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Abstract: Declining urban tree health can affect critical ecosystem services, such as air quality
improvement, temperature moderation, carbon storage, and biodiversity conservation. The application
of state-of-the-art remote sensing data to characterize tree health has been widely examined in forest
ecosystems. However, such application to urban trees has not yet been fully explored—due to the
presence of heterogeneous tree species and backgrounds, severely complicating the classification of
tree health using remote sensing information. In this study, tree health was represented by a set of
field-assessed tree health indicators (defoliation, discoloration, and a combination thereof), which were
classified using airborne laser scanning (ALS) and hyperspectral imagery (HSI) with a Random Forest
classifier. Different classification scenarios were established aiming at: (i) Comparing the performance
of ALS data, HSI and their combination, and (ii) examining to what extent tree species mixtures
affect classification accuracy. Our results show that although the predictive power of ALS and HSI
indices varied between tree species and tree health indicators, overall ALS indices performed better.
The combined use of both ALS and HSI indices results in the highest accuracy, with weighted kappa
coefficients (Kc) ranging from 0.53 to 0.79 and overall accuracy ranging from 0.81 to 0.89. Overall,
the most informative remote sensing indices indicating urban tree health are ALS indices related to point
density, tree size, and shape, and HSI indices associated with chlorophyll absorption. Our results further
indicate that a species-specific modelling approach is advisable (Kc points improved by 0.07 on average
compared with a mixed species modelling approach). Our study constitutes a basis for future urban tree
health monitoring, which will enable managers to guide early remediation management.

Keywords: defoliation; discoloration; street trees; airborne LiDAR; airborne hyperspectral data;
random forest

1. Introduction

Urban trees play a crucial role in mitigating urban environmental problems by providing a range of
crucial ecosystem services, e.g., reducing air pollution, moderating temperatures, reducing stormwater
runoff and storing carbon [1,2]. Increased recognition of the high value of trees to urban environments
has encouraged municipal tree planting programs around the world [3]. Although it has been reported
that trees at higher, cooler latitudes may benefit from urban warming [4,5], urban trees, in general,
are under continuous pressure from environmental problems typical to the urban environment.
Paved surfaces modify the moisture dynamics of underlying soils [6], increasing the risk of water stress
for trees, and therefore, their susceptibility to pests [7–9]. The reduced soil aeration and limited rooting
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space caused by extensive impervious surfaces result in a general poor tree health status [10]. At the
same time, soil contamination, salinization and acidification are widely distributed in urban areas,
negatively affecting the development of trees [11–13]. In addition, air pollutants in urban areas have
been widely reported for their adverse effects on tree health [14–16]. In short, the harsh environmental
conditions in cities are reducing tree health and thereby jeopardizing important ecosystem services
provided by trees and causing important safety issues [17], which eventually even threaten public
health [18]. In this context, it is important for urban green managers to collect reliable information
on tree health as a basis for early remediation management, such as targeted irrigation, pruning,
and/or salvation logging [19].

Defoliation and discoloration, visually expressed via leaf loss and changes in leaf color,
respectively, are two quantitative and generally adopted tree health indicators, integrating across
many diagnoses [20,21]. Damage, as a function of defoliation and discoloration, has been used to
indicate the overall tree health condition [22,23]. Traditional visual tree assessment (VTA) methods [20]
conducted by trained tree experts, has formed the basis for monitoring trees towards forest planning
and decision making in many countries [24,25]. Tree health assessment conducted using the VTA
method is, however, limited in spatial coverage due to labor constraints of tree experts. Remote sensing
methods have been extensively proven to bear the potential of solving these problems by providing
accurate, spatially explicit, and detailed information on tree health [26–29].

Yet, so far, current efforts for tree health assessment using remote sensing mainly focused on
forest ecosystems. High-resolution airborne and satellite imagery have been used for forest tree
mortality and tree health assessment on both the individual tree canopy scale [26,29,30] and the image
pixel scale [31–34]. Airborne hyperspectral imagery (HSI), providing optical information in high
spectral detail, has been extensively applied to provide both biochemical and structural information for
identifying tree health [27,28,35–39]. Airborne laser scanning (ALS) provides additional opportunities
for monitoring tree health [26,40–42]. Besides structural information that can directly be linked to
tree health, ALS also facilitates individual tree canopy segmentation, which is the basis for individual
or object-based tree health assessment [43,44]. In forest research, a few studies have integrated the
information derived from ALS and airborne HSI with field assessments to monitor forest health.
Shendryk et al. [30] used this approach to assess tree crown dieback and transparency ratios in a
Eucalypt forest and their results showed a higher accuracy with the combined use of the two data
sources compared to only using one. A similar finding was also reported in Meng et al. [29], in which
the authors mapped forest canopy defoliation caused by herbivorous insects at the individual tree
level using a combination of ALS and airborne HSI.

In urban settings, efforts on tree health assessment using high-resolution remote sensing data
have been undertaken recently. For example, Fang et al. [45] evaluated the potential of WorldView-3
satellite images to detect field-measured tree health condition classes and found NDVI1 (defined as
the normalized ratio of the red and the near-infrared bands (770–895 nm)) on a July image to show
the strongest statistical difference between trees with good, fair, or poor health condition. However,
the combination of ALS and airborne HSI based tree health classification in urban settings remains
strongly underexplored. In two separate studies, Näsi et al. [19,38] showed the potential of UAV-based
photogrammetry and hyperspectral imaging for mapping bark beetle damage at tree level in an urban
forest. Most existing tree health studies focused either on assessing tree crown defoliation [29,30,37]
or the overall tree health condition [26,27,38], while attention to tree crown discoloration remained
limited. In response to this, Degerickx et al. [46] conducted an object-based tree health classification
based on chlorophyll content (discoloration) and leaf area index (defoliation) derived from airborne
HSI. Whereas, ALS data was used for the segmentation of individual tree crowns, it remains unclear to
what extent structural information derived from ALS data can be used, either alone or in combination
with HSI, to assess the individual aspects of urban tree health (i.e., discoloration and defoliation) and
overall tree health condition.
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The heterogeneity of tree species found in urban environments further complicates urban tree
health mapping. Xiao and McPherson [47] used the NDVI for a binary classification of healthy vs.
unhealthy trees at the campus of the University of California, Davis. They found it was hard to map
tree health across different species or in places where many tree species co-existed. For example,
some healthy, well-grown conifer trees had the same NDVI value as an unhealthy broadleaf deciduous
tree. Indeed, tree characteristics (e.g., leaf size, water and pigment content and tree structure) may vary
among healthy trees of different species, and as a result, serious tree health classification errors could
be produced when applying the same classification model across different tree species. Therefore,
there is a clear need to identify the most informative spectral and structural indices related to tree
health across species.

The overall aim of this study was to assess the potential of the synergetic use of ALS and airborne
HSI for urban tree health mapping. To this end, a tree health classification procedure using a Random
Forest (RF) classifier with input indices derived from the two data sets was established. In particular,
classification was conducted for three dominant broad-leaved species in Brussels, Belgium. Based on
the presented research progress on urban tree health, and known hurdles for the widespread adoption
of high-resolution remote sensing data in urban tree health assessment, we defined three specific
research questions: (1) What are the differences in the predictive performance of ALS data, airborne HSI
and their combination for different aspects of urban tree health (i.e., defoliation, discoloration and
their combination, i.e., damage)? (2) To what extent do tree species mixtures affect the accuracy of
urban tree health classification? (3) Which input indices derived from ALS and airborne HSI are most
important/informative for tree health classification?

