single tree
detection in high-resolution remote sensing imagery; UAV images were used by the authors of [20],
who implemented deep learning to detect damaged fir trees in forests, and by the authors of [21],
who used a transfer learning technique for tree detection in RGB imagery. Understory trees have
also been mapped with high accuracy using deep learning, as shown in [22], whose authors trained a
convolutional neural network (CNN) on an airborne LiDAR.

Most deep learning studies on ITC detection have focused on training single deep learning models,
which have significant drawbacks such as strong parameter dependency, which requires fine-tuning
by experts, low portability across different study sites or insufficient accuracy across various image
resolutions [13,18,19,21].

As an alternative to single models, ensemble deep learning models have also been employed
to great success in object detection tasks with remote sensing data. Ensemble modeling in statistics
and neural computation is the process in which multiple neural networks are combined to improve
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generalization [23,24]. In inductive learning, generalization is the main objective of a classifier, as it
aims to use a finite set of input data to classify new examples [25] accurately. The interest in combining
different neural networks started with the first designs of such models, and the clear advantages in the
generalization power were observed for model ensembles when compared with single (monolithic)
neural networks [26–28]. The design of any ensemble model of neural networks needs to take into
account the concept of error independence, meaning that the neural networks involved in the ensemble
need to make independent prediction errors [28]. It has been shown that error correlation and prediction
power are inversely related. In consequence, an ensemble model needs to increase diversity in order
to lower the degree of correlation between the networks [29,30]. Multiple approaches for designing
error-independent ensemble models are described in the literature [28]:

• Varying the training data on which a neural network model is trained;
• Varying the initial set of random weights from which each neural network is trained, but keeping

the training data constant;
• Varying the topology or the architecture of the hidden layers within the same algorithm;
• Varying the algorithm used for training the same data.

Generally, a neural network ensemble has better performance than any single neural network
involved in the design. Hence, the last step in constructing an ensemble network is to combine the
predictions to increase accuracy. Various methods for combining the predictions of ensemble neural
networks are described in the literature [28,31]: averaging and weighted averaging, majority rules,
voting schemes, stacked generalization and Bayesian methods. Examples of ensemble models are
presented in [32], where an ensemble model which surpassed traditional CNNs in terms of accuracy for
object detection is presented; the authors of [33] classified remote sensing imagery with different models
and found that an ensemble of neural and statistical algorithms exceeded single models performance;
the authors of [19] implemented a cascade neural network for ITC detection with improved results over
single trained models. However, many of the methods to design ensemble models are either specific to
the nature of the neural network algorithm, are computationally intensive because of intermediate
processing tasks or are mathematically complex, leading to a decreased degree of reproducibility. It has
been shown [28,34] that in the design of ensemble models, two of the best methods for obtaining
error-independent models are varying the training data and varying the algorithm.

In this study, a novel design of deep learning ensemble models for ITC detection is proposed.
It takes advantage of the multiple data products available from UAV and LiDAR scanning. The novelty
of this approach consists in the application of the single shot detector (SSD) [35] to a deep learning
ensemble model in order to reduce the complexity of implementation and increase the transferability
of the design for disparate spatial patterns. The proposed deep learning ensemble models are built
using different input remote sensing data and output voting strategies. The objectives of the study are
as follows: (1) demonstrate the efficiency of the ensemble model design in ITC detection and species
classification compared to single SSD models, (2) establish the ensemble model’s performance and
limits regarding input data variation and output predictions and (3) demonstrate the transferability of
the model in contrasting spatial patterns and image resolutions. The performance of the models is
evaluated both globally and at the level of species.

2. Materials and Methods

2.1. Study Sites and Materials

In order to assess the ITC detection under disparate spatial pattern conditions, three different
study sites were chosen (Figure 1). The first site is an orchard belonging to the University of Agronomic
Sciences and Veterinary Medicine, situated in the NE of Bucharest, Romania, at the approximate
coordinates 26◦15′43′′E longitude 44◦30′8′′N latitude. The orchard has an area of roughly 47 hectares
and consists of plum (Prunus domestica), apricot (Prunus armeniaca) and walnut (Juglans regia) tree
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species. The trees are planted in straight lines at intervals of 3–5 m and between-trees distances of
1.5–3 m. The stem density is moderate but there are few overlapping tree-crowns, especially for
walnut trees. The understory level consists of continuous vegetation cover of small herbaceous plants
which do not exceed 10cm in height. The terrain is predominantly flat, with an overall elevation
difference of ~1m/km. There are few topographic irregularities, but these are very superficial, with
slopes below 2 degrees. We used a DJI Phantom 4 UAV to survey the site and capture RGB imagery in
late August 2019. The UAV imagery was processed using Drone2Map for ArcGIS, which generated an
RGB orthophoto, a Digital Surface Model (DSM) and a Digital Terrain Model (DTM) at 6-cm (RGB)
and 10-cm (DSM and DTM) spatial resolutions, respectively.
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Figure 1. Study sites in Romania and Germany. Site 1 named Moara Domnească: orchard with trees of
J. regia, P. armeniaca and P. domestica species; site 2 named Fundata: natural wooded pasture with P.
abies, F. sylvatica and J. communis; site 3: city, named Erfurt, with no species information.

