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Abstract: Sustainable forest management relies on practices ensuring vigorous post-harvest
regeneration. Data on regeneration structure and composition are often collected through intensive
field surveys. Remote sensing technologies (e.g., Light Detection and Ranging (LiDAR), satellite
imagery) can cover a much larger spatial extent, but their ability to estimate regeneration characteristics
is often challenged by the obstruction associated with canopy foliage. Here, we determined whether
the integration of LiDAR and Sentinel-2 images can increase the accuracy of sapling density estimates
and whether this accuracy decreased with canopy cover in the Acadian forest of New Brunswick,
Canada. Using random forest regression, we compared the accuracy of three models (LiDAR and
Sentinel-2 images alone or combined) to estimate sapling density for two species groups: saplings of
all species or commercial species only. The integration of both sensors did not increase the accuracy of
sapling density estimates, nor did it reduce the negative influence of canopy cover for either species
group compared to LiDAR, but it increased the accuracy by approximately 15% relative to Sentinel-2
images. Under very high canopy cover, the accuracy of density estimates for all species combined was
significantly lower with Sentinel-2 images only. We recommend using LiDAR and high-resolution
satellite images acquired in the fall to obtain more accurate estimates of sapling density.

Keywords: Acadian forest; canopy cover; forest regeneration; integration of sensors; random
forest regression

1. Introduction

Regeneration is essential to establish or renew a stand after a disturbance, whether of natural or
anthropogenic origin [1]. Two main approaches are used to estimate regeneration characteristics such
as density, composition, and height: field surveys and remote sensing. Even though field surveys are
more accurate [2], they are more time-consuming [3] and their spatial extent is limited compared to
remote sensing [4,5].

Remote sensing technologies such as satellite images have been used for decades in forestry
to estimate various stand characteristics [6]. Forest health [7], aboveground biomass [8], fire risk
zone [9], and cover change [10] are just a few variables that have been estimated using satellite images.
More recently, Light Detection and Ranging (hereafter referred to as LiDAR) has been shown to be
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efficient at estimating various stand attributes, such as canopy height [11], basal area [4], tree crown
diameter [12], and canopy structure [13]. However, forest stand characteristics that can be estimated
from remote sensing are mostly restricted to overstory, mainly because canopy foliage interferes with
the detection of understory vegetation. Overstory density [14–17], canopy height [18], proportion of
hardwoods in the overstory [19], and canopy cover [20] all have been shown to decrease the accuracy
of estimates of overstory tree characteristics. These limitations are even more evident when estimating
regeneration characteristics, which may explain why remote sensing has mainly been used to quantify
regeneration following a fire [21,22] or tree plantation [23,24]. Only a few authors have attempted to
characterize regeneration under high values of canopy cover [25,26] and, not surprisingly, the accuracy
of estimates decreased with canopy cover.

Satellite images have been used to estimate presence or absence of regeneration [27], seedling
density [21], understory cover type [28–30], and age of regeneration stands [31]. Sapling density [32]
and crown delineation [33] have also been estimated from aerial images. Similarly, LiDAR has been
shown to yield accurate estimates of regeneration attributes such as presence–absence [26,34,35],
density [14,16,17,36], species composition [24,37], cover [18,25], and height [38].

Studies estimating regeneration attributes from remote sensing have mainly been conducted
using a single sensor: either satellite and aerial images, or LiDAR. Satellite and aerial images display
attributes on the horizontal plan, and thus may not accurately represent vertical structure [39]. LiDAR is
specifically designed to quantify characteristics on a vertical plan and, therefore, it can detect subcanopy
features more accurately than satellite sensors [40]; thus, it could complement satellite and aerial images.
Combining satellite or aerial images and LiDAR has been shown to explain a greater proportion of
variance in stand characteristics such as basal area [41], tree volume [42], tree height [43], and tree
density [23,44] than models based either on satellite images or LiDAR. The combination of LiDAR
and satellite images has also been shown to increase the accuracy of crown delineation [45,46] and
tree height [47]. However, very few studies have tried to characterize forest regeneration using a
combination of satellite images and LiDAR and those that did have mainly been conducted in areas
with low canopy cover [22,24].