2. Materials and Methods

2.1. Airborne Laser Scanning and Hyperspectral Imagery

Airborne laser scanning (ALS) data, covering the eastern part of Brussels, Belgium (Figure 1),
was collected on 11 June 2015, by Aerodata Surveys Nederland BV using a full-waveform sensor with
a wavelength of 1550 nm. The sensor was mounted on a plane with an altitude of 3000 m above
the ground. The average point density was 15 points/m2. After removing noise points, a digital
terrain model (DTM), digital surface model (DSM) and normalized digital surface model (nDSM) were
derived using LAStools software (http://lastools.org) with a spatial resolution of 0.25 m. In addition,
a normalized ALS point cloud was obtained by calculating the height difference between the original
ALS points without noise points and the DTM layer, which was subsequently used for deriving indices
relevant to tree health (see Section 2.4).
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Airborne hyperspectral imagery (HSI) over the same area was acquired on 30 June 2015, using the
Airborne Prism Experiment (APEX) sensor mounted on a plane, at a flying height of about 3600 m.
An automated processing chain at the Flemish Institute for Technological Research was used to
preprocess the imagery [48]. The radiometric, spectral, and geometric calibration was performed by
means of calibration cubes generated from data measured and collected on the APEX Calibration Home
Base (CHB) hosted at DLR Oberpfaffenhofen, Germany [49]. To reduce smile effects (i.e., the central
wavelength depends slightly on the column pixel location) and spectral instabilities caused by pressure
and/or temperature variations, an in-flight spectral wavelength shift analysis was conducted on
the basis of atmospheric absorption features to reassign new central wavelengths to each pixel.
The geometric correction was performed via direct georeferencing. Input data from the sensor’s
GPS/IMU, boresight correction data and the derived DTM/DSM from ALS data were further used
during the geometric correction process. The data were then projected to a Belgium Lambert 72
coordinate system. The atmospheric correction was conducted using a MODTRAN4 radiative
transfer model [50,51]. The resulting spectral data comprised 285 spectral bands distributed across the
412–2431 nm spectral range, with a spatial resolution of 2 m. Atmospheric absorption bands (412–450 nm,
1340–1500 nm, 1760–2020 nm, and 2350–2431 nm) were then excluded from further analysis.

2.2. Field Data Collection

Collection of field data was carried out in June 2015, coinciding with the remote sensing data
acquisitions, for a total of 131 trees. The trees were randomly selected across the study area (Figure 1)
and covered a range of different sizes and health status. Tree height, diameter at breast height
(1.37 m; DBH) and crown diameter in a north–south direction and west–east direction were recorded.
The health status was scored by two independent researchers using the FAO (The Food and Agriculture
Organization) guidelines for the assessment of forest crown conditions [22,23]. Crown defoliation
and discoloration of each tree were separately estimated on a 0–3 score, and the damage scores
were obtained by combining the defoliation and discoloration scores according to Lakatos et al. [22]
(Table 1). Therefore, each tree was labeled with three scores indicating the classes of defoliation,
discoloration and damage, respectively. Because of the rare occurrence of trees with a crown defoliation
or discoloration score of 3, we decided to merge these trees into class 2. Therefore, class 2 in this paper
corresponds to trees with more than 25% crown defoliation or discoloration. The final distribution of
tree health scores is shown in Figure A1. We focused on the four most dominant tree genera in Brussels,
including Acer (mainly A. pseudoplatanus and A. platanoides; n = 37), Aesculus (A. hippocastanum; n = 34),
Platanus (P. x acerifolia; n = 18) and Tilia (mainly T. x euchlora and T. x europaea; n = 42). Four tree health
datasets were created for tree health classification (see Section 2.6.1): (1) Acer trees, (2) Aesculus trees,
(3) Tilia trees, and (4) all the 131 trees. Platanus trees were not used as an independent dataset, due to
the small sample size.

Table 1. Damage scores by combining defoliation and discoloration scores (modified according to
Lakatos et al. [22]).

Defoliation
Discoloration

0–10% 10–25% >25%

0 1 2

0–10% 0 0 0 1
10–25% 1 1 1 2
>25% 2 2 2 2

2.3. Tree Crown Identification and Delineation

We utilized an object-based classification procedure described in Degerickx et al. [46] to isolate
tree canopies from non-tree objects. The main input data included a rasterized tree index [52] with a



Remote Sens. 2020, 12, 2435 5 of 24

spatial resolution of 0.25 m generated using the normalized ALS point cloud, the nDSM and a NDVI
image calculated from the HSI. The rasterized tree index was used to initially isolate tree canopies,
and non-tree objects and the NDVI image was subsequently used to remove the building edges which
were misclassified as tree canopies. Please refer to Degerickx et al. [46] for more details about the
tree crown identification algorithm. The correct tree objects were then delineated using a watershed
segmentation algorithm to obtain individual tree crowns. Tree crown identification and delineation
were conducted in eCognition 9.4 (http://www.ecognition.com/).

To assess the accuracy of automatically delineated tree crowns (resulting layer), we manually
drew tree crown polygons (reference layer) for randomly selected 40 trees (10 trees per tree species)
based on visual interpretation of the nDSM and ortho-photo images with 7.5 cm spatial resolution.
The overlapping proportions (OPs) between the polygon sets calculated by setting each of them as the
basis layer, respectively (i.e., OPref and OPresult) were used to assess the accuracy of the delineation
algorithm [53].

2.4. Calculation of Indices Derived from Airborne Laser Scanning Data

2.4.1. ALS Intensity Normalization

ALS point cloud intensity has been recommended as important information for forest condition
assessment [54]. The intensity values recorded by the ALS system correspond to the amount of
energy reflected from the target to the laser sensor and relate to radiometric properties of the target.
Other factors, such as environmental factors, angle of incidence, and the sensor-target distance
(or range) also have an effect on the intensity [55]. Therefore, intensity normalization is important for
successful tree health detection using ALS data. In this study, we used a distance-based approach [56]
(Equation (1)) to normalize the intensity data, which are on an 8-bit scale. This method is based on
the fact that the distance from the target to the ALS sensor and reflectivity of the target are the two
important factors directly affecting the intensity values.

Inormalized = I·R2/R2
re f (1)

where Inormalized is the normalized intensity value, I is the raw intensity value, R is the distance between
the ALS sensor and the point, and Rref is the reference distance (average flight altitude). Ideally, R is
calculated using the GPS time when the point was recorded combined with the plane position assigned
to the point. Due to lack of information on flight paths, we used an alternative method to calculate R,
which is the difference of the average flight height and the height of each point [57].

