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Abstract: In remote sensing, the term accuracy typically expresses the degree of correctness of
a map. Best practices in accuracy assessment have been widely researched and include guidelines on
how to select validation data using probability sampling designs. In practice, however, probability
samples may be lacking and, instead, cross-validation using non-probability samples is common.
This practice is risky because the resulting accuracy estimates can easily be mistaken for map accuracy.
The following question arises: to what extent are accuracy estimates obtained from non-probability
samples representative of map accuracy? This letter introduces the T index to answer this question.
Certain cross-validation designs (such as the common single-split or hold-out validation) provide
representative accuracy estimates when hold-out sets are simple random samples of the map
population. The T index essentially measures the probability of a hold-out set of unknown sampling
design to be a simple random sample. To that aim, we compare its spread in the feature space against
the spread of random unlabelled samples of the same size. Data spread is measured by a variant
of Moran’s I autocorrelation index. Consistent interpretation of the T index is proposed through
the prism of significance testing, with T values < 0.05 indicating unreliable accuracy estimates. Its
relevance and interpretation guidelines are also illustrated in a case study on crop-type mapping.
Uptake of the T index by the remote-sensing community will help inform about—and sometimes
caution against—the representativeness of accuracy estimates obtained by cross-validation, so that
users can better decide whether a map is fit for their purpose or how its accuracy impacts their
application. Subsequently, the T index will build trust and improve the transparency of accuracy
assessment in conditions which deviate from best practices.

Keywords: accuracy assessment; validation; classification; spatial balance; unlabelled data;
sample selection bias; cross-validation; sampling

1. Introduction

Protocols on how to collect reliable validation data to assess the accuracy of maps derived from
remotely-sensed data have been established since the early days of the discipline [1]. Good practices in
accuracy assessment include recommendations about the sampling design, which determines how
many sampling units should be collected and where; the response design, which defines how sampling
units should be labelled; and the estimation of accuracy using specific metrics [2–6].

Similarly, there has been a lot of research on how to develop efficient training sets, i.e., data sets
that yield accurate classifications. Accuracy depends, among other things, on the characteristics of
the training data. It positively correlates with sample size but it is affected by the presence of outliers
and imbalance among classes [7–9]. Given the costs associated with data collection, it is of value to
reduce the training set size without decreasing accuracy [10] and to identify where to collect data so
that accuracy is maximised and costs are minimised [11]. The findings of such studies can inform
guidelines for collecting training data.
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In practice, training and validation data are often imperfect. For instance, data labels might
be inaccurate. One of the main differences between “good” validation and training sets is that
the former must follow strict rules, such as those defined by popular probability or design-based
approaches, to enable inference across the area of interest. Good training sets must simply deliver high
accuracy (which is not to say that probability training samples do not yield accurate results). In short,
the characteristics that make good training sets do not necessarily make good validation data sets.

Another issue arises when dedicated, independent data from a probability sampling design are
not available for validation. In their review, Morales-Barquero et al. [12] reported that only 54% of
282 papers on land and benthic cover mapping published between 1998 and 2017 assessed accuracy
with validation data collected using a probability sampling design and that 11% had an undetermined
sampling design. In those cases, accuracy is commonly assessed by cross-validation. In cross-validation,
reference data are split into training and validation sets following particular splitting rules (hold-out,
block hold-out, stratification by class and stratification by both class and space) and splitting ratios
(67:33 and 80:20 split ratios, and k-fold) (see [13] for a comparison). Independent of the splitting choices,
the rationale remains the same: a classifier is calibrated on the training set and its accuracy is assessed
on the hold-out set. The interpretation of such accuracy estimates should carefully be related to the
assumptions behind the cross-validation. Indeed, it is tempting to assume that cross-validated accuracy
estimates correspond to map accuracy estimates, i.e., the classifier’s performance across the study area,
because they were obtained from independent hold-out sets. However, this interpretation is erroneous
because hold-out sets do not necessarily represent the population (because their distributions differ),
which is commonly referred to as sample selection bias. Therefore, cross-validation characterises the
performance of a classifier on hold-out data, rather than map accuracy. Indeed, even if the hold-out
sample is selected via a equal probability sampling design (a design in which all units have the same
probability of being selected), it is not a probability sample of the map population. This is problematic
as the essence of accuracy assessment in remote sensing is to inform about the accuracy of the map
itself. Users of maps evaluated by cross-validation are at a loss to know whether they can trust these
accuracy estimates to be relevant across the areas being mapped. Currently, no method is available
to indicate the degree to which accuracy estimates from non-probability samples represent accuracy
across the study area; this paper fills this gap.