Here, we compared the accuracy of sapling density estimates between LiDAR, Sentinel-2 images,
and a combination thereof, and we identified the limitations of each approach along a gradient of
canopy cover. First, we hypothesized that a model using variables derived from both sensors (satellite
images and LiDAR) will be more accurate than a model using a single one, owing to complementarity
in the information acquired by the two sensors. Then, we predicted that estimation errors will increase
with canopy cover for either of the three approaches (single sensors or their combination), but that
the difference between low and high canopy cover values will be less pronounced when both sensors
are combined.

2. Materials and Methods

2.1. Study Area

We sampled forest stands across the entire province of New Brunswick in eastern Canada
(66◦21′42′′ W, 46◦31′05′′ N, CRS: WGS84, Figure 1). This province is part of the Atlantic Maritime
Ecozone, whose climate is strongly influenced by the Atlantic Ocean [48]. New Brunswick’s forest has
been shaped by a long history of forestry. As a result, it is dominated by second- and third-growth
stands, with small, scattered patches of old-growth [48]. Agriculture is restricted to valleys [49] and
natural disturbances are dominated by eastern spruce budworm (Choristoneura fumiferana) outbreaks
and fine-scale disturbances such as windthrows [50,51]. Most of New Brunswick’s forested lands
are classified as Acadian forest, with a small portion of boreal forest in the northwestern corner of
the province [52]. New Brunswick’s Acadian forest is characterized by a high species richness of
both softwood and hardwood species, with spruces (Picea spp.), balsam fir (Abies balsamea), maples
(Acer spp.), and birches (Betula spp.) as dominant canopy species [53].
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2.2. Field Data

In this study, we used permanent sample plots (PSP) monitored by the New Brunswick Department
of Natural Resources and Energy Development [54] and J.D. Irving Ltd. (n = 813). Almost all the PSP
plots were distributed as a grid of 2 km × 2 km while the others were randomly distributed in stands
of high values and intensively managed, 1/10th of the plots were measured annually.

Field surveys were performed ±1 year from the date of LiDAR coverage and Sentinel-2 image
acquisition. We visually inspected each plot to ensure that no disturbance had taken place between the
field survey and LiDAR capture. Because the annual growth in height of saplings is very variable due
to different factors such as light intensity [55], initial height of the sapling [56], and shade-tolerance [57],
we did not consider annual height growth of saplings as a bias in our study. Each stem with a diameter
at breast height (DBH) of 1 to 7 cm and a height of ≥1.3 m was tallied in 50-m2 circular plots (3.99-m
radius). Plot center location was determined with a GPS (Topcon HiPer SR, Topcon Corp., Tokyo,
Japan) set up on a tripod. The tripod was placed in the center of the plot for a minimum of one hour to
obtain high spatial accuracy (50 cm). For each stem tallied, species, DBH, and health class (live, dead,
or declining) were recorded. Stem height was measured for every 10th stem using a clinometer.

All stems whose DBH was ≥7.1 cm were tallied in a 400-m2 circular plot (11.28-m radius) using the
same plot center as for regeneration plots. Species, DBH, health class, and height were then recorded.

2.3. Satellite Images and Preprocessing

We used Sentinel-2 images with the highest resolution, 10 m × 10 m, acquired on 1 July 2016,
9 July 2017, and 21 July 2018. We used images from July to maximize our sample size (low cloud
cover) and the highest image resolution to increase the accuracy of the models [33]. At this resolution,
the images only include four bands: blue, green, red, and near-infrared (NIR). Since only level-1C
images (top-of-atmosphere reflectance) were available for our study area, we performed an atmospheric
correction using sen2cor plugin (SNAP software, ESA, Venice, Italy [58]). Then, we divided the digital
number of each band by 10,000 to extract reflectance.

We only selected plots classified as vegetation from the scene classification generated by the
sen2cor plugin for further analysis. Finally, for each plot, we extracted the mean reflectance of each
band within an 11.28-m radius circle around the plot center and we calculated the normalized difference
vegetation index (NDVI; Equation (1)). We selected NDVI because of its strong and well-described
relation to canopy vegetation.