2.4.2. ALS Points Classification

ALS points for each tree were isolated using the automatically delineated tree crown polygon.
To accurately calculate indices from ALS points, we developed a procedure to classify the normalized
ALS points (cf. Section 2.1) for each tree as ground points, trunk points (under the tree crown)
and crown points (the points within a tree crown). The crown points were further classified as leaf
points and points from woody materials. First, the normalized ALS points with a height below 1 m
were labeled as ground points and the remaining points were regarded as non-ground points. Next,
the non-ground points for each tree were sliced into bins with a height of 0.2 m along the z-axis.
Bins having a 2D projected area, which was calculated based on the x and y coordinates of the outmost
points within the bin, smaller than a threshold were regarded as part of the trunk [58] (Figure 2).
The threshold value in this study was set in a dynamic way, matching the basal area calculated based
on the DBH measured in the field. The points in bins with a 2D projected area larger than the calculated
basal area were labeled as canopy points. Finally, the canopy points for each tree were classified
as leaf points or woody materials points based on the values of range-corrected intensity as many
researchers found the intensity of ALS pulses reflected from vegetation foliage and woody materials to
be different [59,60]. Based on the histogram distribution of the intensities of extracted trunk points,

http://www.ecognition.com/
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we found ALS pulses at 1550 nm reflected weakly from woody materials. Therefore, canopy points
with an intensity higher than 134DN (95th percentile intensity value of all trunk points) were classified
as leaf points and the remaining points were regarded as woody materials. This particular intensity
threshold closely matches the threshold of 130DN determined by Shendryk et al. [30].
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Figure 2. Illustration of trunk points extraction: (a) Normalized ALS points; (b) 2D convex hull area
calculated for points in each bin with a height of 0.2 m. The threshold (basal area) for extracting trunk
points of the demonstrated tree is 0.23 m2. Points in bins with a 2D convex hull area smaller than
0.23 m2 and higher than 1 m were labeled as trunk points (in brown). Note that points from upper
crown were excluded to avoid misclassification.

2.4.3. Deriving Tree Crown Specific ALS Indices

For each tree, 140 ALS indices, including height indices, intensity indices, point density indices,
tree size and shape indices, were calculated (Table 2) from the ALS point cloud. The selection of indices
was based on their known relevance for tree health assessment [26,29,30,54].

Table 2. Indices calculated from airborne laser scanning point cloud (H is the height of an individual
point, and I is the range-corrected intensity of an individual point).

ALS Indices Description

Height Indices
Hmin Minimum height of crown points
Hmax Maximum height of the tree points
Hran Difference between Hmax and Hmin
Havg Average height of the tree points
Hstd Standard deviation of the height of the tree points
Hcv Coefficient of variation of the height of the tree points
Hvar Variance of the height of the tree points
Hske Skewness of the height of the tree points
Hkur Kurtosis of the height of the tree points

Hp05–Hp95 Height percentiles (i.e., 5,10, . . . ,95) of tree points
Haad Average Absolute Deviation of the height of the tree points: mean(abs(H-Havg))
Hmad Median Absolute Deviation of the height of the tree points: median(abs(H-Hp50))
Hipr Inter-Percentile Range of the height of the tree points: Hp75–Hp25

Hravg Ratio of the number of tree points above Havg to the number of all tree points
Hrmed Ratio of the number of tree points above Hp50 to the number of all tree points
Hqav Average of the quadratic height of tree points

Hf10–Hf90 Fraction of tree points between the nth (i.e., 10, 20, . . . ,90) percentile height
and Hmax

Hm0_10–Hm90_100 Average height of tree points between intervals of the height percentiles
(i.e., 0–10, 10–20, . . . ,90–100)
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Table 2. Cont.

ALS Indices Description

Height Indices

Hm0_10n–Hm90_100n Average height of tree points between intervals of the height percentiles (i.e., 0–10,
10–20, . . . ,90–100) normalized by Havg

Intensity Indices
Iam Average intensity of tree laser returns above Hp50
Ibm Average intensity of tree laser returns below Hp50
Imin Minimum intensity of tree laser returns
Imax Maximum intensity of tree laser returns
Iran Difference between Imax and Imin
Iavg Average intensity of tree laser returns
Istd Standard deviation of intensity of tree laser returns
Icv Coefficient of variation of intensity of tree laser returns
Iske Skewness of intensity of tree laser returns
Ikur Kurtosis of intensity of tree laser returns
Iaad Average Absolute Deviation of intensity of tree laser returns: mean(abs(I-Iavg))
Imad Median Absolute Deviation of intensity of tree laser returns: median(abs(I-Ip50))

Ip05–Ip95 Intensity percentiles (i.e., 5,10, . . . ,95) of tree laser returns
Iipr Inter-Percentile Range of intensity of tree laser returns: Ip75–Ip25
Ivar Variance of intensity of tree laser returns

Iravg Ratio of the number of tree laser returns with an intensity higher than Iavg to the
number of all tree laser returns

Irmed Ratio of the number of tree laser returns with an intensity higher than Ip50 to the
number of all tree laser returns

Iqav Average of the quadratic intensity of tree laser returns

If10–If90 Fraction of tree laser returns between the nth (i.e., 10, 20, . . . ,90) percentile r
intensity and Imax

Im0_10–Im90_100 Average intensity of tree laser returns between intervals of intensity percentiles
(i.e., 0–10, 10–20, . . . ,90–100)

Im0_10n–Im90_100n Average intensity of tree laser returns between intervals of intensity percentiles
(i.e., 0–10, 10–20, . . . ,90–100) normalized by Iavg

Point Density Indices
DEN Ratio of number of crown points from leaves to 3D convex hull of all points
CNT Total number of points for each tree

EWI Ratio of number of crown points from woody components to the number of
crown points from leaves

FC Ratio of number of first laser returns from tree crowns to the number of all first
laser returns

CT Ratio of number of crown points to the number of all tree points

FG Ratio of number of first laser returns from ground to the number of all first
laser returns

GT Ratio of number of ground points to the number of all tree points
Tree Size and Shape Indices

CRR Canopy Relief Ratio of tree points: (Havg−Hmin)/(Hmax−Hmin)
RCHVH Ratio of 3D convex hull volume of all points to Hmax cubed

CA Area of each tree crown (calculated by buffering each airborne laser scanning
(ALS) point by 0.25 m)

CD Diameter of each tree crown
WH Ratio of CD to Hmax

2.5. Calculation of Indices Derived from Airborne Hyperspectral Imagery

2.5.1. Pixel Selection

As there is high possibility that HSI pixels at the border of tree crown polygons were contaminated
by background materials (e.g., impervious surfaces, shrubs and grass), the border pixels were removed
before extracting tree crown specific pixels. In addition, we used a threshold of 75% of the maximum
brightness within the tree crown to further remove shaded crown pixels. The pixel selection procedure
remained at least three pixels within the tree crown for 95% of trees. The remaining HSI pixels contained
within the tree crown polygon were used for further spectral characterization of individual trees.
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2.5.2. Deriving Tree Crown Specific HSI Indices

Building upon previous tree health studies [27,28,37], we calculated 61 existing spectral indices
(HSI indices; Table 3) for each selected HSI pixel enclosed within the automatically delineated tree crown.
The HSI indices are associated with the absorption features of chlorophyll, carotenoid, anthocyanin,
xanthophyll, water and tree structure. Subsequently, each tree crown specific HSI index was averaged
per tree crown.

Table 3. Indices calculated from airborne hyperspectral imagery.

