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Abstract: Accurate knowledge of the carbon budget on global and regional scales is critically important
to design mitigation strategies aimed at stabilizing the atmospheric carbon dioxide (CO2) emissions.
For a better understanding of CO2 variation trends over Asia, in this study, the column-averaged CO2

dry air mole fraction (XCO2) derived from the National Oceanic and Atmospheric Administration
(NOAA) CarbonTracker (CT) was compared with that of Greenhouse Gases Observing Satellite
(GOSAT) from September 2009 to August 2019 and with Orbiting Carbon Observatory 2 (OCO-2) from
September 2014 until August 2019. Moreover, monthly averaged time-series and seasonal climatology
comparisons were also performed separately over the five regions of Asia; i.e., Central Asia, East Asia,
South Asia, Southeast Asia, and Western Asia. The results show that XCO2 from GOSAT is higher
than the XCO2 simulated by CT by an amount of 0.61 ppm, whereas, OCO-2 XCO2 is lower than CT by
0.31 ppm on average, over Asia. The mean spatial correlations of 0.93 and 0.89 and average Root Mean
Square Deviations (RMSDs) of 2.61 and 2.16 ppm were found between the CT and GOSAT, and CT
and OCO-2, respectively, implying the existence of a good agreement between the CT and the other
two satellites datasets. The spatial distribution of the datasets shows that the larger uncertainties exist
over the southwest part of China. Over Asia, NOAA CT shows a good agreement with GOSAT and
OCO-2 in terms of spatial distribution, monthly averaged time series, and seasonal climatology with
small biases. These results suggest that CO2 can be used from either of the datasets to understand its
role in the carbon budget, climate change, and air quality at regional to global scales.
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1. Introduction

Dealing with global climate change requires accurate knowledge of the global budget of
atmospheric greenhouse gases [1]. Atmospheric carbon dioxide (CO2) is an important greenhouse
gas that plays a significant role in several atmospheric phenomena such as hydrology, sea ice melting,
sea level increasing and most importantly the temperature [2,3]. Since the industrial revolution,
a notable increase in global CO2 concentration has been observed from 280 ppm in the middle of the
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19th century to over 400 ppm to date [4–6]. Combustion of fossil fuel, land-use changes, and cement
production are the major causes of increased CO2 concentration [7].

Asia, with the world’s 10 largest CO2 emitting nations, has become increasingly important in
studying the global carbon budget. The poverty elimination efforts by the rapidly growing economies
of the continent have largely relied on the construction of fossil-fuel based power and industrial projects
which have significantly contributed to the greenhouse gases emissions [8]. Knowledge of regional
contributions of CO2 is critically important to design mitigation strategies aimed at stabilizing the CO2

emissions. Much efforts have been made for estimating carbon sources and sinks in Asia, but still,
they remain poorly quantified [9,10]. A detailed budget of CO2 exchange between the earth’s surface
and the atmosphere is not available for some regions like South Asia, due to a sparse network of key
carbon observations [11]. Moreover, Asia also remains one of the regions with large uncertainties
in the carbon budget. In particular, the boreal and eastern part of Asia produces large uncertainties
because of the large land surface heterogeneity and complex interactions between biosphere and
atmosphere [12]. There is a need to expand the atmospheric observation network and develop inverse
modelling systems for the effective use of in situ and remote sensing data streams [13].

A comprehensive network of ground-based, sun-viewing, near-IR, Fourier transform spectrometers
known as Total Carbon Column Observing Network (TCCON) has been established to accurately
measure the atmospheric greenhouse gases such as CO2, CO, N2O, and CH4 [14,15]. A significant effort
has been applied and the CO2 measurements taken by TCCON have resulted in a precision of 0.25%
under clear atmospheric conditions [16]. However, because of limited spatial coverage and uneven
distribution of the TCCON sites, accurate CO2 amounts cannot be measured on sub-continental and
regional spatial scales [17]. Studies suggest that the satellite observations, with their lower precision
than the ground-based measurements but higher spatial coverage, can help to improve the CO2

measurements [18–20].
Over the past decade, multiple satellites such as the Greenhouse Gases Observing Satellite