NDVI =
NIR−Red
NIR + Red

(1)

2.4. LiDAR Acquisition and Preprocessing

LiDAR data were acquired during the summers of 2016, 2017, and 2018 using an aircraft mounted
with a Riegl 680/780 (Riegl USA, Orlando, FL, USA) in 2016 and 2017, and a Riegl 1560 (Riegl USA,
Orlando, FL, USA) in 2018. Each year, point density was set to 6 points/m2. The horizontal accuracy of
point clouds for 2016 and 2017 was 30 cm, whereas it reached 20 cm in 2018. Vertical accuracy was
20 cm in 2016 and 2017 and 3 cm in 2018. The horizontal and vertical accuracy were similar to those of
other studies aiming to characterize forest regeneration [25,38].

We only used returns classified as “ground” or “vegetation”. To do so, we first filtered points
using LAStools software (rapidlasso GmbH, Gilching, Germany [59]) to remove those classified as
building or noise, i.e., points not classified as “vegetation” or “ground”. Then, also with LAStools,
we normalized vegetation points with ground points to calculate vegetation height above ground.
Finally, we extracted points corresponding to field plots (11.28-m radius) and calculated LiDAR metrics
for each plot using the lidR package (Roussel and Auty, Québec, Qc, Canada [60]) in the R statistical
software (R Core Team, Vienna, Austria [61]) (Table 1).
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Table 1. Light Detection and Ranging (LiDAR) metrics used to estimate sapling density of all species
and commercial species.

Abbreviation Description

zmax Maximum height
zmean Mean height

zsd Standard deviation of height distribution
zskew Skewness of height distribution
zkurt Kurtosis of height distribution

zentropy Entropy of height distribution
pzabovezmean Percentage of returns above zmean

pzabove2 Percentage of returns above 2 m
zqx Xth percentile of height distribution

zpcumx Cumulative percentage of return in the xth layer according to Wood et al. [62]
itot Sum of intensities for each return

imax Maximum intensity
imean Mean intensity

isd Standard deviation of intensity
iskew Standard deviation of intensity
ikurt Skewness of intensity distribution

ipground Percentage of intensity returned by points classified as ground
ipcumzqx Percentage of intensity returned below the xth percentile of height

pxth Percentage xth returns
pground Percentage of returns classified as ground

2.5. Dependent Variables

We calculated the living stem density (stems/ha) of saplings for two species groups: (1) all
species and (2) commercial species (Table 2). The “All species” group combined non-commercial and
commercial species, whereas the other species group only comprised species having a commercial
value. Both species groups included hardwood and softwood species (Table 2). On the other hand,
all non-commercial species were hardwoods (Table 2). We defined a sapling as a stem whose DBH
varied from 1 to 9 cm and whose height was ≥1.3 m.

2.6. Environmental Variables

We estimated canopy cover for each 11.28-m radius plot by calculating the proportion of all LiDAR
points >7 m, which corresponds to the mean height of saplings in our study area. We also calculated
the basal area of merchantable trees (DBH ≥ 9.1 cm), and the proportion of basal area of merchantable
trees represented by hardwood species for each plot. We characterized plots using aspect, topography
position index, and hillshade, which were derived from a digital elevation model (DEM) provided by
the New Brunswick Department of Natural Resources and Energy Development (NBDNRED) at a
resolution of 10 m. We also extracted ecoregion, ecodistrict, and ecosite [49], biomass growth index
(BGI; [63]), depth to water table, soil type, and an index of the probability of occurrence of each species
for every plot.
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Table 2. Species groupings for which sapling density was calculated.

Species Grouping Species

Commercial species Hardwoods American beech (Fagus grandifolia)
American elm (Ulmus americanus)

Balsam poplar (Populus balsamifera)
American basswood (Tilia americana)

Black ash (Fraxinus nigra)
Black cherry (Prunus serotina)

Butternut (Juglans cinerea)
Green ash (Fraxinus pennsylvanica)

Grey birch (Betula populifolia)
Ironwood (Ostrya virginiana)

Large-tooth aspen (Populus grandidentata)
Oaks (Quercus spp.)