Spectral Indices Related to Abbreviation Reference

Chlorophyll
Chlorophyll Absorption in Reflectance Index CARI [61]
Chlorophyll Content Index CCI [62]
Chlorophyll Index Red Edge CI [63]
First-order derivative green vegetation index with local baseline 1DL_DGVI [64]
Gitelson and Merzlyak indices 1 GM1 [65]
Gitelson and Merzlyak indices 2 GM2 [65]
MERIS Terrestrial Chlorophyll Index MTCI [66]
Modified CARI MCARI [61]
Normalized Area Over Reflectance Curve NAOC [67]
Normalized Difference Red Edge NDRE [68]
Normalized Difference Vegetation Index NDVI [69]
Spectral index developed using the OMNBR approach ICHL [46]
Pigment Specific Normalized Difference PSNDc [70]
Pigment Specific Simple Ratio Chlorophyll a PSSRa [70]
Pigment Specific Simple Ratio Chlorophyll b PSSRb [70]
Reflectance Band Ratio Index DattNIRCabCx + c [71]
Vogelmann red edge index 1 VOG1 [72]
Vogelmann red edge index 2 VOG2 [72]
Vogelmann red edge index 3 VOG3 [72]
Zarco and Miller ZM [73]
Red edge position REP [74]
Green Normalized Difference Vegetation Index GNDVI [75]
Ratio DI1 [76]
Green Optimized Soil Adjusted Vegetation Index GOSAVI [77]
Transformed Chlorophyll Absorption in Reflectance Index TCARI [63]
Carotenoid
Plant Senescencing Reflectance Index PSRI [78]
Pigment Specific Simple Ratio Carotenoids PSRRc [70]
Carotenoid Reflectance Index CRI550_515 [79]
Ratio Analysis of Reflectance Spectra RARS [80]
Carotenoid Reflectance Index 1 CRI1 [81]
Anthocyanin
Anthocyanin Reflectance Index ARI [82]
Anthocyanin Reflectance Index 2 ARI2 [81]
Xanthophyll
Photochemical Reflectance Index (570) PRI570 [83]
Photochemical Reflectance Index (515) PRI515 [84]
Water
Moisture Stress Index MSI [85]
Water Index WI [86]
Tree Structure
Simple Ratio SR [87]
Soil Adjusted Vegetation Index SAVI [88]
Atmospherically Resistant Vegetation Index ARVI [89]
Enhanced Vegetation Index EVI [90]
Visible Atmospherically Resistant Index VARI [91]
Vegetation Index using Green Band VIgreen [91]
Standardized LAI Determining Index sLAIDi [92]
Spectral index developed using the OMNBR approach ILAI [46]
Renormalized Difference Vegetation Index RDVI [93]
Modified Simple Ratio MSR [94]
Optimized Soil-Adjusted Vegetation Index OSAVI [77]
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Table 3. Cont.

Spectral Indices Related to Abbreviation Reference

Modified Soil-Adjusted Vegetation Index MSAVI [95]
Modified Triangular Vegetation Index 1 MTVI1 [96]
Modified Triangular Vegetation Index 2 MTVI2 [96]
Modified Chlorophyll Absorption Ratio Index 1 MSAVI1 [96]
Modified Chlorophyll Absorption Ratio Index 2 MSAVI2 [96]
Lichtenthaler Index LIC1 [97]
Others
Redness Index R [98]
Greenness Index G [99]
Red/Green Index RGI [100]
Ratio Index Br625_795 [101]
Healthy-Index HI [102]
(R793.8 − R626.3)/(R793.8 + R626.3) NCR1 [19]
(R772.8 − R725.8)/(R772.8 + R725.8) NCR2 [19]
(R793.8 − R626.3)/(R793.8 + R626.3) NCR3 [19]

2.6. Random Forest Classification

Random forest (RF), introduced by Breiman [103], is a non-parametric classifier using a
bootstrapped set of training samples and subsets of input features to build a large number of
classification trees, from which the final classification result is determined as a voting result. When each
tree was built, one-third of training samples, called out-of-bag (OOB) samples were left out. For each
OOB sample, the classification result was determined by the majority vote from the trees generated
without using this sample. An RF classifier is particularly suitable for this study because (i) it has shown
to perform well even when the number of features is much larger than the number of observations,
(ii) it does not require normalization [104], and (iii) it returns measures of feature importance [105].

2.6.1. Classification Scenarios

Four classification scenarios were defined in this study. Scenarios 1–3 aimed at comparing the
performance of ALS indices, HSI indices and their combination for predicting tree health. In scenario
1 (ALS models), each of the three tree health indicators (defoliation, discoloration and damage) was
classified into class 0, 1, or 2 for datasets 1–3 separately (Acer spp., Aesculus spp. and Tilia spp.;
cf. Section 2.2) using 140 ALS indices. This means a total of nine classification models was created in
scenario 1 (three tree health indicators × three species). The same strategy was applied in scenarios 2
and 3, yet with other input indices (61 HSI indices in scenario 2 (HSI models) and all indices in scenario
3 (ALS-HSI models)). In scenario 4 (ALS-HSImixed models), the effects of tree species mixtures on
defoliation, discoloration and damage classification were examined using dataset 4 (i.e., the mixed
species dataset, cf. Section 2.2) and all indices.

2.6.2. Classification Procedure

We used leave-one-out cross-validation (LOOCV), which was recommended for small sample
sizes in previous studies (such as DREAM challenge dataset with 35 samples [106]) to train and test RF
models. In LOOCV, each training set is created by taking all the samples except one, the test set being
the sample left out. Therefore, for n samples, we had n different training sets and n different test sets.
The distribution of the health classes in the study area was unbalanced, with healthy trees appearing
more frequently than unhealthy trees (Figure A1). To avoid high omission errors of the minority
class, a balanced RF classifier was applied [107]. In this way, the accuracy of majority and minority
classes was equally estimated by the classifier. The two important parameters for RF classification
are the number of classification trees (ntree) and the number of features selected at each split in the
tree building process (mtry). ntree was set at 500 and mtry was set at sqrt(M) (M being the number
of input indices) based on previous work [26,54,105]. The classification procedure was conducted in
Python using the scikit-learn library. Classification accuracy was assessed using a weighted kappa
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coefficient (Kc) and overall accuracy (OA) based on the predicted and observed scores of the n test
sets. For ordinal categories, a weighted Kc is more meaningful as misclassification by more than
one category was penalized more heavily, making the Kc values conservative [108,109]. Note that in
scenario 4 (mixed tree species), the Kc and OA were additionally calculated for Acer spp., Aesculus spp.
and Tilia spp. separately to compare with the results of scenario 3. It is worth noting that although
there have been some concerns on the suitability of the Kc in accuracy assessment [110,111], such as
the substantial difficulties in its interpretation, the risks of misleading by using the Kc in the current
study are low as our focus is on comparing different models using the same samples.

2.6.3. Feature Importance and Selection

One of the features of RF is its ability to evaluate the importance of each input feature. Here,
the importance of each index was calculated using the method of average decrease in impurity (MDI),
which is calculated over all trees of the ensemble [112], and is found to be more appropriate for smaller
sample sizes [113]. Based on the average rank of each index in the n models, important indices were
identified even if they were highly correlated and performed similar functions.

Although RF can handle a large set of input features, many irrelevant input features can decrease
the model accuracy, due to the overfitting problem. The process of feature selection can identify small
sets of features that can still achieve good predictive performance [105]. Existing feature selection
techniques can be classified as either filter approaches or wrapper approaches [114]. Filter approaches,
which determine the relevance of features using training data alone, are relatively computationally
cheap. Due to the relevant features being selected independently of the learning algorithm, they may,
however, not match the chosen algorithm [115]. Wrapper approaches call on learning algorithms
for evaluating multiple subsets of input features, are reported to produce higher accuracy than filter
approaches [115,116], but are computationally intensive. In this study, we used a forward selection
method (a wrapper approach) in combination with the importance ranking to select the smallest set
of indices that could produce the highest accuracy. The correlated indices were retained in the final
classification as a preliminary test indicated decreased classification accuracies when removing the
less important indices which are highly related (Pearson’s correlation coefficient > 0.9) to the indices
with a high importance ranking. The classification accuracies reported in this study were based on the
forward selection method.