(GOSAT), Orbiting Carbon Observatory 2 (OCO-2) [21,22] and TanSat [23,24] have been dedicated
to improving the CO2 measurements and covering the spatiotemporal gaps. GOSAT and OCO-2
have a common observational approach. For example, both the satellites have the solar reflectance
spectra centered around 1.6 and 2.0 µm which are used to determine the CO2 optical depth and band
A which is centered around 0.76 µm to measure the O2 optical depth. The information from these
three spectral regions is combined to determine the XCO2 retrieval. XCO2 is a column-averaged CO2

dry air mole fraction that shows spatiotemporal variability and helps in improving the estimations of
CO2 concentrations and constraining the model simulations by minimizing the uncertainties of CO2

sources and sinks. It has been shown that in the presence of optically thin clouds or aerosols, neglecting
scattering can lead to unacceptably large retrieval errors [25]. Several retrieval algorithms, such as the
National Institute of Environment Studies (NIES) XCO2 retrieval algorithm [26], University of Leicester
full physics retrieval algorithm [27], and NASA’s Atmospheric CO2 Observations from Space (ACOS)
XCO2 retrieval algorithm [28,29] have devised different approaches to deal with the scattering effects
in the retrieval of the CO2. GOSAT contains the Clouds and Aerosol Imager (CAI) to detect the clouds
but OCO-2 does not have any dedicated instrument to detect the clouds and aerosols. Although the
satellite data are corrected (retrievals with the large error are screened out), uncertainties remain in the
data. Therefore, the satellite datasets are validated against precise datasets to ensure the data quality
and compared with the other datasets to assess the consistency and potential for joint utilization.

The CarbonTracker (CT), originally developed by National Oceanic and Atmospheric Administration
(NOAA), is a modern data assimilation system that integrates the data into a consistent estimate of
surface CO2 exchange [30]. CT incorporates daily CO2 measurements derived from the network of tall
towers calibrated according to the world CO2 standard. Better knowledge and understanding of regional
and global carbon cycles depend on the accuracy of the CO2 estimations. Therefore, the satellite and the
model data need to be validated against other satellite observations and/or in situ observations before
using them to answer scientific questions.
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Many inter-comparisons and validation studies have reported discrepancies in regional and global
carbon budgets and their spatial distributions because of differences in their set of criteria, approaches,
assumptions, and accuracy of the available data. Because of quality control purposes, much of the
space-based observations are screened out during pre-processing. Oshchepkov et al. [31] pointed
out that less than 10% of the total measurements become usable after retrieval and the screening
processing. This might be due to the high amount of aerosol which significantly limits XCO2 coverage.
Deng et al. [32] compared the NIES and ACOS retrieval algorithms results for GOSAT with the TCCON
site and reported the overall bias of 0.21 ± 1.85 ppm and −0.69 ± 2.13 ppm for ACOS and NIES
XCO2, respectively. Moreover, the greatest monthly mean difference of 1.43 ± 0.60 ppm lies over
China. Jing et al. [33] compared the CO2 concentration simulated by GEOS-Chem with GOSAT, CT,
and TCCON. GEOS-Chem is overestimated by an amount of 0.78 ppm when compared with GOSAT,
slightly underestimated when compared with the CT, and underestimated by an amount of 1 ppm
when compared with the TCCON. Kulawik et al. [34] compared the multiple CO2 data sources with
the TCCON and found mean root square deviations of 1.7 and 0.9 in GOSAT and CT2013x XCO2

retrievals, respectively. These findings suggest that there is an imminent need to assess the accuracy
and uncertainty of XCO2 observations derived from the space-based data against in-situ measurements
and accurate simulations by models. Moreover, the inter-comparisons between the models and other
CO2 data sources are also essential to quantitatively evaluate the model uncertainties and further
improve the results.

This study aims to inter-compare the CT CO2 characteristics with ACOS/GOSAT and OCO-2
XCO2 retrievals over Asia and separately on its five regions i.e., Central Asia, East Asia, South Asia,
Southeast Asia, and Western Asia from September 2009 to August 2019. Furthermore, the ability and
consistency of the CarbonTracker to capture the seasonal and inter-annual variations of CO2 amplitude
over different regions of Asia have been assessed.

2. Materials and Methods

2.1. Study Area

Asia covers one-third of the Earth’s surface and almost every known climate occurs on this
continent [35]. The climatic heterogeneity in Asia is driven by several factors such as humidity,
temperature, precipitation, spatial distribution and intensity of solar energy, wind pattern and atmospheric
pressure. CO2 fluxes observe seasonal variability and to determine the regional variability, Asia has been
divided into five regions (Figure 1). The region names and the countries are given in the following:

Remote Sens. 2020, 12, x FOR PEER REVIEW 3 of 22 

 

estimations. Therefore, the satellite and the model data need to be validated against other satellite 
observations and/or in situ observations before using them to answer scientific questions. 