Red maple (Acer rubrum)
Silver maple (Acer saccharinum)
Sugar maple (Acer saccharum)

Trembling aspen (Populus tremuloides)
White ash (Fraxinus americanus)
White birch (Betula papyrifera)

Yellow birch (Betula alleghaniensis)
Softwoods Balsam fir (Abies balsamea)

Black spruce (Picea mariana)
Eastern hemlock (Tsuga canadensis)

Eastern White Cedar (Thuja occidentalis)
Jack pine (Pinus banksiana)
Norway spruce (Picea abies)

Red pine (Pinus resinosa)
Red spruce (Picea rubens)
Tamarack (Larix laricina)
White pine (Pinus stobus)

White spruce (Picea glauca)
Non-Commercial Hardwoods American mountain ash (Sorbus americana)

Apple (Malus spp.)
Choke cherry (Prunus virginiana)

Hawthorns (Crataegus spp.)
Mountain maple (Acer spicatum)
Pin cherry (Prunus pensylvanica)
Serviceberry (Amelanchier spp.)
Speckled alder (Alnus rugosa)

Striped maple (Acer pensylvanicum)
Willows (Salix spp.)

2.7. Statistical Analyses

To compare the accuracy of sapling density estimates between the different sensors (LiDAR,
Sentinel-2 images, and both), we first built three models using random forest regression [64] for each
dependent variable, i.e., absolute density of saplings of (1) all species and (2) commercial species.
The first series of models combined variables from both sensors, LiDAR and Sentinel-2 images;
the second series of models used LiDAR, whereas the third relied on Sentinel-2 images. In each model,
environmental variables were also included.

We used the VSURF package [65] in R to select variables in each model based on their importance
to reduce bias towards intercorrelated variables and categorical variables [66]. The model parameters
entered were default values of ntree (500) and mtry (one-third of the variables), and we set the nodesize
parameter to 1 to grow larger trees [64]. We then calculated the root means squared error (RMSE)
with the randomForest package and obtained pseudo R-squared values for each model including
only variables selected by the VSURF package. RMSE and pseudo R-squared values were calculated
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with internal values of mean squared error (MSE) and pseudo R-squared values of each tree (n = 500),
respectively. We also computed relative RMSE (Equation (2)) and 95% confidence intervals (C.I.)
of RMSE, relative RMSE, and pseudo R-squared to determine whether the accuracy and variance
explained by the models differed.

Relative RMSE (%) =
RMSE

1
n
∑n

i=1 Actual
× 100. (2)

Finally, to test the effect of canopy cover on the accuracy of each model, we performed a
Kruskal–Wallis test on relative errors (Equation (3)) of four different intervals of canopy cover (low: 0%
to 24%, medium: 25% to 49%, high: 50% to 74%, and very high: ≥75%). None of the transformations
we tried could normalize the residuals from an ANOVA. Following significant Kruskal–Wallis tests,
we performed a Dunn test using the Bonferroni correction to adjust p-values.

Relative error (%) =
Predicted−Actual

Actual
× 100. (3)

3. Results

3.1. Variable Selection and Model Accuracy

Contrary to our prediction, the integration of LiDAR and Sentinel-2 images did not increase
the accuracy of sapling density estimates, nor it did for the variance explained compared to LiDAR
for both species groups, i.e., all species combined and commercial species only (Table 3). Moreover,
no spectral variables were retained in the models integrating the two sensors for both species groups
(Table 3). However, the integration of both sensors, as for LiDAR, yielded higher accuracy and pseudo
R-squared values compared to models using Sentinel-2 images for both species groups (Table 3).

When estimating sapling density for all species, the RMSE of the models combining both sensors
or LiDAR only was similar (2828 no. stem/ha vs. 2836 no. stem/ha, respectively). For the model
using Sentinel-2 images only, it was 3320 no. stem/ha (Table 3). When estimating sapling density
for commercial species, the model integrating both sensors yielded an accuracy of 2784 no. stem/ha,
and that using LiDAR only had a similar RMSE (2779 no. stem/ha) (Table 3). The model using Sentinel-2
images had an accuracy of 3165 no. stem/ha.