We introduce the T index, which evaluates the extent to which practitioners can extrapolate
accuracy estimates obtained from non-probability samples to the map. To demonstrate its calculation
and use, we focus on a common cross-validation design: the traditional single split, train and hold-out
test set approach (referred to as hold-out validation henceforth). The T index compares the spread
of the hold-out data in the feature space of the area of interest and compares it to the spread of
random unlabelled data sets of the same size. By doing so, the probability of the hold-out sample to
correspond to a simple random sample can be estimated. For consistent interpretation of the T index,
a nomenclature based on significance testing is proposed and its relevance is demonstrated in a case
study on crop identification. In proposing this index, our goal is not to distract from design-based
inference. Rather, we seek to promote transparency and build trust in practices when operating with
data sets that do not follow best practices but that are prevalent among practitioners in a range of
application domains.

2. The T Index

In this letter, accuracy estimates obtained from non-probability samples are considered
representative if they closely approximate map accuracy. Among common probability sampling
designs, simple random sampling (a particular case of equal probability sampling) gives direct
estimates of population parameters such as map accuracy. Other designs (such as stratified sampling
designs) yield samples that are not direct estimates of the population because they over/undersampled
certain classes or strata. Accuracy estimates obtained with such sampling designs need to be adjusted
to account for unequal inclusion probabilities. It naturally follows that in hold-out validation (and
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simple cross-validation), where accuracy is directly estimated from the data, the hold-out data must
be follow a simple random sampling design for the resulting accuracy estimates to be representative.
Therefore, the reliability of such accuracy estimates increases the more hold-out sets resemble simple
random samples.

The T index indicates the probability of hold-out sets to be random samples of the map population
by comparing their spread in the feature space with the spread of unlabelled samples randomly selected,
with equal probability, from the map population. It is based on the following principles:

• The normalised Moran’s I index measures the spread of (both labelled and unlabelled) sample
sets in the feature space with respect to their populations.

• The normalised Moran’s I index of random samples takes on average the value of zero.
• Remote sensing provides an exhaustive coverage map population in the feature space so that

random unlabelled samples can be generated at no cost.
• The probability of the hold-out set being randomly-distributed can be computed by comparing

its normalised Moran’s I index to those of random unlabelled samples of the same size.

In Section 2.1, we recall the theoretical foundations of the normalised Moran’s I and how it can be
used to measure the spread of a sample with respect to the population it was drawn from. In Section 2.2,
we explain how the normalised Moran’s I is used to construct the T index.

2.1. The Normalised Moran’s I Index : Characterising the Spread of Data in the Feature Space

The spread of a sample with respect to its population can be measured by the normalised
Moran’s I [14], which is based on the global measure of spatial autocorrelation for variable x introduced
by Moran [15]. Let U = (1, 2, ..., i, ..., N) be the finite population of size N and S be a sample drawn
from U. Let xi be the value taken by variable x for point i and

X̄ =
1
N ∑

i∈U
xi. (1)

Then, Moran’s I is defined by

I =
(x− x̄w)TW(x− x̄)
(x− x̄)T(x− x̄)1TW1

(2)

where x is the vector of yi, 1 is a vector of N ones and x̄ = Ȳ1 = 11Tx/N. The matrix W is a weight
matrix where each element wij indicates how close is j to i; large weights indicate high proximity
between i and j. Nevertheless, Moran’s I as originally proposed is not bounded, which complicates
its use. To normalise it between the [−1, +1] interval, Tillé et al. [14] introduced a weighted correlation
among xi in the denominator:

Ĩ =
(x− x̄w)TW(x− x̄w)√

(x− x̄w)T D(x− x̄w)(x− x̄w)T B(x− x̄w)
(3)

where D is a diagonal matrix containing wi on its diagonal, and B is given by

B = W T D−1W − W T11W
1TW1

(4)



Remote Sens. 2020, 12, 2483 4 of 11

Tillé et al. [14] further proposed that the spread of a sample (here, in the feature space) is reflected
by the level of spatial autocorrelation of the sample inclusion indicator variable. The sample inclusion
indicator variable δ, observed for the population unit i, specifies whether i is included in S or not,
that is

δi =

{
1 if unit i ∈ S

0 otherwise
(5)

Substituting x by δ, we obtain the Normalised Moran’s I Index (IB), which measures the spatial
spread of a sample with respect to its population:

IB =
(δ− δ̄w)TW(δ− δ̄w)√

(δ− δ̄w)T D(δ− δ̄w)(δ− δ̄w)T D(δ− δ̄w)
(6)