The second site is located in Bras, ov county, Romania, at the approximate coordinates 25◦15′35′′E
longitude 45◦25′52′′N latitude. The site is a naturally wooded pasture, with the vegetation cover
dominated by mixed tree species of Norway spruce (Picea abies) and European beech (Fagus sylvatica).
The spatial pattern is heterogeneous, as trees are found either isolated or clustered. The wooded
pastures are wide open and are larger in surface than the forested area. The understory level in the
forested area is composed of smaller trees from the same two main species. In the wooded pastures, the
understory is a continuous vegetation cover of small herbaceous plants. On direct visual assessment,
the canopy closure varies between very dense in the forested area to sparse in the wooded pastures.
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Other spatial features include bushes of Juniperus communis or small rock outcrops. The local terrain is
uneven, with moderate slopes and altitudes that vary between 1290 and 1350 m.

The data for this site consisted of a LiDAR point cloud obtained through an airborne laser scanning
campaign in the autumn of 2013 using a Reigl LMS-Q560 scanner. An RGB orthophoto was also
obtained during the same flight using a multispectral camera. The LiDAR point cloud has an average
point density of 22.5 points/m2, and the RGB orthophoto has a spatial resolution of 12 cm. We further
processed the LiDAR point cloud using the tools available in the ArcGIS 10.8 software and obtained a
DSM and DTM of 1-m spatial resolution.

The third site is located in Erfurt city, Thuringen, Germany, and covers the Central-West portion
of the city at the coordinates 10◦59′28′′E longitude 50◦58′15′′N latitude. This is an urban site and
consists of a heavily mixed spatial pattern of artificial features and vegetation. Trees are either singular,
surrounded by buildings in the residential areas, or bundled in small groups in the park areas. Canopy
cover has not been evaluated, but the tree density is higher in parks and other small green fields and
lower in built-up areas. As directly assessed on the imagery, the understory is composed of a sparse
vegetation cover in the park areas and totally absent in built-up areas. The terrain is relatively flat,
with an overall elevation difference of 30 m/km. The highest altitudes (~300 m) are in the western
part of the city and slowly decrease towards east, along the Gera river, reaching values of ~200 m.
An RGB orthophoto at 20-cm spatial resolution as well as a LiDAR-derived DSM and DTM at 1-m
spatial resolution were downloaded for free use from the Thuringian State Office for Soil Management
and Geographic Information (Thüringer Landesamt für Bodenmanagement und Geoinformation) [36].

2.2. Technical Approach

2.2.1. Overview

The flowchart of the deep learning tree-detection workflow is shown in Figure 2. First, a series
of derived remote sensing products were generated from the RGB orthophoto and DSM using the
ArcGIS 10.8 software (Figure 2—P1.1). Then, in addition to the derived products, we also generated
two multi-band rasters which combine DSM and RGB information (Figure 2—P1.2). A data products
stack (Table 1) was obtained from the DSM and RGB input data products.
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Table 1. Remote sensing data products and spatial resolution for each study site. Original product
column indicates the source datasets. Input product column describes the input products for
single shot detector (SSD) models. Combinations are single file three-band rasters from the input
products described.

Original Product Input Product Site 1 Site 2 Site 3

RGB

RGB 6 cm 12 cm 20 cm
Grayscale 6 cm 12 cm 20 cm

Principal Component
Analysis (PCA) 6 cm 12 cm 20 cm

DSM

Digital Surface Model (DSM) 10 cm 100 cm 100 cm
Canopy Height Model

(CHM) 10 cm 100 cm 100 cm

Slope 10 cm 100 cm 100 cm
Hillshade 10 cm 100 cm 100 cm
Box Cox 25 cm 100 cm 100 cm

Combinations
DSM–Slope–Hillshade 10 cm 100 cm 100 cm
Grayscale–DSM–Slope 10 cm 100 cm 100 cm

Trees were manually digitized for each site, and labels with species information were assigned
to the polygons in order to create a tree label database (Figure 2—P2.1). Each tree label dataset was
further split randomly into training and validation sets (Figure 2—P2.2). Single shot detector (SSD)
models were then trained using the training dataset with the same model parameters (Figure 2—P3).
Next, ensemble models were created by combining results from multiple SSD models (Figure 2—P4,
P5). Finally, single models, as well as ensemble models, were validated using the validation set
(Figure 2—P6).

2.2.2. Data Pre-Processing

As stated above, the RGB orthophotos and DSMs were used to derive six additional data products
used to train the SSD models (Figure 2—P1.1). From the RGB data, two products were derived: a
grayscale image and the first component of Principal Components Analysis (PCA) [37], at the same
spatial resolution. Four main products were derived from the DSM: slope, slope normalized for
frequency distribution, hillshade and Canopy Height Model (CHM). Slope and hillshade were derived
in a standard approach as implemented in ArcGIS/Spatial Analyst version 10.8. The distribution of
slope values is typically skewed, so the statistical analysis of the slope layer is often biased [38]. Thus,
an additional layer was derived, consisting of slope normalized to frequency distribution by the Box
Cox transformation using a tool developed by the authors of [38]. CHM was derived by subtracting
the digital terrain model from the DSM.

In addition to the six derived data products, two three-band rasters were generated with the
following layers as bands: Grayscale–DSM–Slope and DSM–Slope–Hillshade, with a spatial resolution
equal to that of the DSM (Figure 2—P1.2). In total, the input data products stack consists of 10 rasters,
which were used to train separate single shot detector deep learning models with identical parameters.

2.2.3. Preparing the Training and Validation Data

For each site, scattered trees were manually digitized and labeled with species information
(Figure 2—P2.1). Understory trees were not digitized, as they are only present in site 2 and the RGB
imagery is of not sufficient resolution for this task. In site 1, all the trees from the plot were digitized,
as some of them were available from a field campaign. Each dataset of field trees was randomly split
into 80% training and 20% validation (Figure 2—P2.2). Table 2 describes the number of labels used for
training and validation.
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Table 2. Digitized tree labels for the deep learning models.