When estimating sapling density of all species, relative RMSE of the model combining both
sensors and that using LiDAR was 84%, whereas it was 98% for the model using only Sentinel-2 images
(Table 3). Therefore, relative RMSE of the model using Sentinel-2 images only was 14% higher than the
model integrating both sensors and that using LiDAR. On the other hand, when estimating sapling
density of commercial species, relative RMSE of the model integrating both sensors and that using
LiDAR were identical at 100%, whereas relative RMSE of the model using Sentinel-2 images was 114%
(Table 3). Again, relative RMSE of the model using Sentinel-2 images only was 14% higher than the
model combining both sensors and that using LiDAR.

Pseudo R-squared of the models combining both sensors and those using LiDAR were similar at
0.33, when estimating sapling density of all species, and 0.23 and 0.24, respectively, when estimating
sapling density of commercial species (Table 3). Pseudo R-square were lower for the models using
Sentinel-2 images, at 0.08 when estimating sapling density of all species and 0.01 when estimating
sapling density of commercial species (Table 3). When estimating sapling density of all the species,
pseudo R-squared of the model using Sentinel-2 images was 25% lower than the model combining
both sensors and the one using LiDAR. Furthermore, when estimating sapling density of commercial
species, pseudo R-squared was 22% lower than the model integrating both sensors and 23% lower
than the one using LiDAR.
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Table 3. Variables selected and comparison of root means squared error (RMSE) (stems/ha), relative RMSE (%), and pseudo R-squared of models estimating sapling
density of all species and commercial species using LiDAR metrics and/or spectral variables and environmental variables. See Table 2 for meaning of variable codes.

Candidate Models Variables Selected RMSE (no. stem/ha; 95% C.I.) Relative RMSE (%; 95% C.I.) Pseudo R-Squared (95% C.I.)

Sapling density of all species

LiDAR + Spectral +
Environmental

zq80 + zq75 + zq85 + zq60 + zq70 + zq55
+ zq50 + zq40 + pzabove2 + zpcum1 +
zq30 + zskew + pzabovemean + canopy

cover + p1th + basal area

2828 (2814–2841) 84 (84–84) 0.33 (0.32–0.34)

LiDAR + Environmental
zq80 + zq85 + zq75 + zq70 + zq60 +

zpcum1 + zq95 + zq55 + pzabove2 + zq30
+ zq50 + pzabovezmean + basal area

2836 (2827–2844) 84 (84–84) 0.33 (0.32–0.33)

Spectral + Environmental Basal area 3320 (3317–3323) 98 (98–98) 0.08 (0.08–0.08)
Sapling density of commercial species

LiDAR + Spectral +
Environmental

zq80 + zpcum1 + zq85 + zq75 + zq90 +
pzabove2 + zq30 + zq95 + zq65 + zq60 +
zpcum2 + zmean + zq50 +pzabovezmean

2784 (2776–2792) 100 (100–100) 0.23 (0.23–0.24)

LiDAR + Environmental
zq80 + zq75 + zq85 + zpcum1 + zq90 +

pzabove2 + zq70 + zq30 + zq60 +
zpcum2 + zq50 + pzabovezmean

2779 (2773–2785) 100 (100–100) 0.24 (0.23–0.24)

Spectral + Environmental
Canopy cover + basal area + proportion

of hardwood + NDVI + Red + Blue +
Green + Ecodistrict

3165 (3156–3174) 114 (113–114) 0.01 (0.002–0.01)
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In addition, 95% confidence intervals of RMSE, relative RMSE, and pseudo R-squared were
similar between the models combining both sensors and those using only LiDAR for both species
groups (Table 3). However, 95% confidence intervals of the models using Sentinel-2 images were larger
from the ones of the models combining both sensors as well as from that of the models using LiDAR
only, again for both species groups (Table 3). Those results are suggesting that the accuracy and the
variance explained of the models integrating both sensors and the ones using LiDAR only did not
differ statistically. To the contrary, models using Sentinel-2 images yielded significantly lower accuracy
and variance explained than those combining both sensors or using LiDAR only.