Many inter-comparisons and validation studies have reported discrepancies in regional and 
global carbon budgets and their spatial distributions because of differences in their set of criteria, 
approaches, assumptions, and accuracy of the available data. Because of quality control purposes, 
much of the space-based observations are screened out during pre-processing. Oshchepkov et al. [31] 
pointed out that less than 10% of the total measurements become usable after retrieval and the 
screening processing. This might be due to the high amount of aerosol which significantly limits 
XCO2 coverage. Deng et al. [32] compared the NIES and ACOS retrieval algorithms results for 
GOSAT with the TCCON site and reported the overall bias of 0.21 ± 1.85 ppm and −0.69 ± 2.13 ppm 
for ACOS and NIES XCO2, respectively. Moreover, the greatest monthly mean difference of 1.43 ± 
0.60 ppm lies over China. Jing et al. [33] compared the CO2 concentration simulated by GEOS-Chem 
with GOSAT, CT, and TCCON. GEOS-Chem is overestimated by an amount of 0.78 ppm when 
compared with GOSAT, slightly underestimated when compared with the CT, and underestimated 
by an amount of 1 ppm when compared with the TCCON. Kulawik et al. [34] compared the multiple 
CO2 data sources with the TCCON and found mean root square deviations of 1.7 and 0.9 in GOSAT 
and CT2013x XCO2 retrievals, respectively. These findings suggest that there is an imminent need to 
assess the accuracy and uncertainty of XCO2 observations derived from the space-based data against 
in-situ measurements and accurate simulations by models. Moreover, the inter-comparisons between 
the models and other CO2 data sources are also essential to quantitatively evaluate the model 
uncertainties and further improve the results. 

This study aims to inter-compare the CT CO2 characteristics with ACOS/GOSAT and OCO-2 
XCO2 retrievals over Asia and separately on its five regions i.e., Central Asia, East Asia, South Asia, 
Southeast Asia, and Western Asia from September 2009 to August 2019. Furthermore, the ability and 
consistency of the CarbonTracker to capture the seasonal and inter-annual variations of CO2 
amplitude over different regions of Asia have been assessed.  

2. Materials and Methods  

2.1. Study Area 

Asia covers one-third of the Earth’s surface and almost every known climate occurs on this 
continent [35]. The climatic heterogeneity in Asia is driven by several factors such as humidity, 
temperature, precipitation, spatial distribution and intensity of solar energy, wind pattern and 
atmospheric pressure. CO2 fluxes observe seasonal variability and to determine the regional 
variability, Asia has been divided into five regions (Figure 1). The region names and the countries are 
given in the following: 

 
Figure 1. Regional division of Asia Figure 1. Regional division of Asia.



Remote Sens. 2020, 12, 2498 4 of 20

This study is carried out over Asia as a whole and separately in each of its regions, given in Table 1.

Table 1. The table shows the regional distribution of the study area.

No. Region Countries

1 Central Asia Uzbekistan, Turkmenistan, Tajikistan, Kyrgyzstan, Kazakhstan
2 East Asia China, Japan, Hong Kong, Macau, North Korea, South Korea, Taiwan, Mongolia
3 South Asia Pakistan, Bangladesh, Afghanistan, India, Sri Lanka, Nepal, Bhutan, Maldives

4 Southeast Asia Singapore, Thailand, Malaysia, Indonesia, Philippine, Brunei, Myanmar,
Cambodia, Laos, Vietnam, Timor-Leste

5 Western Asia
Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait,

Lebanon, Oman, Palestine, Qatar, Saudi Arabia, Syria, Turkey, United Arab
Emirates, Yemen

2.2. Datasets

2.2.1. GOSAT Observations

GOSAT, the world’s first satellite dedicated to measuring the concentrations of CO2 and CH4

from space, is a joint venture of Japan Aerospace Exploration Agency (JAXA), NIES, and Ministry
of Environment (MOE). GOSAT was launched on 23 January 2009 and it takes measurements of
reflected sunlight in three near-infrared bands with a circular footprint of approximately 10.5 km
diameter at the nadir [29,36,37]. It incorporates two instruments: the Thermal and Near-infrared
Sensor for carbon Observation-Fourier Transform Spectrometer (TANSO-FTS), and the Thermal and
Near-infrared Sensor for carbon Observation-Cloud and Aerosol Imager (TANSO-CAI). TANSO-FTS is
responsible for measuring the greenhouse gases with three narrow SWIR bands (0.76, 1.6 and 2.0 µm)
and a wide thermal band (5.5–14.3 µm) at a spectral resolution of 0.2−1 cm. The SWIR bands are mainly
responsible for retrieving CO2 column concentrations while the TIR band retrieves the vertical profiles
of CO2 concentrations [38]. Clouds and aerosols strongly affect the quality of CO2 observations [39].
TANSO-CAI retrieves the cloud and aerosol information [40,41]. In this study, the ACOS/GOSAT
XCO2 version 9.3 Level 2 Lite product has been used [16,28,29]. ACOS/GOSAT XCO2 has lower bias
and better consistency compared to NIES/GOSAT [32].