Site Site 1 Site 2 Site 3

Species Apricot Plum Walnut Coniferous Deciduous No Species

Training Labels 1420 2354 634 1500 1250 1200
Validation Labels 356 589 159 300 250 300

Total Labels 1776 2493 793 1800 1500 1500

2.2.4. Training Single Shot Detector Deep Learning Models

Image chips of the labeled tree locations were exported using ArcGIS API for Python (Figure 3).
In order to reduce the risk of overfitting, data augmentation was used to boost the number of training
chips to the order of tens of thousands. Augmentation included sample rotation at different angles
and stride shift with a 50% overlap, thus obtaining additional subsets from the main chip image.
The resulting image chips were rectangular subsets clipped from the input raster data and had different
sizes according to the spatial resolution of the rasters, which differs between RGB and DSM.
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of the tree-crown polygon is irrelevant to the training process, as the exported image chips store the
polygon geometry as extent coordinates, which always describe a rectangular shape.

Next, SSD deep learning models were trained using ArcGIS API for Python (Figure 2—P3).
The SSD (Figure 4) is implemented in the API using the Fast.AI [39] and PyTorch [40] frameworks for
deep learning. SSD has high speed and accuracy due to the use of multiple boxes of different sizes and
an aspect ratio for detecting features. Predictions from multiple feature maps of different resolutions
are combined to handle objects of various sizes [35]. The training of SSD was done using ResNet-152
architecture [41] from Torchvision version 0.3.0 [42].
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To further reduce overfitting, in addition to data augmentation, early stopping was used for all
models, which stopped the training if the validation loss did not improve for 5 epochs. The full model
architecture with all parameters and layers is presented in Appendix A.

2.2.5. Detecting with Single Models

The trained SSD individual models on the ten input data products were used to predict tree
locations and species in the three chosen sites. For each data product, multiple rectangular bounding
boxes around predicted trees were obtained (Figure 2—P4), each bounding box having a confidence
score ranging from 0 to 1, which indicates the degree of certitude for the presence of a tree. Afterwards,
a non-maximum suppression algorithm [44] was used to remove the redundant bounding boxes that
overlapped, by keeping the one with the highest confidence score. Finally, all bounding boxes with a
confidence score < 0.2 were removed, thus retaining the best bounding box candidates to validate the
detection algorithm.

The validation samples, along with the predicted tree bounding boxes, were used to compute
the intersection-over-union statistic (IoU). IoU is a geometrical statistic which measures the area of
the intersection divided by the area of overlap of the ground truth bounding box and the predicted
bounding box. This indicator is very commonly used for the validation of deep learning object
detection models, and an IoU > 0.5 is generally accepted as a proper threshold for a successful
detection [21,32,45,46]. An IoU > 0.5 was the threshold to select the bounding boxes that were further
statistically processed to assess the detection performance. The validation statistics used in reporting
the results are the detection percentage and the f1-Score diagnostic [47], all computed using the metrics
of recall and precision. Equations (1)–(5) describe the validation statistics used for validations:

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

f1species =
2 × (Precision × Recall)

Precision + Recall
(3)

f1− Score =
∑

f1n ∗wn (4)

Detection percentage =
TP

TS
∗ 100 (5)

TP (true positive) indicates the number of trees successfully detected, FP (false positive) denotes
the number of objects incorrectly detected as trees; FN indicates the number of trees not detected; f1n

indicates the f1-Score computed for a certain species; wn indicates the weights attributed for each
species and TS denotes the total number of trees used for validation. The weights used for computing
the overall f1-Score are according to the number of validation samples per species. The f1-Score
(Equation (3)) was used to assess the performance of species classification; therefore, it was only
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computed for sites 1 and 2, where species information was available. Due to the class imbalance
between species, a modified f1-Score (Equation (4)) implemented in the Scikit-learn package [48] was
used when reporting the f1-Score for the overall performance of a model, regardless of species.

2.2.6. Ensemble Learning

The ensemble models were created from bounding box outputs of the single models (Figure 2—P5).
The bounding boxes predicted by the single models were stacked together in different input data
product combinations (see Figure 2).

Ensemble models were created by handling the ten input data products as a mathematical set.
Using a mathematical combination, a number of 1023 unique k-combinations, excluding the empty set,
were obtained. In order to reduce data redundancy and improve the variation, the combinations with
duplicate input information were excluded. The duplicate information consists of the cases where any
of the data product combinations described in Table 3 appear in a set. In this manner, the number of
possible combinations was reduced to 150.

Table 3. Invalid input product pairs for the ensemble models.

Invalid Product Pairs

DSM/DSM–Slope–Hillshade
DSM/Grayscale–DSM–Slope
Slope/DSM–Slope–Hillshade
Slope/Grayscale–DSM–Slope

Hillshade/DSM–Slope–Hillshade
Grayscale/Grayscale–DSM–Slope

DSM–Slope–Hillshade/Grayscale–DSM–Slope
RGB/Grayscale–DSM–Slope

RGB/Grayscale
RGB/PCA

PCA/Grayscale
PCA/Grayscale–DSM–Slope

Using the validation dataset, each ensemble model was first validated for tree detection by
applying a veto rule and a threshold IoU > 0.5. The veto rule is implemented for tree detection only
and accepts all single input predictions, counting a correct tree detection if at least one single model
part of the ensemble reaches IoU > 0.5. Secondly, for species identification, a voting strategy [49] was
implemented. In this voting strategy, each single SSD model that was part of an ensemble which
correctly identifies a tree was treated as binarized output (true/false). For each ensemble model,
an array was constructed which contained true/false tree detection values, as well as tree species
information corresponding to each single SSD model in the ensemble.