Similar to Ĩ, IB is bounded: the lower bound (−1) indicates maximum balance and the upper
bound (+1) indicates no balance; 0 corresponds to the spread of a random sample (Figure 1).
To define W , one has to account for the distance among population points and their inclusion
probabilities (0 < πi ≤ 1) in order to identify neighbourhood relationships. Here, distances are
computed based on remotely-sensed data. If i belonged to sample S, i would represent 1

πi
points

in the population and, consequently, it would have ki =
1
πi
− 1 neighbours according to a distance

measure such as the Euclidean distance. Let bkic and dkie be the inferior and superior integers of
ki, respectively, and let Nbkic be the set of the bkic nearest neighbours of i, where Nbkic = (N − 1)
if 1

πi
> N. Then, W can be specified as

wij =


1 if unit j ∈ Nbkic

ki − k j if unit j is the dkieth nearest neighbour of i

0 otherwise

(7)

For example, if ki = 6.9, this weighting scheme indicates that the 6 nearest neighbours of unit i
have a weight of 1 while the 7th nearest neighbour has a weight of 0.9. If there are two or more dieth
points at the same distance of i, wij is divided equally among them.

Figure 1. The Normalised Moran’s I Index (IB) takes the value of +1 for clustered samples (left), 0 for
random samples (centre) and −1 for spatially-balanced samples (right).

2.2. The T Index: How Reliable Are Accuracy Estimates Obtained from Non-Probability Samples?

The T index evaluates if non-probability samples can yield reliable map accuracy estimates.
Its computation is a four-step procedure to measure the strength of evidence that hold-out samples are
in fact simple random samples (Figure 2).
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Figure 2. Procedure to construct the T index: (1) calculate the Normalised Moran’s I Index of the
labelled hold-out set, (2) generate random unlabelled samples from the map population, (3) calculate
the Normalised Moran’s I Index of all random unlabelled samples and (4) compute the probability of
the labelled set to belong to the empirical distribution of random unlabelled samples.

Let us consider a hold-out data set (S) for which the sampling design is unknown. Its spread
in the feature space can be measured by the normalised Moran’s I index (Ilabelled

B ). The probability
distribution of the normalised Moran’s I index for random samples of the same size as S (p(x))
can be estimated by drawing random unlabelled samples from the population U and parametric
or non-parametric approaches. On average, random samples take the value of zero but dispersion
around the mean will depend largely on randomness and the size of S. Based on the empirical
probability distribution of IB values for random samples, the T index is defined as the probability of
a randomly-drawn data set to have the same spread in the feature space as the labelled set. This is
expressed mathematically as follows,

T = 1−
∫ |Ilabelled

B |

−|Ilabelled
B |

p(x)dx (8)

where p(x) is the probability density function of IB values obtained from random unlabelled data.
As

∫ 1
−1 p(x)d(x) integrates to one, T is bounded between zero and one. High values of T indicate

that the labelled sample is very likely to be a random sample of the population and that the accuracy
estimate of the cross-validation is a reliable approximation of the accuracy across the area of interest.
Contrarily, values close to zero indicate that the labelled sample strongly violates the assumption
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of random sampling, and that the cross-validation results cannot be trusted, i.e., generalised to the
map population. Therefore, the T index compares the IB value of the hold-out set to those of random
unlabelled sets of the same size to indicate if the accuracy estimates can be trusted. Note that the
procedure to construct the T index shares similarities with the bootstrap [16]. Unlike the bootstrap,
the T index random draws samples (without replacement) from the population.

To maintain consistent nomenclature when describing the reliability of accuracy estimates
obtained using non-probability samples, we propose to interpret the T index similar to p-values
for significance testing. Here, the null hypothesis is that the hold-out set is a simple random sample
of the map population. It follows that T values <0.05 indicate poor reliability: the corresponding
accuracy estimates are unlikely to reflect map accuracy. T values ≥0.05 indicate substantial reliability:
accuracy estimates are likely to be representative of map accuracy. This nomenclature provides a
useful benchmark for the discussion and comparison of specific cases. Its relevance is demonstrated in
the case study that follows.

3. Case Study

This case study illustrates the use and value of the T index in the context of crop mapping,
an application where roadside data collection is common [17]. Crop types were identified based on
time series of Harmonised Landsat Sentinel images and random forest classifiers. It was designed to
empirically demonstrate that

1. the normalised Moran’s I index correlates with the bias of accuracy estimates obtained from the
reference data, and

2. the T index indicates when cross-validated accuracy estimates can be trusted and generalised to
the area of interest.