As shown in Table 3, spectral variables were only selected in the model using Sentinel-2 images
when species needed to be differentiated, thus estimating sapling density of commercial species,
whereas only an environmental variable, basal area of tree with DBH ≥ 10 cm, was retained when
estimating sapling density for all species.

On the other hand, some variables were retained in almost all models, irrespective of the species
group considered. Those variables were the higher percentiles of LiDAR height distribution (zq75, zq80,
and zq85), the proportion of LiDAR points near the ground (zpcum1), the percentage of LiDAR points
>2 m (pzabove2), as well as the percentage of LiDAR points above LiDAR mean height (pzabovezmean;
Table 3). For models combining both sensors, predicted values of sapling density for both species
groups were higher when values of the highest percentiles of height distribution, the proportion
of LiDAR points near ground, as well as above the mean height were low. In contrast, predicted
values increased with the proportion of LiDAR points above 2 m (Figures 2 and 3). These relations are
indicating a denser vegetation in the lower than in the higher strata.
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Figure 2. Partial dependence plots of (a) 75th (zq75), (b) 80th (zq80), and (c) 85th (zq85) percentiles of
height distribution, (d) proportion of points in the first interval from ground (zpcum1), (e) proportion
of LiDAR points above 2 m (pzabove2), and (f) proportion of LiDAR points above mean height
(pzabovezmean; %) of random forest predictions of sapling density of all species (stems/ha) using
both sensors.
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Figure 3. Partial dependence plots of (a) 75th (zq75), (b) 80th (zq80), and (c) 85th (zq85) percentiles of
height distribution, (d) proportion of points in the first interval from ground (zpcum1), (e) proportion
of LiDAR points above 2 m (pzabove2), and (f) proportion of LiDAR points above mean height
(pzabovezmean; %) of random forest predictions of sapling density of commercial species (no. stem/ha)
using both sensors.

3.2. Effect of Canopy Cover

Models using LiDAR and those integrating both sensors had similar relative errors, irrespective of
canopy cover class or species group considered ( Figure 4a,b and Figure 5a,b). By contrast and
as predicted, the relative errors of sapling density estimates of both species groups increased
under a very high canopy cover when using Sentinel-2 images along with environmental variables
(Figures 4c and 5c), although the difference was only significant when considering all sapling species
(Figure 4c).
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Figure 4. Distribution of the relative error (%; Equation (3)) as a function of canopy cover class (low: 0%
to 24%, medium: 25% to 49%, high: 50% to 74%, and very high: ≥75%) for models estimating sapling
density (stems/ha) of all species. (a) Model integrating both sensors, (b) model including LiDAR and
environmental variables, and (c) model including spectral and environmental variables (Kruskal–Wallis
test, (a) p = 0.30, (b) p = 0.92, and (c) p = 0.006). The groups a are statistically similar between them and
different from group b, whereas group ab is statistically similar to group a and b.
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Figure 5. Distribution of the relative error (%; Equation (3)) as a function of canopy cover class (low: 0%
to 24%, medium: 25% to 49%, high: 50% to 74%, and very high: ≥75%) for models estimating sapling
density (stems/ha) of commercial species. (a) Model integrating both sensors, (b) model including
LiDAR and environmental variables, and (c) model including spectral and environmental variables
(Kruskal–Wallis test, (a) p = 0.85, (b) p = 0.99, and (c) p = 0.72).
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4. Discussion

4.1. Variable Selection and Model Accuracy

The combination of Sentinel-2 images and LiDAR did not increase the accuracy and variance
explained for sapling density estimates of either species group (all species or commercial species)
compared to LiDAR. Furthermore, no spectral variables were retained in the models integrating both
sensors for either of the species groups. However, Leckie et al. [45] and Coops et al. [46] found that a
combination of high-resolution (50 cm) images and LiDAR provided more accurate delineations of
tree crowns. Pouliot et al. [33] also found that the accuracy of crown diameter estimates of planted
seedlings increased with image resolution. Here, we used medium-resolution images (10 m) integrated
with high-density LiDAR (6 points/m2). Perhaps high-resolution images would have increased the
accuracy of sapling density estimates.