2.2.2. OCO-2 Observations

NASA’s Orbiting Carbon Observatory-2 is the second satellite after GOSAT dedicated to monitoring
atmospheric CO2 to obtain better knowledge and understanding of the carbon cycle. The main
objectives of the mission include measuring CO2 with enough precision, accuracy, and spatial and
temporal resolutions required to quantify the CO2 sources and sinks at regional and global levels.
The sun-synchronous, near-polar satellite incorporates three high-resolution spectrometers making
coincident measurements of reflected sunlight in the near-infrared CO2 near 1.61 and 2.06 µm and
molecular oxygen (O2) A-Band at 0.76 µm with a temporal resolution of 16 days allowing the complete
global coverage of XCO2 twice per month [27,42–44]. In this study, OCO-2 XCO2 version 9r Level 2 Lite
product has been used. These data were produced by OCO-2 project at the Jet Propulsion Laboratory,
California Institute of Technology, and obtained from OCO-2 data archive maintained at the NASA
Goddard Earth Science Data and Information Services Center.

2.2.3. CarbonTracker Measurements

CarbonTracker (CT), developed by Peters et al. [45,46], is an inverse modelling framework
that updates the atmospheric CO2 distribution and the surface fluxes annually. It incorporates the
two-way nested Transport Model 5 (TM5) offline atmospheric tracer transport model which supports
high-resolution data regionally and coarse resolution data globally [47]. CT forecasts the CO2 mole fraction
by combing CO2 surface exchange models and TM5 model driven by the meteorology from the European
Center for Medium-Range Weather Forecasts (ECMRWF) ERA-interim reanalysis [48]. The resulting
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three-dimensional CO2 distribution is then sampled at the time and location that observations are available,
and the difference between observations and model forecasts is minimized [30]. The CT provides the
global CO2 distribution at 25 pressure levels with the spatial resolution of 3◦ × 2◦ Longitude/Latitude
and temporal resolution of 3 h.

In this study, we have used CT2019 release and near real-time version (CT19NRT20). Previous
versions of the modelled data have been compared with other CO2 data sources and results suggest
that CT captures the XCO2 reasonably well. More detail about CT data can be accessed at (https:
//www.esrl.noaa.gov/gmd/ccgg/CT/).

2.3. Methods

Different CO2 data products cannot be compared directly because of their differences in sampling
methods and data sources. For instance, CO2 products retrieved from OCO-2 and GOSAT are CO2

column-averaged dry air mole fraction (XCO2) concentrations while the simulated results from the
CarbonTracker are CO2 profiles with 25 vertical profiles. Moreover, the CT model gives well distributed
smooth data with a temporal resolution of 3 h and a spatial resolution of 3◦ × 2◦ Longitude/Latitude,
while the satellite observations are different in terms of time and space. In satellite data, the screening
process and cloud filtering significantly reduce the data quantity, which consequently produces gaps.
In addition, the temporal resolution also contributes to mismatching between the model and the
satellite data. As a result, both of the datasets cannot be compared directly because there is no match
between the two datasets in terms of spatial and temporal resolutions. Thus, the CT mole fraction of
CO2 is extracted on the time and location of the satellite data. By keeping the grid points of CT as
standard, the corresponding XCO2 from the satellite observations are extracted for a spatial window
of 1.5◦ × 1.5◦ with their centers at the reference grid points of the CT. Furthermore, to make both
the datasets comparable, it is mandatory to adjust the vertical resolutions of the datasets accordingly.
To deal with the different number of vertical levels of both datasets, CT CO2 is interpolated to the
vertical numbers of the satellite datasets. The CT XCO2 (XCOm

2 ), that is used to compare with the
satellite datasets is computed by the procedure as suggested by [33,49,50].