Then, a voting algorithm takes the output array of an ensemble and decides on the species detected.
We tested four voting strategies, as follows:

• Majority: the majority of single models must agree the output species detected;
• Unison: all single models must agree the output species detected;
• Confidence: the model gives the output species with the highest SSD confidence value;
• Weighted: the output species is given by a weighted sum that applies weights based on the single

models’ accuracy in terms of the f1-Score.

The ensemble models’ validation results by the voting strategies were ultimately statistically
processed (Figure 2—P6) to estimate the detection performance by using the same indicators presented
in Section 2.2.5 for single models.
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3. Results

3.1. Single Product Models

As seen in Table 4, the overall detection rates were below 50%, yet with the notable exceptions of
RGB in site 2 (detection percentage 64.73%) and site 3 (detection percentage 73%); Grayscale, with a
detection percentage of 60.33% in site 3 and Box Cox in site 1, with a 56.7% detection.

Table 4. Single models’ overall detection percentage on each of the three sites. The overall detection
percentage does not take into account species variation.

Product Detection
Percentage—Site 1

Detection
Percentage—Site 2

Detection
Percentage—Site 3

RGB 21.61% 64.73% 73%
Grayscale 27.56% 38.55% 60.33%

PCA 27.87% 37.45% 38%
DSM 20.03% 0% 15.67%

Hillshade 28.17% 17.27% 14%
CHM 27.32% 24.36% 12.33%
Slope 25.63% 22% 10.67%

Box Cox 56.73% 21.82% 12%
Grayscale–DSM–Slope 1% 4.73% 1.33%
DSM–Slope–Hillshade 24.71% 14.36% 0.67%

However, the detection varies by species. For example, in site 1 (Figure 5), the walnut detection
values are much higher (20–30% higher) than other species in almost all products except for Box Cox.
In site 2 (Figure 6), the coniferous species has a slightly higher detection percentage (5–10% higher) for
all products except RGB and DSM–Slope–Hillshade.
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F1-Scores are presented in Figure 7 for sites 1 and 2. The highest f1-Score are 0.64 for Box Cox
in site 1 and 0.78 for RGB in site 2. The single models trained on DSM and Grayscale–DSM–Slope
performed poorly, with f1-Scores of 0.3 and 0 in site 1 and ~0.05 in site 2.
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Figure 7. F1-Scores of single product models in sites 1 and 2.

The variation between species manifests a more significant discrepancy as observed in terms of
accuracy for site 1 (Figure 8a). Walnut trees reach a maximum of 0.76 f1-Score in grayscale and much
higher values for the other products except for Box Cox. Plum trees have the lowest accuracy, with
f1-Score values consistently below 0.4, except for Box Cox, where they reach the value of 0.7. In site
2 (Figure 8b), the coniferous and deciduous trees have roughly the same f1-Score in RGB, while for
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the rest of the models, the deciduous species have a lower accuracy by a margin of 0.1–0.2, except
for DSM–Slope–Hillshade.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 23 
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3.2. Ensemble Models

The ensemble models reached overall detection values of over 70% in all sites (Table 5). In site
1, the highest detection rate reached 76.8% with the combination of DSM + Slope + Hillshade +

PCA + Box Cox + CHM. The other combinations reached nearly the same detection percentage, with
differences of 0.2–0.8%. In site 2, the highest detection percentage is 71.82%, reached equally by the
first two models. The next two models have only a ~0.2% detection reduction. In site 3, the first four
models all reach a maximum detection percentage of 76.33%.

Table 5. Best performing ensemble models in terms of % overall tree detection in each site, based on
majority voting strategy. If two ensemble models had the same detection percentage, the one reported
was with the least number of individual single models.

Site Ensemble Model Detection Percentage

Site 1

DSM + Slope + Hillshade + PCA + Box Cox + CHM 76.8%
DSM + Slope + Hillshade + Grayscale + Box Cox + CHM 76.43%
Slope + Hillshade + PCA + Box Cox + CHM 76.25%
Slope + Hillshade + Grayscale + Box Cox + CHM 76%

Site 2

RGB + Slope + Hillshade + Box Cox + CHM 71.82%
RGB + Slope + Hillshade + CHM 71.64%
RGB + Hillshade + Box Cox + CHM 71.45%
RGB + DSM-Slope-Hillshade + Box Cox + CHM 71.27%

Site 3

RGB + DSM + Slope + CHM 76.33%
RGB + DSM + Slope + Hillshade + CHM 76.33%
RGB + DSM + Slope + Hillshade + Box Cox + CHM 76.33%
RGB + DSM + Slope + Box Cox + CHM 76.33%

Regarding species differences, Tables 6 and 7 summarize the detection percentages and f1-Scores
for the top best performing ensemble model in each of the two sites.
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Table 6. Detection percentage per species and voting strategy of the best performing ensemble models in terms of % of trees detected (Det. per. %) in sites 1 and 2. If
two ensemble models had the same detection percentage, the one reported was with the least number of individual single models.