The integration of both sensors and the use of LiDAR yielded higher accuracy and variance
explained compared to Sentinel-2 images. Other authors have also reported that LiDAR was more
accurate than satellite images to estimate density [67], biomass [47], forest height [68], and basal
area [41] of canopy trees in conifer and mixed stands. LiDAR is known to penetrate deeper into the
canopy than satellite images [40].

Spectral variables were only selected in the model estimating sapling density of commercial species
using Sentinel-2 images, whereas none were selected when estimating sapling density of all species.
Commercial species included both softwoods and hardwoods species, whereas non-commercial species
only comprise hardwoods species. This suggests that Sentinel-2 images helped to discriminate between
hardwood species of commercial and non-commercial species. Satellite images have been shown to
be more accurate than LiDAR to differentiate species [44]. Consistent with our results, the model
integrating LiDAR and aerial images developed by Korhonen et al. [69] to estimate sapling density
of all species also did not include any spectral variable. Here, we used images captured in summer.
Key et al. [70] have shown that fall images are the best to identify species owing to their maximally
contrasting spectral signatures. Hence, future studies should examine whether fall images could
increase the accuracy of sapling density estimates.

We identified good predictors of sapling density, namely, the higher percentiles of height
distribution (zq75, zq80, and zq85), and the proportion of LiDAR points between 2 m and the mean
height of LiDAR points. A low value of the highest percentiles of height distribution indicates that the
height of most of the vegetation is low, thus corresponding to saplings. Height distribution variables
have also been shown elsewhere to be important to estimate stem densities >1 m [34,37,38]. Our results
indicated a high density of saplings when the proportion of points near the ground (zpcum1) and
above mean height (pzabovezmean) were low as well as when the proportion of points above 2 m
(pzabove2) was high. Hence, we concluded that the proportion of points between 2 m and mean height
was a good predictor of sapling density and that a high proportion of points between 2 m and mean
height suggested a high density of saplings.

4.2. Effects of Canopy Cover

The integration of LiDAR and Sentinel-2 images also did not decrease the influence of canopy
cover on the accuracy of sapling density estimates compared to LiDAR for both species groups.
However, the accuracy of sapling density estimates of all species was significantly lower under a very
high canopy cover when using Sentinel-2 images only. Donoghue and Watt [63] also found that under
a closed canopy, a model using only LiDAR yielded accurate estimates of tree height. Indeed, satellite
images are more sensitive to foliage characteristics than to tree height [41].

5. Conclusions

The integration of two sensors, LiDAR and Sentinel-2 images, did not outperform LiDAR when
estimating sapling density, but it increased the accuracy of estimates compared to Sentinel-2 images.
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We identified two valuable predictors of sapling density: (1) the higher percentiles of height distribution
(zq75, zq80, and zq85), and (2) the percentage of LiDAR points between a height of 2 m and mean
height of LiDAR points. The influence of canopy cover on the accuracy of estimates was similar
whether we used LiDAR or LiDAR and Sentinel-2 images combined. However, estimation accuracy
was significantly lower under very high canopy covers (≥75%) when using Sentinel-2 images to
estimate sapling density of all species. Hence, our results suggest that LiDAR alone is sufficient to
estimate regeneration density in the Acadian forest across variable stand species compositions and
canopy covers. Hence, when LiDAR is available, it should be prioritized over Sentinel-2 images.
However, spectral variables were useful to differentiate species, and thus satellite images are highly
recommended when information on sapling species composition is required. Finally, we recommend
using the higher percentiles of height distribution (zq75, zq80, and zq85) and the proportion of LiDAR
points between a height of 2 m and mean height of LiDAR points to obtain accurate estimates of sapling
density in the Acadian forest under a range of canopy cover values.
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