XCOm
2 = XCOa

2 +
∑

j

pT
j Kj ∗ (COi

2 −CO2a), (1)

where, (XCOa
2) is XCO2 a priori, (p) is pressure weighting function, (K) is an averaging kernel, (COi

2)
is interpolating CT CO2, (CO2a) is a priori profile, (j) refers to satellite retrieval vertical level, and
(T) indicates the matrix transpose. Some other statistical calculations such as correlation coefficients
(R), and Root Mean Square Deviation (RMSD) have also been computed to determine the level of
agreement between the CT and respective satellite datasets. The correlation coefficient for the jth pixel
is computed by the formula given:

Rj =

1
n
∑n

i=1

(
Mi −M

)
( 1

n
∑n

i=1

(
Si − S

)
,√

1
n
∑n

i=1

(
Mi −M

)2
√

1
n
∑n

i=1

(
Si − S

)2
(2)

where (M) and (S) represent the mean values of CT and satellite XCO2 retrievals. The RMSD showing
the standard error of the model against the observations at the jth pixel is calculated as follows:

RMSDj =

√√
1
n

n∑
i=1

((
Mi −M

)
−

(
Si − S

))2
(3)

More detail about the Root Mean Squared Deviation (RMSD) is given in [51].

https://www.esrl.noaa.gov/gmd/ccgg/CT/
https://www.esrl.noaa.gov/gmd/ccgg/CT/
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3. Results and Discussion

3.1. Comparison of NOAA CarbonTracker with GOSAT and OCO-2

NOAA CarbonTracker has been compared with ACOS/GOSAT version 9.3 and OCO-2 version
9r for durations of 10 years starting from September 2009 to August 2019 and 5 years ranging from
September 2014 to August 2019, respectively. The CT dataset is made comparable with the satellite
datasets following the procedure described in Section 2.2 The results are based on 519 points which are
uniformly distributed over Asia with a spatial resolution of 3◦ × 2◦ Longitude/Latitude.

Figure 2 shows the distribution of 10 years averaged XCO2 over Asia for CT (Figure 2a) and
GOSAT (Figure 2b). The number of datasets used in the analysis is shown in Figure 2d. The datasets in
each grid range from 11 to 2239. The comparison shows that the spatial distribution characteristics are
consistent between both of the datasets with a spatial mean correlation of 0.93.
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Figure 2. (a) Distribution of 10 years mean XCO2 over Asia for (a) CarbonTracker (CT) 2019;
(b) Greenhouse Gases Observing Satellite (GOSAT); (c) their differences (CT-GOSAT); and (d) the total
number of datasets from GOSAT in each grid.

Figure 3 shows the distribution of temporally averaged XCO2 derived from the CT (Figure 3a) and
OCO-2 (Figure 3b) over Asia for 5 years ranging from September 2014 to August 2019. Southeast Asia
and some parts of China observe the least number of cloud-free observations from OCO-2 (Figure 3d).
The two datasets show good consistency with a spatial mean correlation of 0.89. OCO-2 has better
spatial coverage than GOSAT over Asia (Figures 2d and 3d), however, both show a small number of
retrievals over East Asia and Southeast Asia. This may be due to the ACOS XCO2 retrieval algorithm
which excludes the data with high aerosol optical depth and cloud optical thickness [28,29] and results
in reducing XCO2 data quantity over Asian regions during the monsoon [52] and high pollution
events, which typically occur in the spring [53]. Both the model and the satellite datasets observe the
highest CO2 emission over high density urban regions such as Beijing-Tianjin-Hebei area in northern
China, Korea and Japan (Figure 2a,b and Figure 3a,b). These are the most populated regions with the
largest anthropogenic emissions in the world [54,55]. The distribution characteristics of XCO2 values
retrieved from GOSAT and OCO-2 are similar to the modelled XCO2 over most of the regions except
some parts of East Asia such as China and Mongolia (Figures 2c and 3c). GOSAT dataset shows a
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higher standard deviation compared to OCO-2, and these results are supported by a previous study
which has also reported a large standard deviation of GOSAT observations compared to OCO-2 at the
TCCON sites [56]. The differences over China maybe mostly attributed to the large uncertainties in the
terrestrial flux estimation as previous studies have reported poor performance of terrestrial flux from
CT2015 against in situ observations obtained from eight sites of the Chinese Terrestrial Ecosystem
Flux Observation and Research Network (ChinaFLUX) [57–60]. The substantial difference exists over
the Qinghai Tibet Plateau, which is the highest terrain of the earth located in the southwest of China.
The CT shows higher XCO2 concentrations over mountain ranges of northern Mongolia, northern
Afghanistan, Tajikistan and Kyrgyzstan compared to OCO-2 (Figure 3c). Kong et al. [56] also found
significantly larger values of the CarbonTracker XCO2 over Tibetan Plateau and mountain ranges
compared to those of the satellite datasets.
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Compared to the satellite datasets, CT is overestimated by −0.61 ± 0.96 ppm against GOSAT and
underestimated by 0.31 ± 0.71 ppm against OCO-2 over Asia. Furthermore, the summaries of both
comparisons including the regional detail are given in Tables 2 and 3.