Site Species

Voting Strategy

Majority Unison Weighted Confidence

Ensemble Model Det. per. (%) Ensemble Model Det. per. (%) Ensemble Model Det. per. (%) Ensemble Model Det. per. (%)

Site 1

Plum DSM + Slope + Hillshade + PCA
+ Box Cox + CHM 71.52 DSM + Slope + Hillshade + PCA

+ Box Cox + CHM 67.62 DSM + Slope + Hillshade + PCA
+ Box Cox + CHM 70.88 DSM + Slope + Hillshade + PCA

+ Box Cox + CHM 70.47

Apricot RGB + DSM + Slope + Hillshade
+ Box Cox + CHM 64.58 RGB + DSM + Slope + Hillshade

+ Box Cox + CHM 59.68 DSM + Slope + Hillshade +
Grayscale + Box Cox + CHM 63.12 RGB + DSM + Slope + Hillshade

+ Box Cox + CHM 62.73

Walnut DSM + Slope + Hillshade +
Grayscale + CHM 89.66 DSM + Slope + Hillshade +

Grayscale + CHM 88.27 DSM + Slope + Hillshade +
Grayscale + Box Cox + CHM 90.29 DSM + Slope + Hillshade + PCA

+ Box Cox + CHM 90.04

Site 2
Coniferous RGB + Hillshade + CHM 67.00 RGB + Hillshade 66.00 RGB + Hillshade + CHM 67.33 RGB + Hillshade + CHM 67.67

Deciduous RGB + DSM–Slope–Hillshade
+ CHM 71.2 RGB + DSM–Slope–Hillshade 69.60 RGB + DSM–Slope–Hillshade +

Box Cox + CHM 72.00 RGB + DSM–Slope–Hillshade +
Box Cox + CHM 71.60

Table 7. Detection performance per species and voting strategy of the best ensemble models in terms of f1-Score (f1-S.) in sites 1 and 2. If two ensemble models had the
same f1-Score, the one reported was with the least number of individual single models.

Site Species

Voting Strategy

Majority Unison Weighted Confidence

Ensemble Model f1-S. Ensemble Model f1-S. Ensemble Model f1-S. Ensemble Model f1-S.

Site 1

Plum DSM + Slope + Hillshade + PCA
+ Box Cox + CHM 0.814 DSM + Slope + Hillshade + PCA

+ Box Cox + CHM 0.793 DSM + Slope + Hillshade + PCA
+ Box Cox + CHM 0.809 DSM + Slope + Hillshade + PCA

+ Box Cox + CHM 0.806

Apricot RGB + DSM + Slope + Hillshade
+ Box Cox + CHM 0.766 RGB + DSM + Slope + Hillshade

+ Box Cox + CHM 0.736 RGB + DSM + Slope + Hillshade
+ Box Cox + CHM 0.750 RGB + DSM + Slope + Hillshade

+ Box Cox + CHM 0.747

Walnut DSM + Slope + Hillshade +
Grayscale + CHM 0.925 Slope + Hillshade + Grayscale

+ CHM 0.921 DSM + Slope + Hillshade +
Grayscale + CHM 0.922 DSM + Hillshade + Grayscale

+ CHM 0.920

Site 2
Coniferous RGB + CHM 0.786 RGB + CHM 0.782 RGB + CHM 0.792 RGB + Slope + CHM 0.791

Deciduous RGB + DSM–Slope–Hillshade
+ CHM 0.809 RGB + DSM–Slope–Hillshade 0.813 RGB + DSM–Slope–Hillshade +

Box Cox + CHM 0.828 RGB + DSM–Slope–Hillshade +
Box Cox + CHM 0.821
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In site 1, walnut species has the best detection accuracy of over 90.29% for the weighted method
on the combination of DSM + Slope + Hillshade + Grayscale + Box Cox + CHM and also the best
f1-Score of 0.925 for the majority method on the combination of DSM + Slope + Hillshade + Grayscale
+ CHM. The plum and apricot species have similar detection values and f1-Scores, at around 59–71%
and 0.73–0.82%, respectively, with apricot slightly underperforming.

For each site, a frequency evaluation of each input data product for the top 15% of the ensemble
models was also performed based on f1-Scores for sites 1 and 2 and percentage of trees detected for
site 3. All results are summarized in Table 8. The most heavily present input data products are Box
Cox in site 1, with a count of 23 across all voting methods, and RGB in sites 2 and 3, with 22 counts
for all voting methods. Other input data products such as CHM, Hillshade, Slope and DSM are also
frequent in all sites. Some models have very low or no contribution to ensemble models, such as the
three-band rasters Grayscale–DSM–Slope and DSM–Slope–Hillshade.

Table 8. Frequency (counts) of each input data product in the top 15% of ensemble models in terms
of f1-Score in sites 1 and 2 and detection percentage in site 3. The counts are grouped by the voting
method, if applied.

Input Data Product
Site 1 Site 2 Site 3

Majority Unison Weighted Confidence Majority Unison Weighted Confidence No Voting

RGB 6 8 6 7 22 22 22 22 22
Grayscale 9 7 8 7 0 0 0 0 0

PCA 7 6 8 8 0 0 0 0 0
DSM 13 13 13 13 9 10 9 9 16

Hillshade 17 19 18 19 2 4 8 6 12
CHM 19 18 18 17 12 8 18 16 12
Slope 16 17 17 17 10 10 10 12 14

Box Cox 23 23 23 23 10 9 12 12 11
Grayscale–DSM–Slope 0 0 0 0 0 0 0 0 0
DSM–Slope–Hillshade 1 0 0 0 4 2 4 4 0

We next investigated whether there is a relationship between the number of input data products
in an ensemble model and the detection percentage or accuracy of the model. In Figure 9, the
maximum detection percentage and f1-Score were plotted against the number of single models in an
ensemble model.

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 23 

 

In site 1, walnut species has the best detection accuracy of over 90.29% for the weighted method 
on the combination of DSM + Slope + Hillshade + Grayscale + Box Cox + CHM and also the best f1-
Score of 0.925 for the majority method on the combination of DSM + Slope + Hillshade + Grayscale + 
CHM. The plum and apricot species have similar detection values and f1-Scores, at around 59–71% 
and 0.73–0.82%, respectively, with apricot slightly underperforming. 