3.1. Data Sources

The study site is the state of Kansas, USA, for the 2017 growing season. The Cropland Data Layer
(CDL) for 2017 was sourced from the United States Department of Agriculture National Agricultural
Statistics Service and was considered as ground truth. A wall-to-wall reference map is a cost-effective
approach to generate and compare different sampling strategies. The quality of our training and
evaluation thus depends on the quality of the CDL. Evidence from published literature suggests that
the quality of the CDL is sufficient to deliver consistent results, see, e.g., in [18,19]. Nonetheless, only
the six dominant crop types (alfalfa, corn, wheat, fallow, sorghum and soybeans) were considered as
the CDL is less accurate for marginal crop types [9]. In 2017, the overall accuracy of the map was 87%
with class-wise biases ranging from 1% (wheat) and 3% (sorghum) to 4% (fallow) and 12% (alfalfa).

Harmonised Landsat Sentinel images (version 1.4) were collected from January 1 to
December 31 2017 (15 tiles: 14SLG, 14SLH, 14SLJ, 14SMG, 14SMH, 14SMJ, 14SNG, 14SNH, 14SNJ,
14SPG, 14SPH, 14SPJ, 14SQG, 14SQH and 14SQJ [20]). On average, there were 103 images per tile and
32% of valid observations per image. Regular, gap-free time series were resampled to 10 days starting
from day of year 60 to 330 using linear interpolation. The final data set consisted of 28 gap-free and
regularly-spaced images with six spectral bands (blue, green, red, near infrared, short-wave infrared
and red-edge).

3.2. Sampling and Classification

Three types of data sets were generated from the reference map: (1) 400 labelled sets covering a
range of sample selection biases and from which training (n = 750) and hold-out sets were defined
(n = 250); (2) 150 random unlabelled sets of the same size as the hold-out sets (n = 250), which were
used to determine the distribution of IB for random data in the study area; and (3) a pseudo-population
consisting of 10,000 randomly selected pixels, whose sole objective was to reduce computational cost
associated with computing the IB.



Remote Sens. 2020, 12, 2483 7 of 11

Sample selection biases for the labelled data were introduced based on stratification layers. There
were 16 stratification layers that partitioned the study area into up to 16 strata (Figure 3). For each
stratification layer, a simple random sample was drawn within a single stratum that was itself selected
at random. This process was repeated 25 times per stratification layer. By constraining sampling to a
single stratum, the likelihood of capturing partial environmental and management gradients increases,
with the net effect of reducing the spread of reference data in the feature space.

Figure 3. Area of interest in Kansas and the 16 stratification layers. The stratification layers were used
to introduce sample selection biases in reference data. Colours represent different strata. Grey areas
were not considered.

Random forest classifiers were trained for each labelled set. Random forests are a type of
machine-learning classifier that is commonly used in remote sensing given their performance and easy
parameterisation [21]. The number of trees was set to 500 and the number of variables to possibly split
at in each node was the (rounded down) square root of the number variables.

The IB of every random unlabelled set was computed, and the corresponding probability
distribution constructed using a non-parametric, kernel method. Similarly, the IB of hold-out sets
was computed. Their corresponding T index was calculated using the probability distribution obtained
for random unlabelled data. Note that, while all bands were used for classification, the Normalised
Moran’s I Index was calculated based on the first five principal components of the feature space to
further reduce computational complexity and memory requirements.

3.3. Statistical Analysis

First, bias was defined as the difference between estimates of overall accuracy obtained with
hold-out data and those obtained with an independent, simple random sample (n = 250) extracted
from the CDL. A positive bias indicates that the hold-out set overestimates overall accuracy, and vice
versa. We also evaluated the relationship between the normalised Moran’s I index and bias using
linear regression and computed the coefficient of determination (R2) to quantify the proportion of the
variability in bias explained by the IB.

Second, we assessed the ability of T to detect random samples for different threshold values.
At each threshold value, we computed to overall accuracy (percentage correct), the sensitivity
(proportion of actual positives that are correctly identified as such) and the specificity (proportion of
actual negatives that are correctly identified as such).