2.7. Statistical Analysis

To examine the structural and spectral differences represented by the ALS and HSI indices
between the four tree species, we conducted Tukey’s HSD test for each index between healthy trees
(damage score = 0) of the four tree species using the module of statsmodels in Python.

3. Results

3.1. Tree Crown Identification and Delineation

According to the overlapping proportions (OPs) between the manually and automatically
delineated tree crown polygons, 67% of individual tree crowns showed a good match between the
two sets of polygons (OPref > 90% and OPresult > 90%). Twenty-three percent of tree crowns were
slightly over-segmented (75% < OPresult < 90% and OPref > 90%), and 15% of tree crowns were slightly
under-segmented (75% < OPref < 90% and OPresult > 90%). The accuracy assessment proved that 91%
of tree crowns were properly delineated.

3.2. Performance of ALS Indices, HSI Indices and Their Combination

Table 4 shows the classification accuracies for individual tree species in –ALS models (scenario 1),
HSI models (scenario 2) and ALS-HSI models (scenario 3). The predictive performance of ALS indices
and HSI indices varied between tree species. ALS models worked better than HSI models when
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classifying tree crown defoliation and damage (i.e., combination of defoliation and discoloration) for
Acer spp. and Aesculus spp., while opposite results were found for Tilia spp. In tree crown discoloration
classification, ALS models performed better than HSI models for Acer spp. and Tilia spp., while HSI
models produced a slightly higher accuracy for Aesculus spp. The average Kc values across the three
tree species were 0.73 (ALS models) and 0.68 (HSI models) for defoliation; 0.61 (ALS models) and 0.57
(HSI models) for discoloration; and 0.72 (ALS models) and 0.64 (HSI models) for damage (Figure 3).

Table 4. Classification results in scenarios 1–3 in which Random Forest models were trained and tested
using ALS indices (ALS models in scenario 1), hyperspectral imagery (HSI) indices (HSI models in
scenario 2) and their combination (ALS-HSI models in scenario 3), respectively, for individual tree
species (datasets 1–3, cf. Section 2.2). The highest accuracies for predicting each tree health indicator
for each species are highlighted in bold.

Tree
Health

Indicators

Tree
Species

Weighted Kappa Coefficients (Kc) Overall Accuracy (OA)

ALS
Models

HSI
Models

ALS-HSI
Models

ALS
Models

HSI
Models

ALS-HSI
Models

Defoliation
Acer 0.77 0.56 0.76 0.86 0.84 0.89

Aesculus 0.75 0.70 0.77 0.82 0.79 0.85
Tilia 0.68 0.77 0.78 0.79 0.86 0.86

Discoloration
Acer 0.47 0.42 0.53 0.78 0.81 0.81

Aesculus 0.59 0.60 0.72 0.74 0.76 0.82
Tilia 0.78 0.70 0.79 0.88 0.83 0.88

Damage
Acer 0.77 0.56 0.76 0.86 0.84 0.89

Aesculus 0.70 0.60 0.77 0.79 0.79 0.88
Tilia 0.68 0.77 0.78 0.79 0.86 0.86
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Figure 3. Classification accuracies in the four scenarios: (a) Weighted Kappa coefficient (Kc); (b) overall
accuracy (OA). In scenarios 1–3, the Kc and OA for each tree health indicator were averaged for the
three tree species (i.e., Acer spp., Aesculus spp. and Tilia spp.).

The average Kc values for all ALS models, HSI models and ALS-HSI models were 0.69, 0.63 and
0.74, with OA values of 0.81, 0.82, and 0.86, respectively (Table 4). For the majority of tree health
indicators and tree species, the highest accuracy was obtained using ALS-HSI models. The increase in
Kc points, compared with ALS models, ranged from−0.01 to 0.13 with an average of 0.05, and compared
with HSI models from 0.01 to 0.20 with an average of 0.11. The average Kc values for the ALS-HSI
models for tree crown defoliation, discoloration and damage classification were 0.77, 0.68, and 0.77,
respectively, and the corresponding OA values were 0.87, 0.84, and 0.88, respectively (Figure 3).
When considering the performance of ALS-HSI models between tree species, the health condition
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of Tilia trees was best predicted (average Kc = 0.78 for the three tree health indicators), followed by
Aesculus trees (average Kc = 0.75 for the three tree health indicators) and Acer trees (average Kc = 0.68
for the three tree health indicators) (Table 4).

3.3. Tree Health Classification for Mixed Species

Recall that scenario 4 differed from scenario 3 (ALS-HSI models) in that way that in scenario
3 the classification was performed on individual species. Scenario 4, in which the combination of
ALS and HSI indices was used to train and test tree health classification models for the combination
of tree species (all the 131 sampled trees; cf. Section 2.2) (ALS-HSImixed models), enabled us to
examine the effect of mixed species on tree health classification. The final Kc values for defoliation,
discoloration and damage were 0.65, 0.68, and 0.70 with corresponding OA values of 0.78, 0.81, and 0.81,
respectively (Figure 3). The Kc and OA values calculated for individual species in ALS-HSImixed

models were compared with their counterparts in scenario 3 (Figure 4). ALS-HSI models calibrated per
tree species almost systematically outperformed the ALS-HSImixed models, with an average increase in
Kc points of 0.15, 0.03, and 0.05 for Acer spp., Aesculus spp., and Tilia spp., respectively. When focusing
on the tree health indicators, the highest average increase in Kc points (0.12) was found for defoliation,
followed by damage (0.09) and discoloration (0.01).
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Figure 4. Comparison of tree health classification accuracy for individual species between ALS-HSI
models in scenario 3 (models trained and tested for individual tree species using both ALS and HSI
indices) and ALS-HSImixed models in scenario 4 (models trained and tested for mixed tree species using
both ALS and HSI indices).

3.4. Feature Importance

Table 5 shows the 17 most important indices (a maximum of 17 indices was required to achieve the
best classification accuracy) determined by the MDI method in the ALS-HSI models and ALS-HSImixed

models for tree crown defoliation, discoloration and damage classification. The importance ranking of
indices varied considerably between tree species. The ALS indices that appeared most frequently in the
17 most important indices were those related to the ALS point density (i.e., FG and FC in 10 models,
DEN and EWI in seven models and GT in five models), tree size, and shape (i.e., WH, RCHVH, and CD in
nine models and CA in seven models). The height and intensity indices did not significantly contribute
to tree health classification. The most important HSI indices were associated with spectral features of
chlorophyll absorption (e.g., CCI in eight models, VOG1 and VOG2 in seven models, REP in six models
and ICHL, DattNIRCabCx + c and MTCI in five models) and leaf area index (i.e., ILAI in six models).
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Table 5. The 17 most important indices in ALS-HSI models (scenario 3; Acer, Aesculus and Tilia) and ALS-HSImixed models (scenario 4; Mixed) for tree crown
defoliation, discoloration and damage (i.e., combination of defoliation and discoloration) classification. ALS indices were underlined to distinguish them from HSI
indices. The indices used in the final classification models (according to the forward selection method; cf. Section 2.6.3) are highlighted in bold. The explanation of the
index abbreviations can be found in Tables 2 and 3.