For each site, a frequency evaluation of each input data product for the top 15% of the ensemble 
models was also performed based on f1-Scores for sites 1 and 2 and percentage of trees detected for 
site 3. All results are summarized in Table 8. The most heavily present input data products are Box 
Cox in site 1, with a count of 23 across all voting methods, and RGB in sites 2 and 3, with 22 counts 
for all voting methods. Other input data products such as CHM, Hillshade, Slope and DSM are also 
frequent in all sites. Some models have very low or no contribution to ensemble models, such as the 
three-band rasters Grayscale–DSM–Slope and DSM–Slope–Hillshade. 

Table 8. Frequency (counts) of each input data product in the top 15% of ensemble models in terms 
of f1-Score in sites 1 and 2 and detection percentage in site 3. The counts are grouped by the voting 
method, if applied. 

Input 
Data 

Product 

Site 1 Site 2 Site 3 

Majority Unison Weighted Confidence Majority Unison Weighted Confidence 
No 

Voting 
RGB 6 8 6 7 22 22 22 22 22 

Grayscale 9 7 8 7 0 0 0 0 0 
PCA 7 6 8 8 0 0 0 0 0 
DSM 13 13 13 13 9 10 9 9 16 

Hillshade 17 19 18 19 2 4 8 6 12 
CHM 19 18 18 17 12 8 18 16 12 
Slope 16 17 17 17 10 10 10 12 14 

Box Cox 23 23 23 23 10 9 12 12 11 
Grayscale–

DSM–
Slope 

0 0 0 0 0 0 0 0 0 

DSM–
Slope–

Hillshade 
1 0 0 0 4 2 4 4 0 

We next investigated whether there is a relationship between the number of input data products 
in an ensemble model and the detection percentage or accuracy of the model. In Figure 9, the 
maximum detection percentage and f1-Score were plotted against the number of single models in an 
ensemble model. 

 
(a) (b) 

Figure 9. Maximum percentage detection and f1-Score reached for each combination of 2..n number of
models in sites 1 (a) and 2 (b).

For both sites, it is observed that combining single models in an ensemble model generally
increases the detection percentage and, to a lesser degree, the f1-Score. Furthermore, by looking at
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the percentage difference in detection performance or f1-Score when adding a new single model into
an ensemble model, it can be observed (Figure 10) that the maximum increase for both indicators is
reached when adding just one more single model.
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For example, an increase of 18.8% in detection performance and a 14.3% increase in f1-Score
were recorded for site 1. Sites 2 and 3 follow a similar trend but with slightly lower values: a 6.74%
increase in detection performance and 1.5% increase in f1-Score in site 2 and a 2.7% increase in detection
performance in site 3. Continuously adding new single models into an ensemble model leads to a rapid
reduction in the accuracy parameters or even a decrease in f1-Score, as observed in site 2. The same
relationship between the number of ensemble models and indicators of model performance is observed
in all sites, although at different scales.

4. Discussion

4.1. Single vs. Ensemble Models

Designing an ensemble with only two single models increased the detection accuracy by a large
margin of 3–18%. Adding more single models further increased the performance, but in a slower
measure, or even actually decreasing the accuracy. This effect has also been observed in [17] and [18],
for certain species in terms of detection performance in similar remote sensing imagery, and can
be attributed to subtle spectral differences between species, other small-scale effects which are not
captured by the deep learning algorithm. Another explanation could be that increasing the number of
combined models to form an ensemble decreases the error independence between the single models.
Although interspecies differences are present, the overall performance and effects of ensemble models
are common in all sites (Figure 10) and clearly show superior efficiency. This validates and strengthens
the general findings [31] that ensemble neural networks are superior to single ones in terms of accuracy,
not only in the context of non-geospatial data but also in applications that deal with high-resolution
remote sensing data. Studies which designed and tested ensemble models with remote sensing data
reported analogous outcomes, albeit with different ensemble model designs. For example, in object
detection tasks, the authors of [17] proposed an ensemble model by fusing hyperspectral imagery
and LiDAR data for tree-crown detection, a model that resulted in superior accuracy to single trained
models by a margin of 5–15%; the authors of [32] designed an ensemble model for object detection in
remote sensing imagery at different scales, which outperformed most traditional CNNs in terms of
accuracy by 5–10%, especially for densely packed objects; the authors of [18] implemented a fusion of
remote sensing imagery and LiDAR information in the training data space of a dense convolutional
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network, achieving superior accuracy for tree detection in an urban environment by a margin of 5%-10%
than single product trained models. Ensemble models used for remote sensing imagery classification
report analogous results. For instance, the authors of [33] designed a similar voting strategy ensemble
for the classification of remote sensing imagery, which resulted in substantially better performance
over single models, within a statistical significance of over 95%. In [50] an ensemble model fusing two
CNN architectures for land classification using remote sensing data achieved an accuracy of up to 4%
higher to that of the single CNN models tested; the authors of [51] implemented a cascade ensemble
from hyperspectral imagery and LiDAR data that outperformed traditional CNN-based methods in a
classification task by a factor of 4–8%. On account of all the above, we conclude that ensemble models’
performance surpassed the single product trained models by a large margin in terms of detection
percentage as well as accuracy.