4. Results and Discussion

The IB successfully indicates bias in accuracy estimates obtained by non-probability samples.
The stratification approach allowed us to generate IB values ranging from −0.08 to 0.36, which led
to significant biases (up to 0.6; Figure 4). That is, accuracy estimates obtained from non-probability
samples largely overestimated map accuracy. There was a significant positive linear relationship
between IB and bias (R2 = 0.79). The closer to 0 the IB, the lower the bias. The larger the IB, the lower
the bias. These findings are consistent with Fowler et al. [11] who reported significant correlations
between IB and classification accuracy.
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Figure 4. Relationship between Normalised Moran’s I Index (IB) and map accuracy. (a) Empirical
distribution of IB values for random unlabelled data sets. (b) Relationship between the IB of the
labelled sets, their bias and corresponding T index. There is a strong linear relationship between IB and
bias (y = 0.03 + 1.67x; R2 = 0.79). The dashed line indicates IB values for which the T index is 0.05.

We also found that the T index accurately identified simple random samples among a set of
samples with selection biases (Figure 5). Overall accuracy peaked at 0.90 or at a T value of 0.05, which
seems to validate the proposed interpretation of T index. This T value also coincided well with the
crossing of the sensitivity and specificity curves. Therefore, the T index can indicate when accuracy
estimates obtained from non-probability samples are representative of map accuracy.

Figure 5. Ability of the T index to accurately identify representative (random) hold-out sets.
Results validate the proposed nomenclature to interpret the T index.
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The T index leverages one of the strengths of remote-sensing data about the complete
spatial population are available—to indicate the extent to which users can trust cross-validated
accuracy estimates. That is, the T index quickly informs practitioners and map users if cross-validation
does not provide reliable estimates of map accuracy. As it does not require data other than the
remotely-sensed observations used for classification, it can always be computed. The main drawback
of using the T index is its computational cost. It requires computing of the normalised Moran’s
I index of multiple random unlabelled samples, which involves computing distances between all
points in the population. There are at least two approaches to reduce computational cost: First,
the complexity of the problem can be reduced. For instance, we reduced the dimensionality of
the feature space using a principal component analysis and reduced the size of the population by
selecting a subset of the map population. Despite these simplifications, our results showed that the
T index was still indicative of the representativeness of validation sets. Second, the implementation
of the IB should rely on high-performance data analytics. Our code was run on a high-performance
computing system and explicitly stores large matrices in files, not in computer memory (https:
//github.com/waldnerf/t-index). Together, these approaches allow to derive the T index for big
Earth Observation data. We recommend that studies that assess accuracy by cross-validation or with
non-probability samples start systematically reporting the corresponding T index. Uptake of the T
index by the remote-sensing community would directly answer the call by Stehman and Foody [1] to
improve documentation and enhance transparency of accuracy assessment methods. As such, it fosters
trust in accuracy estimates when reference data have not been collected following probability sampling.

As a first step in this direction, this letter focuses on the most simple case: hold-out
validation. This letter also signals future considerations such as generalising the T index to other
types of cross-validation designs, other accuracy metrics or other classification/validation settings
(object-based approaches). There is also scope for integrating the T index with importance-weighted
cross-validation [22]. Under sample selection bias, importance-weighted cross-validation can provide,
in principle, unbiased accuracy estimates by weighting validation data by a factor that matches their
observation probability in the population. However, the performance of this technique is only as
good as the estimates of importance, which is not without challenges [23,24]. While there is little
doubt that the use of importance-weighted cross-validation should be promoted, the remote-sensing
community would benefit from guidelines on when it must be used; this paper could inform such
guidelines. For instance, a rule of thumb could mandate importance-weighted cross-validation for
T values < 0.05. Its relevance remains to be tested empirically.

5. Conclusions

When independent probability data are lacking, maps are often “validated” by cross-validation
of non-probability data. While it is well known that the accuracy estimates obtained in this fashion
are not representative of map accuracy, there is currently no method to evaluate how much these
differ from one another. The T index presented in this letter provides a quantitative response to
this question. It is directly interpretable as the probability of a validation set to be a simple random
sample of the map population, an assumption that must be verified for cross-validation to provide
representative estimates of map accuracy with hold-out cross-validation. As a probability, the T index
is bounded between zero and one and guidelines for consistent interpretation are proposed based
on the significance testing, where T values <0.05 indicate unreliable accuracy estimates. Systematic
reporting of the T index alongside accuracy metrics is recommended to provide users with objective,
quantitative information about the reliability of accuracy estimates obtained from non-probability
samples so that they can decide whether the map is fit for their purpose and gauge how its accuracy
impacts their application. Therefore, its uptake by the remote-sensing community will promote trust
in accuracy assessment and transparency, which is particularly desirable when dealing with data sets
that deviate from gold standards.

https://github.com/waldnerf/t-index
https://github.com/waldnerf/t-index
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