Importance
Ranking

Defoliation Discoloration Damage

Acer Aesculus Tilia Mixed Acer Aesculus Tilia Mixed Acer Aesculus Tilia Mixed

1 EWI RARS FC CD CD ILAI VOG2 CD EWI MSI FC CD
2 DEN CA REP RCHVH WH DEN REP RCHVH DEN WH REP RCHVH

3 DattNIRCabCx
+ c

Hm50_60n CCI WH RCHVH MSI EWI WH DattNIRCabCx
+ c

RCHVH CCI FC

4 WH MSR FG FC CA CD CCI MTCI WH CD FG VOG2
5 RCHVH PSSRa ZM FG Im70_80n RCHVH VOG3 REP RCHVH CA ZM WH

6 CD FG NCR1 DattNIRCabCx
+ c DEN GNDVI NDRE CA CD ARVI NCR2 FG

7 PSRI PSRRc VOG1 VOG1 DattNIRCabCx
+ c WH FG VOG1 PSRI FG VOG2 VOG3

8 MTVI1 NCR1 GM1 CCI Hf10 CA FC VOG2 MTVI1 GM2 GM2 CCI
9 GNDVI VOG1 ICHL GT EWI RARS NCR2 DEN GNDVI VOG2 ICHL NCR2
10 CA Hm40_50n CI REP Imin ARI2 MTCI GT CA NCR1 CI REP
11 VARI RCHVH NAOC NCR1 Hp10 FG ILAI CCI VARI HI NAOC ZM
12 PSSRb CD CT Iipr If20 NCR2 DEN FC PSSRb FC CT ICHL

13 TCARI FC MTCI VOG2 TCARI EWI Iravg NCR2 TCARI VOG1 MTCI MTCI

14 CCI MSI ILAI EWI FC Hm60_70n GM2 ICHL CCI RARS ILAI DattNIRCabCx
+ c

15 CARI WH VOG2 ILAI FG VOG1 VOG1 FG CARI Iran VOG3 GT
16 MCARI LIC1 NDRE DEN GM2 FC ICHL EWI MCARI PRI570 NDRE CI
17 Im80_90 Hm60_70n GT Hp15 MCARI PSRRc Im70_80n CI Im80_90 NCR2 GT ILAI
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In an attempt to identify the most consistent indices across tree species, we found that in ALS
models (scenario 1) EWI, FG, and FC were important for all the three tree species for tree crown
defoliation classification; DEN, EWI, FG, and FC were consistently important for discoloration and
damage classification (Table A1). When HSI indices alone were used for classification (HSI models;
scenario 2), the consistently important indices were: MTCI and VOG3 for defoliation; MTCI, REP,
and HI for discoloration; REP and VOG3 for damage (Table A2). In ALS-HSI models (scenario 3),
the consistent indices across species for discoloration classification included FC, DEN, FG, and EWI
(Table 5). No consistent indices were found for defoliation and damage in this case.

4. Discussion

4.1. Data and Feature Selection for Urban Tree Health Assessment

For urban tree health assessment, selection of proper remote sensing data is crucial. However,
few studies have conducted comparison between data types for tree health assessment across different
tree health indicators. Our results show that ALS models outperformed HSI models in six out of the
nine classifications (Table 4), which seems to indicate a better performance of ALS models. Tree crown
defoliation, related to the amount of within-canopy gaps, increases penetration of ALS pulses through
tree canopies and subsequently results in a greater portion of ground returns [59,117]. In our study,
the good performance of ALS indices for defoliation classification, especially for Acer spp. and Aesculus
spp., corroborates results of previous studies in which ALS was found to be robust in detecting
fire- and insect-induced leaf loss in forest canopies [26,29,118]. According to the MDI method, FC,
FG, and EWI which are all related to the ALS point density (Table 2), were consistently important
across different species (Table A1), which confirms the usefulness of these ALS indices in modeling
defoliation. EWI was also found to be able to explain the variance related to tree crown transparency
in Shendryk et al. [30]. Four tree size and shape indices (i.e., CD, CA, RCHVH, and WH) which
were calculated based on the spatial distribution of ALS points (Table 2) were also important for
defoliation classification (Table 5, Table A1). This makes us argue that these indices could characterize
the geometric changes, due to defoliation. Similarly, Yao et al. [119] also suggested the contribution of
using these geometry-related indices in the detection of standing deadwood.

With regard to discoloration classification, ALS models were able to produce higher classification
accuracy for Acer spp. and Tilia spp. and a similar accuracy for Aesculus spp. compared with HSI models
(Table 4). Especially for Tilia spp., several intensity indices were selected for discoloration classification
(Table A1), indicating that the radiometric properties of the target are sensitive to tree crown discoloration.
However, Table A1 also shows that the selected ALS indices for discoloration classification were mainly
related to point density, tree size, and shape, which are conceptually unrelated to discoloration. A plausible
explanation for this phenomenon might be found in the strong positive correlation between our field
assessed defoliation and discoloration scores (discoloration score equal to defoliation score for 78.6%
sampled trees; Figure A1a). Also note that classification performance of discoloration based on ALS
data was highest for Tilia spp., i.e., the species with the strongest correlation between defoliation and
discoloration scores (discoloration score equal to defoliation score for 81% Tilia trees). Therefore, future tree
health monitoring could, to some extent, rely on ALS data for discoloration prediction in case defoliation
and discoloration co-exist in most tree crowns in the study area. To better understand the potential
of ALS data for identifying tree crown discoloration, further analysis should be conducted on trees
experiencing discoloration only. Given the lack of such trees in our datasets, such analysis was not
feasible here. As for the poorer performance of HSI, which was expected to have higher predictive power
for discoloration classification, it could be explained by: (i) The coarser spatial resolution compared
with ALS data, and (ii) the pixels containing information on the mixture of leaves, woody materials and
backgrounds thereby having lower applicability in differentiating tree crown discoloration levels for our
samples with an unbalanced distribution of discoloration classes (Figure A1).
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Figure A1b shows that in our particular case study, overall tree damage scores were more driven by
defoliation (damage score equal to defoliation score for 96.2% sampled trees), compared with discoloration
(damage score equal to discoloration score for 81.7% sampled trees). This causal effect was also reflected
in the classification accuracies, where defoliation and damage classification showed a similar pattern:
ALS models outperformed HSI models for Acer spp. and Aesculus spp. but not for Tilia spp. (Table 4).
Note that the superiority of ALS models for tree damage classification is likely to be strongly case-specific.
It should be further investigated whether the same conclusion would be reached in a case where tree
health is mostly driven by leaf discoloration. Due to the strong correlation between defoliation and the
other two tree health indicators, we found the ALS indices important for discoloration and damage
classification to show large overlap with those for defoliation (Table 5; Table A1).

Our results show that the overall highest level of accuracy was achieved in ALS-HSI models
(average Kc = 0.74 and OA = 0.86; Table 4), highlighting the complementarity of ALS and HSI data for
tree health assessment and supporting earlier findings from Shendryk et al. [30] and Meng et al. [29].
Tree health is reflected by both structure and foliar chemistry, especially pigment content, the latter
known to be strongly associated with tree crown reflectance properties [21,23]. By explicitly providing
this reflectance information by means of HSI, tree health classification was improved from an average
Kc of 0.69 (only ALS data) to 0.74 (combination of ALS and HSI). This was highlighted by the important
HSI indices determined by the MDI method. We found most important HSI indices were associated
with the chlorophyll absorption and red-edge spectral feature (e.g., CCI, VOG1, VOG2, REP, ICHL,
DattNIRCabCx + c and MTCI; Table 5), which supports previous studies [27–29]. The red-edge spectral
region was shown in the 1980s to be sensitive to chlorophyll content [74] and ever since has been
applied in research on tree health [120]. Our study confirmed that HSI indices associated with the
chlorophyll absorption feature are more relevant compared to other HSI indices in identifying urban
tree health [23]. In addition, ILAI, which demonstrated a good relationship with leaf area index in
Degerickx et al. [46], was also an important index for predicting tree crown health (Table 5).