Table 2. The table shows the statistical relationship between CT and GOSAT. The statistical parameters
shown in the table are the mean correlation coefficient (R), an average of the root mean square deviation,
the difference between the CT and GOSAT (D) with the standard deviation, the standard deviation
in CT, the standard deviation in GOSAT and GOSAT error, which is GOSAT posterior estimate of
XCO2 error. The total number of datasets used in the analysis are 421,361 over 519 points distributed
uniformly over Asia.

Region R RMSD D
(Std.) Std. in CT Std. in

GOSAT
GOSAT

Error

Asia 0.93 2.61 −0.61 ± 0.96 2.59 2.62 1.19
Central Asia 0.96 1.87 0.03 ± 0.47 2.13 2.17 1.17

East Asia 0.87 3.96 0.32 ± 1.60 2.45 2.73 1.32
South Asia 0.94 2.34 −0.67 ± 0.64 2.94 2.99 1.16

Southeast Asia 0.95 2.19 −0.43 ± 1.01 3.65 3.49 1.02
Western Asia 0.96 1.87 0.02 ± 0.48 2.12 2.17 1.17
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Table 3. The table shows the statistical relationship between the CT and OCO-2. The statistical
parameters shown in the table are, the mean correlation coefficient (R), an average of the root
mean square derivation, the difference between the CT and OCO-2 (D) with the standard deviation,
the standard deviation in CT, the standard deviation in OCO-2 and OCO-2 error. The total number of
datasets used in the analysis are 20,574,385 over 519 points distributed uniformly over Asia.

Region R RMSD D
(Std.) Std. in CT Std. in

OCO-2
OCO-2
Error

Asia 0.89 2.16 0.31 ± 0.71 1.07 1.10 0.62
Central Asia 0.93 2.04 0.72 ± 0.64 0.92 0.65 0.60

East Asia 0.84 2.94 0.33 ± 0.92 1.30 1.31 0.70
South Asia 0.89 2.09 0.25 ± 0.73 0.72 0.67 0.63

Southeast Asia 0.93 1.54 0.29 ± 0.39 1.78 1.19 0.53
Western Asia 0.94 1.49 0.06 ± 0.34 0.55 0.49 0.57

As a one-to-one comparison between CT model data and the satellite observations is not possible,
it is therefore important to determine the relative spatial distance between the occurrences of both
datasets. The satellite values are averaged in a 1.5◦ × 1.5◦ window centering the grid cell of CT.
The spatial distance means a distance between a given GOSAT/OCO-2 measurement and CT grid point.

Figure 4 shows the scatter density plot between the CT and GOSAT (Figure 4a) and CT and OCO-2
(Figure 4b) XCO2 concentrations. The color represents the relative spatial distance between the points
of CT and the satellite datasets in terms of degree. The spatial distance between the points represents
the spatial mismatch and does not indicate differences between the XCO2 values of the datasets.
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Figure 5 shows the spatial distribution of the correlations between the model and the satellite
datasets. The results show a good correlation between CT and GOSAT (Figure 5a), and between CT and
OCO-2 (Figure 5b) over Asia except for East Asia. However, a low correlation (<0.4) between CT and
GOSAT is observed only over southwest China, while a low correlation (<0.4) between CT and OCO-2
is observed over southwest China, the northern part of Pakistan, northern Afghanistan, Tajikistan and
Kyrgyzstan. These regions are either the plateaus or the mountain ranges. Both the model and the
satellite datasets contribute to the uncertainties. Connor et al. [50] presented the OCO inverse method
and prospective error analysis and concluded that the instrument can produce the single sounding
error up to 0.8 ppm for sun conditions and up to 2.5 ppm for low sun conditions over the low- and
mid-latitudes due to noise, geophysical and spectroscopic errors. To determine if it is the model data
which originates the error or whether satellite data also contributes to it, the spatial distribution of the
posterior XCO2 error for GOSAT and OCO-2 is also shown in Figure 5c,d, respectively. The posterior
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XCO2 error is computed by combing interference errors, smoothing errors and instrument noise [50].
GOSAT posterior XCO2 error is larger than that of OCO-2 and it becomes significant from East China
to West China.
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In general, the CT-GOSAT comparison implies that both of the datasets are characterized by a
high spatial mean correlation of 0.93, a global offset of −0.61 ppm, which suggests that CT XCO2 is
lower relative to that of GOSAT, RMSD of 2.61 ppm and relative accuracy of 0.96 ppm over Asia.
The comparison between the CT and OCO-2 shows CT is overestimated by an amount of 0.31 ppm
and exhibits a spatial mean correlation of 0.89, RMSD of 2.16 ppm and relative accuracy of 0.71 ppm.
Furthermore, the summaries of both comparisons including the regional detail are given in Tables 2
and 3.