4.2. Input Data Products Performance vs. Image Resolution

The input data products, including the derived ones, manifested variation in terms of performance
by species and site. Table 8 presents the frequency of input data products in the top 15% best performing
ensemble models. RGB is the most frequent in sites 2 and 3, as it appears 22 times, while in site 1, it
appears only 6–8 times. Sites 2 and 3 have similar pixel sizes of 12 cm and 20 cm, respectively, while
site 1 has a 6-cm spatial resolution. In site 1, due to the ultra-high spatial resolution, the spectral
information of objects is rich. Consequently, the discrimination between species is hindered, especially
between plum and apricot species, which, on visual interpretation of the imagery data, appear almost
structurally and spectrally indistinguishable (Figure 11). Therefore, the difference between species is
made by adding data derived from DSM, namely Box Cox, which is present 23 times, followed by
CHM, Hillshade and Slope with frequencies of 17–19 times. The DSM and CHM performances for
this site are roughly the same in terms of overall detection percentage (Table 4) and contribution to
ensemble models (Table 8). The same effect is observed in site 3, which has a similar, relatively flat
topography. This seems to show that in flat topography, the DSM and CHM information have largely
the same importance for individual tree-crown detection.
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In site 2, on the other hand, the difference between species is made primarily by the RGB
information. As seen in Table 4, the DSM has no detection as a single model, a fact which might be due
to the significant differences in elevation values between trees. The detrimental effect of DSM on tree
detection in uneven terrain has also been shown in [52]. However, the coniferous and deciduous trees
have clear spectral and structural differences, information which drives the distinction between these
species. With counts of 22 for RGB, compared to 10–12 for DSM and other derivatives, the advantage
of RGB in this context is straightforward.
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The influence of canopy cover on tree detection accuracy has not been evaluated. In a recent
study [53], different tree-crown detection algorithms were assessed under various canopy cover
conditions and a reduction in accuracy directly related to an increase in canopy cover rate was reported.
However, the authors report a high dependency on spatial resolution of the tree detection methods
and did not employ deep learning techniques. Given the large diversity of spatial features between
our sites and the objectively good results for tree-crown detection across image resolutions, we can
uphold the idea that the ensemble model examples are robust enough to deal with forested sites that
have a high rate of canopy cover. The risk of overfitting is greatly reduced by data augmentation and
the early stopping procedure. In addition, the ensemble models are designed to reduce information
duplication which can lead to overfitting, by removing invalid combinations (Table 4).

4.3. Performance of Voting Strategies

In sites 1 and 2, we tested the performance of the voting strategies for species discrimination.
Tables 6 and 7 summarize the detection percentages and f1-Scores for each species and voting strategy.
In site 1, the majority strategy outperforms the other three by 1–5%, in the case of plum and apricot
species, while the weighted strategy performs better for walnut. In site 2, the weighted strategy
surpassed the other ones in nearly all cases by a margin of 1–3%. In a study [54] which tested two box
voting strategies for ensemble models, an accuracy difference of 2% was found, which is similar to
our results. The different results between voting strategies, while small at first glance, are actually
indicative of slight divergences of the voting design, which can be exploited in order to satisfy the
various objectives of an object detection task with ensemble models. In detail, they can be used to
balance between precision and recall metrics in order to accomplish the detection objective better. For
example, in Table 9, the unison strategy, which only accepts as correct when all models part of the
ensemble give the same result, yields the highest precision in all sites and at the same time has the
lowest recall.

Table 9. Average precision and recall values by voting strategy in sites 1 and 2. The average is calculated
from the top 20 best performing ensemble models in terms of f1-Score.

Voting Strategy Site 1 Site 2
Precision Recall Precision Recall

Majority 0.93 0.7 0.96 0.66
Unison 0.95 0.66 0.98 0.63

Weighted 0.92 0.69 0.97 0.68
Confidence 0.92 0.69 0.97 0.68

For an ensemble model which needs to maximize precision, the unison voting strategy may be
used. In reverse, if a model needs to have a good recall—that is, to find as many objects as possible
while still maintaining good precision—a weighted or a confidence strategy may be used.

5. Conclusions

In this article, an ensemble deep learning design based on a single shot detector (SSD) model was
developed for individual tree-crown detection and species classification, based on very high-resolution
remote sensing data. The design was tested in disparate study sites in terms of spatial pattern. Results
have shown the increased performance of ensemble models compared to single ones by a margin
of 3%-18%. RGB information was found to be the most important factor influencing the species
identification. DSM derived data were shown to have significant importance in species discrimination,
especially in the structurally complex site 1, where RGB trained models performed poorly. Lastly,
the voting strategies for combining the outputs allowed us to better tune the ensemble models in
order to accommodate specific detection objectives. Due to the common effects observed for the
ensemble models, our design proposal has been shown to have notable transferability capabilities
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across disparate tree conditions. Further research is necessary in order to investigate more complex
data derivates from RGB and DSM in addition to those presented in this study.
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Appendix A

The following tables describe the full architecture (layers and parameters) of the SSD models used.
The total number of parameters is 24,141,904, and the number of hidden layers is 105. The learning
rate, batch size and other training options are also presented.

Table A1. The hyperparameter settings used for SSD models.

Parameter Value

Batch size 30
Stochastic optimization method Adam

Number of training epochs 20
Learning rate (lr) lr ∈ (0.001, 0.01)

Early stopping condition Valid—loss does not reduce after 5 epochs

Table A2. Full architecture of the SSD model.