4.2. Species-Specific vs. Mixed Species Modelling Approach

By constructing both species-specific models (ALS-HSI models) and mixed species models
(ALS-HSImixed models), we quantified the effect of mixed species on classification, which is another
crucial issue for urban tree health assessment. Species-specific ALS-HSI models overall showed better
performance than their mixed species counterparts (an average increase in Kc points of 0.07 calculated
for all three tree species and tree health indicators) (Figure 4). This difference was found to be larger
for Acer spp. (average increase in Kc points of 0.15 for the three tree health indicators) compared to
the other tree species. To explore the underlying reasons, we conducted a Tukey’s HSD test for each
index between healthy trees (damage score = 0) of the four tree species (Table A3). Table A3 shows
that significant differences (p < 0.05) in indices between tree species was mainly found between Acer
spp. and the other tree species, especially for HSI indices, which indicates that Acer trees observed
in our study tended to have different structural and spectral characteristics from other tree species.
In this context, a mixed species modelling approach would increase the possibility of misclassification
for Acer spp. when using a machine learning algorithm like RF. We therefore predict that, with the
increase of tree species diversity, especially with the combination of broadleaved and coniferous
species, the performance of mixed species models would rapidly decrease [47]. This should, however,
be further verified in follow-up research.

Given the reasoning mentioned above, it is safe to assume that in practice, a species-specific
tree health mapping approach will be preferred in case of urban areas with diverse tree species.
Some well-developed methods for urban tree species classification have constituted a solid basis for
generating such a map. For example, Alonzo et al. [121] mapped 29 common tree species in Santa
Barbara, California, USA using fused HSI and ALS data and an RF classifier, with an overall accuracy
of 93.5%. Although this additional classification step will undoubtedly increase the workload, the issue
could be addressed by using the tree species database, which actually is already available in some
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cities. Based on such a tree species map or database, sufficient training data on tree health for each
tree species should be collected in order to build a robust classification model. On the other hand,
we should not ignore that some important indices (e.g., FG, FC, REP, and HI; Table A3) have the
potential to be independent of tree species, which might to some extent improve the classification
accuracy of a mixed species model. Future urban tree health research should take efforts to search
for stable and informative indices which are not affected by tree species. The above-mentioned four
indices would constitute an excellent starting point for this endeavor and should be further examined
for other tree species.

5. Conclusions

Considering the threats of increasingly prominent urban environmental problems to tree health,
frequent and accurate mapping of tree health is critical to design adaptive tree management strategies.
With a complete workflow encompassing individual tree crown delineation, index calculation,
feature selection, classifier training, classification and validation, we compared the performance
of airborne laser scanning (ALS), airborne hyperspectral imagery (HSI), and their combination,
to classify urban tree health. The combined use of both types of data produced the highest level of
classification accuracy, confirming their complementarity. Overall, ALS data had better performance in
predicting tree health based on our samples. However, due to the stronger dependence of damage
(i.e., combination of defoliation and discoloration) scores on defoliation scores than on discoloration
scores in our tree samples, the potential of ALS data for predicting damage needs to be further examined
in future studies. As a reference for future research, our results highlighted that ALS indices related to
point density, tree size, and shape and HSI indices associated with the chlorophyll absorption feature
were most important for tree health identification. The consistently important ALS indices (i.e., DEN,
EWI, FG, and FC) and HSI indices (i.e., MTCI, VOG3, REP, and HI) across the three tree species in our
study, however, should be further tested for their applicability and transferability to other common
tree species in an urban context.

The high heterogeneity of tree species in urban environments makes it hard to map tree health on
a city scale using remote sensing technologies. In our study, a species-specific tree health modelling
approach (ALS-HSI models; scenario 3) proved to yield higher accuracies overall (an average increase in
Kc points of 0.07) compared to combining all species into one tree health model (ALS-HSImixed models;
scenario 4). Even though further research is required covering more diverse tree species settings,
some practical guidelines can already be formulated based on our findings. In case a quick overview
of tree health needs to be obtained over an area with limited tree species diversity, a mixed species
modelling approach should be preferred—since it represents the least time-consuming approach.
In that case, most attention should be devoted towards identifying ALS and HSI indices which are
independent of tree species. However, in case the study area shows a highly heterogeneous tree species
pool, the added value of constructing species-specific models becomes truly significant. This can be
achieved by involving an available tree species database or a tree species map generated from the same
remote sensing data sources.
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Figure A1. Distribution of tree health scores for the 131 sampled trees: (a) defoliation and discoloration
scores; (b) defoliation and damage scores.

Table A1. The 17 most important indices in ALS models (scenario 1) for tree crown defoliation,
discoloration and damage (i.e., combination of defoliation and discoloration) classification. The indices
used in the final classification models (according to the forward selection method; Section 2.6.3) are
highlighted in bold. The explanation of the indices abbreviations can be found in Table 2.

Importance
Ranking

Defoliation Discoloration Damage

Acer Aesculus Tilia Acer Aesculus Tilia Acer Aesculus Tilia

1 DEN Hm40_50n FC WH RCHVH EWI DEN FG FC
2 EWI FG FG RCHVH CD FC EWI RCHVH FG
3 RCHVH Hravg CT CA DEN FG RCHVH WH CT
4 Im80_90 FC Hm10_20 CD EWI DEN Im80_90 If70 Hm10_20
5 I90 RCHVH GT DEN CA Im60_70n Ip90 CD GT
6 FG Hm50_60n DEN EWI WH Hp20 FG EWI DEN
7 CD CA EWI If20 FG Im50_60n CD CA EWI
8 FC Hp20 Iske FG Hm60_70n Im90_100n FC Hp25 Iske
9 Ip85 Hm60_70n Hf30 Hp10 FC Iam Ip85 FC Hf30
10 WH EWI Im60_70n Imin Hf90 Iske WH Imax Im60_70n
11 Iipr CD Hp10 Im70_80n If70 Hm10_20 Iipr DEN Hp10
12 CA Hm20_30 Im70_80n Hf10 Hm70_80n Hm90_100n CA Iran Im70_80n
13 Ip80 WH If30 FC If90 Iravg Ip80 Hm60_70n If30
14 Im0_10n Hf10 Hp20 Iran Hravg Im70_80n Im0_10n Hf10 Hp20
15 Ip75 CT Ip20 Hm40_50n If10 Ikur Ip75 Hm20_30 Ip20
16 GT Hm20_30n Ip15 GT Ip05 CT GT Hm20_30n Ip15
17 Hp15 Hm10_20 Im10_20 Iravg Hm30_40n Icv Hp15 Hp20 Im10_20

Table A2. The 17 most important indices in HSI models (scenario 2) for tree crown defoliation,
discoloration and damage (i.e., combination of defoliation and discoloration) classification. The indices
used in the final classification models (according to the forward selection method; Section 2.6.3) are
highlighted in bold. The explanation of the indices abbreviations can be found in Table 3.