3.1.1. Monthly Averaged Time-Series Comparison

Figure 6 shows the monthly averaged XCO2 variations from CT and the two satellite datasets for
5 years starting from September 2014 to August 2019 over Asia (Figure 6a), Central Asia (Figure 6b),
East Asia (Figure 6c), South Asia (Figure 6d), Southeast Asia (Figure 6e), and Western Asia (Figure 6f).
All the data products show similarity in phases and amplitudes with some differences in the magnitude,
which suggests a good agreement between the model and the satellite datasets. The CO2 concentrations
over Central Asia (Figure 6b), East Asia (Figure 6c), and Southeast Asia (Figure 6e) are the highest
in April and the lowest in August. It starts increasing in the fall, continues to increase in the winter,
and reaches the maximum value in spring. In these regions, the heating systems are used in winter
and spring which consume larger amounts of fossil energy, such as natural gas, oil, and coal, and thus
produce a large amount of the CO2 which is discharged into the atmosphere. Moreover, in winter and
spring, the plants are in the dormant and recovery stage. During this period, the strong respiration
and the weak photosynthesis also contribute significantly to increasing the CO2 concentration in the
atmosphere. The lower temperature in the winter inhibits the microorganism activity which hinders
the decomposition process. The temperature starts increasing in the late spring, and it enhances the
microorganism activity, thus the decomposition is started and CO2 is released from the biological
materials. This might be the reason for the maximum concentration of the CO2 in April. The CO2
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concentration decreases from May to August. During this period, the temperature, precipitation,
and the lightning are beneficial to the vegetation growth which enhances the photosynthesis process.
The strong presence of the photosynthesis by vegetation decays CO2 concentration [61,62]. Compared
to the CT, GOSAT and OCO-2 show lower CO2 concentrations during the wet season (April-August)
over these regions.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 22 
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Asia experiences a monsoon climate, which plays a significant role in the CO2 concentrations [63].
Asian monsoon may be further classified into the Southwest Monsoon and the East Asian Monsoon [64].
The Southwest Monsoon mostly affects the Indian subcontinent and the East Asian Monsoon affects
China, Japan, Philippines, Korea and Taiwan. The occurrence of the summer monsoons is a major source
of precipitation and thus an important factor controlling the vegetation in these regions. Generally,
March to May is treated as pre-monsoon, June to September as monsoon and October to November as
post-monsoon in most of the Asian regions [63]. The CO2 concentration is found to be maximum in
the pre-monsoon and minimum in monsoon (Figure 6c,d).

The highest CO2 concentration in the pre-monsoon maybe due to the higher temperature and
solar radiation prevailing during these months, which stimulate the assimilation of CO2 in the daytime
and respiration in the night [65]. The low wind speed during the pre-monsoon causes slight mixing
in the boundary layer which also contributes in the CO2 concentration [66]. Moreover, a large
amount of biomass burning and forest fires during this period also compliment the increase in CO2

concentration [67,68]. The reduction in CO2 concentration in monsoon is maybe because of the monsoon
precipitation resulting in increasing the soil moisture which enhances the photosynthesis process.
Moreover, the presence of clouds during the season decreases the temperature which reduces the leaf
and soil respiration rate which eventually increases the carbon uptake [68]. The CO2 starts increasing
in post-monsoon which is associated with microbial activity and high ecosystem productivity [66,69].
The fluctuations in the CT XCO2 have been observed during this season over East Asia and South
Asia. Moreover, the CT shows higher CO2 concentration compared to GOSAT and OCO-2 during
monsoon (Tables 4 and 5). The higher CO2 concentration over monsoon-affected regions might be due
to the uncertainties involved in realizing the inversion during the monsoon season, in the presence of
clouds [70].

Table 4. Monthly averaged XCO2 concentration derived from the CT (C), GOSAT (G), and their
differences (C-G). The statistics are computed for 5 years over Central Asia, East Asia, South Asia,
Southeast Asia and Western Asia. (Unit: ppm).