Layer (Type) Output Shape Param # Trainable

Conv2d (64, 60, 60) 9408 FALSE
BatchNorm2d (64, 60, 60) 128 TRUE

ReLU (64, 60, 60) 0 FALSE
MaxPool2d (64, 30, 30) 0 FALSE

Conv2d (64, 30, 30) 36,864 FALSE
BatchNorm2d (64, 30, 30) 128 TRUE

ReLU (64, 30, 30) 0 FALSE
Conv2d (64, 30, 30) 36,864 FALSE

BatchNorm2d (64, 30, 30) 128 TRUE
Conv2d (64, 30, 30) 36,864 FALSE

BatchNorm2d (64, 30, 30) 128 TRUE
ReLU (64, 30, 30) 0 FALSE

Conv2d (64, 30, 30) 36,864 FALSE
BatchNorm2d (64, 30, 30) 128 TRUE

Conv2d (64, 30, 30) 36,864 FALSE
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Table A2. Cont.

Layer (Type) Output Shape Param # Trainable

BatchNorm2d (64, 30, 30) 128 TRUE
ReLU (64, 30, 30) 0 FALSE

Conv2d (64, 30, 30) 36,864 FALSE
BatchNorm2d (64, 30, 30) 128 TRUE

Conv2d (128, 15, 15) 73,728 FALSE
BatchNorm2d (128, 15, 15) 256 TRUE

ReLU (128, 15, 15) 0 FALSE
Conv2d (128, 15, 15) 147,456 FALSE

BatchNorm2d (128, 15, 15) 256 TRUE
Conv2d (128, 15, 15) 8192 FALSE

BatchNorm2d (128, 15, 15) 256 TRUE
Conv2d (128, 15, 15) 147,456 FALSE

BatchNorm2d (128, 15, 15) 256 TRUE
ReLU (128, 15, 15) 0 FALSE

Conv2d (128, 15, 15) 147,456 FALSE
BatchNorm2d (128, 15, 15) 256 TRUE

Conv2d (128, 15, 15) 147,456 FALSE
BatchNorm2d (128, 15, 15) 256 TRUE

ReLU (128, 15, 15) 0 FALSE
Conv2d (128, 15, 15) 147,456 FALSE

BatchNorm2d (128, 15, 15) 256 TRUE
Conv2d (128, 15, 15) 147,456 FALSE

BatchNorm2d (128, 15, 15) 256 TRUE
ReLU (128, 15, 15) 0 FALSE

Conv2d (128, 15, 15) 147,456 FALSE
BatchNorm2d (128, 15, 15) 256 TRUE

Conv2d (256, 8, 8) 294,912 FALSE
BatchNorm2d (256, 8, 8) 512 TRUE

ReLU (256, 8, 8) 0 FALSE
Conv2d (256, 8, 8) 589,824 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
Conv2d (256, 8, 8) 32,768 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
Conv2d (256, 8, 8) 589,824 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
ReLU (256, 8, 8) 0 FALSE

Conv2d (256, 8, 8) 589,824 FALSE
BatchNorm2d (256, 8, 8) 512 TRUE

Conv2d (256, 8, 8) 589,824 FALSE
BatchNorm2d (256, 8, 8) 512 TRUE

ReLU (256, 8, 8) 0 FALSE
Conv2d (256, 8, 8) 589,824 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
Conv2d (256, 8, 8) 589,824 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
ReLU (256, 8, 8) 0 FALSE

Conv2d (256, 8, 8) 589,824 FALSE
BatchNorm2d (256, 8, 8) 512 TRUE

Conv2d (256, 8, 8) 589,824 FALSE
BatchNorm2d (256, 8, 8) 512 TRUE

ReLU (256, 8, 8) 0 FALSE
Conv2d (256, 8, 8) 589,824 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
Conv2d (256, 8, 8) 589,824 FALSE

BatchNorm2d (256, 8, 8) 512 TRUE
ReLU (256, 8, 8) 0 FALSE

Conv2d (256, 8, 8) 589,824 FALSE
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Table A2. Cont.

Layer (Type) Output Shape Param # Trainable

BatchNorm2d (256, 8, 8) 512 TRUE
Conv2d (512, 4, 4) 1,179,648 FALSE

BatchNorm2d (512, 4, 4) 1024 TRUE
ReLU (512, 4, 4) 0 FALSE

Conv2d (512, 4, 4) 2,359,296 FALSE
BatchNorm2d (512, 4, 4) 1024 TRUE

Conv2d (512, 4, 4) 131,072 FALSE
BatchNorm2d (512, 4, 4) 1024 TRUE

Conv2d (512, 4, 4) 2,359,296 FALSE
BatchNorm2d (512, 4, 4) 1024 TRUE

ReLU (512, 4, 4) 0 FALSE
Conv2d (512, 4, 4) 2,359,296 FALSE

BatchNorm2d (512, 4, 4) 1024 TRUE
Conv2d (512, 4, 4) 2,359,296 FALSE

BatchNorm2d (512, 4, 4) 1024 TRUE
ReLU (512, 4, 4) 0 FALSE

Conv2d (512, 4, 4) 2,359,296 FALSE
BatchNorm2d (512, 4, 4) 1024 TRUE

Dropout (512, 4, 4) 0 FALSE
Conv2d (256, 4, 4) 1,179,904 TRUE

BatchNorm2d (256, 4, 4) 512 TRUE
Dropout (256, 4, 4) 0 FALSE
Conv2d (256, 1, 1) 1,048,832 TRUE

BatchNorm2d (256, 1, 1) 512 TRUE
Dropout (256, 1, 1) 0 FALSE
Conv2d (256, 3, 3) 590,080 TRUE

Upsample (256, 3, 3) 0 FALSE
BatchNorm2d (256, 3, 3) 512 TRUE

Dropout (256, 3, 3) 0 FALSE
Conv2d (4, 1, 1) 9220 TRUE
Conv2d (4, 1, 1) 9220 TRUE
Conv2d (4, 3, 3) 9220 TRUE
Conv2d (4, 3, 3) 9220 TRUE
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