Importance
Ranking

Defoliation Discoloration Damage

Acer Aesculus Tilia Acer Aesculus Tilia Acer Aesculus Tilia

1 GM1 PSRRc REP DattNIRCabCx
+ c ILAI NDRE GM1 MSI REP

2 DattNIRCabCx
+ c RARS ICHL MTCI MSI VOG3 DattNIRCabCx

+ c ARVI ICHL

3 CARI MSI NCR2 PRI570 GNDVI VOG2 CARI PRI570 NCR2
4 GNDVI SR VOG2 REP REP REP GNDVI HI VOG2
5 VARI MSR CCI CI ARVI MTCI VARI VOG1 CCI
6 TCARI PSSRa MTCI G PSRI ICHL TCARI NCR1 MTCI
7 PSRI NCR1 ILAI MCARI HI VOG1 PSRI RARS ILAI
8 ZM VOG1 CI GM1 PRI515 CI ZM Br625_795 CI
9 HI LIC1 ZM GNDVI GM1 NCR2 HI PSRI ZM

10 MTVI1 HI NAOC TCARI RARS CCI MTVI1 NCR2 NAOC
11 MCARI MTCI NDRE HI ARI2 ILAI MCARI VOG3 NDRE
12 VOG3 NDVI GM2 CARI NAOC PRI515 VOG3 GM1 GM2
13 NAOC Br625_795 VOG3 ARI VOG1 GM2 NAOC PSRRc VOG3
14 ILAI GM2 G ZM MTCI PSRI ILAI VOG2 G
15 WI VOG3 VOG1 GM2 PSNDc ZM WI REP VOG1
16 MTCI PRI570 1DL_DGVI NCR2 PRI570 R MTCI GM2 1DL_DGVI
17 REP CCI R WI NDRE HI REP WI R
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Table A3. Results of Tukey’s HSD test for the indices values between healthy trees (damage score = 0)
of different tree species. a, b, c, and d referred to Acer spp., Aesculus spp., Platanus spp. and Tilia spp.,
respectively. The difference with a significance level of p < 0.05 are marked in bold. Only the indices
whose values showed significant difference between at least two tree species are listed.

Indices a–b a–c a–d b–c b–d c–d Indices a–b a–c a–d b–c b–d c–d

Iaad 0.200 0.014 0.247 0.438 0.900 0.293 VOG3 0.005 0.033 0.080 0.900 0.625 0.683
I70 0.400 0.040 0.743 0.479 0.900 0.189 ZM 0.001 0.073 0.024 0.900 0.641 0.900
I75 0.337 0.026 0.636 0.435 0.900 0.179 GNDVI 0.003 0.003 0.002 0.786 0.900 0.738
I80 0.269 0.017 0.485 0.411 0.900 0.194 DI1 0.003 0.326 0.001 0.736 0.900 0.713
I85 0.205 0.013 0.285 0.423 0.900 0.257 GOSAVI 0.080 0.127 0.001 0.900 0.616 0.900
I90 0.165 0.010 0.153 0.428 0.900 0.334 TCARI 0.033 0.524 0.900 0.873 0.061 0.623
I95 0.138 0.016 0.060 0.544 0.900 0.585 PSRRc 0.265 0.048 0.001 0.623 0.026 0.740
Iipr 0.352 0.012 0.675 0.284 0.900 0.091 CRI550_515 0.809 0.601 0.003 0.287 0.001 0.557

Im70_80 0.339 0.026 0.635 0.435 0.900 0.180 CRI1 0.325 0.682 0.016 0.112 0.001 0.688
Im80_90 0.210 0.013 0.293 0.417 0.900 0.252 ARI2 0.051 0.027 0.133 0.821 0.900 0.552

Im60_70n 0.648 0.094 0.900 0.490 0.307 0.030 PRI515 0.003 0.538 0.275 0.518 0.001 0.053
CNT 0.807 0.048 0.900 0.236 0.900 0.112 SR 0.359 0.079 0.001 0.656 0.011 0.578
CA 0.844 0.002 0.900 0.022 0.900 0.004 SAVI 0.037 0.286 0.003 0.900 0.900 0.861
CD 0.900 0.003 0.900 0.021 0.900 0.005 ARVI 0.900 0.093 0.008 0.172 0.036 0.900
WH 0.799 0.003 0.900 0.034 0.900 0.007 EVI 0.037 0.506 0.004 0.900 0.900 0.670
EWI 0.333 0.002 0.900 0.088 0.673 0.007 VARI 0.002 0.828 0.037 0.213 0.001 0.038

RCHVH 0.608 0.008 0.900 0.120 0.716 0.013 VIgreen 0.001 0.681 0.243 0.179 0.001 0.086
DEN 0.320 0.003 0.723 0.147 0.842 0.028 sLAIDi 0.009 0.900 0.537 0.061 0.191 0.667
CARI 0.033 0.882 0.900 0.533 0.016 0.760 ILAI 0.079 0.021 0.607 0.696 0.554 0.163
CCI 0.004 0.064 0.059 0.900 0.638 0.880 RDVI 0.040 0.266 0.001 0.900 0.776 0.761
CI 0.001 0.073 0.024 0.900 0.641 0.900 MSR 0.493 0.059 0.001 0.500 0.006 0.655

1DL_DGVI 0.028 0.496 0.005 0.874 0.900 0.710 OSAVI 0.080 0.127 0.001 0.900 0.616 0.900
GM1 0.001 0.007 0.001 0.900 0.900 0.900 MSAVI 0.037 0.302 0.001 0.900 0.814 0.736
GM2 0.001 0.043 0.001 0.900 0.900 0.900 MTVI1 0.165 0.760 0.006 0.900 0.728 0.491
MTCI 0.005 0.338 0.304 0.769 0.262 0.900 MTVI2 0.310 0.458 0.001 0.900 0.204 0.517

MCARI 0.033 0.524 0.900 0.873 0.061 0.623 MSAVI1 0.165 0.760 0.006 0.900 0.728 0.491
NAOC 0.119 0.019 0.073 0.601 0.900 0.581 MSAVI2 0.310 0.458 0.001 0.900 0.204 0.517
NDRE 0.008 0.072 0.266 0.900 0.404 0.626 LIC1 0.900 0.026 0.003 0.103 0.041 0.900
NDVI 0.900 0.024 0.005 0.085 0.050 0.900 R 0.001 0.895 0.008 0.003 0.001 0.378
ICHL 0.017 0.022 0.267 0.900 0.543 0.362 G 0.001 0.509 0.358 0.051 0.001 0.062

PSNDc 0.809 0.008 0.007 0.063 0.136 0.746 RGI 0.006 0.372 0.271 0.772 0.001 0.025
PSSRa 0.354 0.078 0.001 0.659 0.013 0.593 Br625_795 0.452 0.023 0.006 0.325 0.380 0.900
PSSRb 0.041 0.030 0.001 0.878 0.084 0.675 NCR1 0.332 0.028 0.001 0.456 0.268 0.900

DattNIRCabCx+c 0.003 0.008 0.001 0.900 0.439 0.900 NCR2 0.014 0.036 0.278 0.900 0.484 0.458
VOG1 0.001 0.104 0.074 0.900 0.415 0.900 NCR3 0.044 0.856 0.007 0.601 0.001 0.014
VOG2 0.007 0.029 0.113 0.900 0.610 0.600
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