Month.
Central Asia East Asia South Asia Southeast Asia Western Asia

C G C-G C G C-G C G C-G C G C-G C G C-G

Jan 403.42 404.92 −1.50 403.02 405.00 −1.98 402.77 403.53 −0.76 402.61 403.89 −1.27 402.4 404.1 −1.7
Feb 403.41 404.45 −1.03 403.04 404.92 −1.88 402.53 403.61 −1.07 402.63 403.89 −1.25 402.6 404.0 −1.4
Mar 404.84 405.32 −0.48 404.47 405.81 −1.33 403.69 404.94 −1.24 403.83 404.96 −1.52 404.0 404.6 −0.6
Apr 406.16 405.95 0.21 406.22 406.70 −0.47 404.96 406.20 −1.23 404.95 405.54 −0.58 404.4 405.4 −0.9
May 406.00 405.28 0.71 406.29 406.06 0.22 406.05 406.55 −0.49 404.61 404.34 0.27 405.9 405.7 0.2
Jun 403.41 402.65 0.76 404.75 402.79 1.95 405.67 404.59 1.07 404.06 403.16 0.90 405.1 404.8 0.3
Jul 400.56 400.35 0.21 402.58 399.96 2.62 404.27 403.20 1.06 403.57 402.36 1.21 403.5 402.8 0.7

Aug 398.84 398.79 0.05 400.46 398.92 1.53 401.71 400.76 0.94 402.94 402.12 0.81 401.5 401.2 0.3
Sep 398.86 398.91 −0.04 399.63 399.21 0.42 400.28 399.98 0.29 401.13 400.31 0.82 400.0 400.0 0
Oct 400.27 400.59 −0.31 401.67 401.73 −0.05 400.47 400.71 −0.23 400.80 400.35 0.44 400.3 400.8 −0.5
Nov 402.04 402.61 −0.56 402.04 402.92 −0.88 401.33 402.14 −0.80 401.67 401.67 0.00 401.1 401.9 −0.8
Dec 402.85 404.27 −1.42 402.55 404.64 −2.09 402.28 403.25 −0.96 402.22 403.29 −1.07 401.9 403.4 −1.5

Table 5. Monthly averaged XCO2 concentration derived from the CT (C), OCO-2 (O) and their
differences (C-O). The statistics are computed for 5 years over Central Asia, East Asia, South Asia,
Southeast Asia, and Western Asia. (Unit: ppm).

Month
Central Asia East Asia South Asia Southeast Asia Western Asia

C O C-O C O C-O C O C-O C O C-O C O C-O

Jan 404.98 404.88 0.10 404.45 404.67 −0.22 404.10 403.89 0.21 404.67 404.41 0.26 403.98 404.33 −0.3
Feb 405.63 405.78 −0.14 404.78 405.54 −0.75 404.91 404.74 0.17 405.26 404.89 0.36 404.91 405.18 −0.2
Mar 406.64 406.29 0.35 406.19 406.34 −0.15 405.76 406.22 −0.45 405.73 405.39 0.34 405.90 405.90 0
Apr 407.53 406.71 0.81 407.18 407.14 0.03 406.59 407.40 −0.80 406.20 406.20 0 406.80 406.80 0
May 407.10 405.97 1.12 407.82 406.79 1.03 407.28 407.72 −0.44 405.55 405.51 0.04 407.12 407.16 -.04
Jun 404.71 403.64 1.07 405.85 404.08 1.77 406.70 406.19 0.50 405.26 404.79 0.46 406.43 406.18 0.25
Jul 402.07 401.40 0.66 405.55 401.81 3.73 406.24 404.64 1.60 404.75 404.24 0.50 404.81 404.16 0.65

Aug 400.20 399.58 0.62 403.06 400.65 2.41 404.67 402.49 2.17 404.27 403.76 0.50 402.91 402.44 0.46
Sep 398.95 398.60 0.34 400.58 399.25 1.33 400.90 399.90 1.00 401.46 400.90 0.55 400.30 400.02 0.27
Oct 400.62 400.51 0.11 401.46 401.07 0.39 400.84 400.50 0.34 401.47 400.79 0.67 400.61 400.61 0
Nov 402.59 402.54 0.05 401.76 402.44 −0.68 401.93 402.03 −0.09 402.52 402.10 0.41 401.71 401.92 −0.2
Dec 403.82 404.28 −0.45 402.96 403.99 −1.02 403.15 403.21 −0.06 403.49 403.56 −0.06 403.10 403.32 −0.2
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The monthly averaged statistical relationships between the CT and satellite datasets are given in
Tables 6 and 7. The CT is underestimated over all the regions of Asia when compared with GOSAT and
overestimated over all the regions except East Asia when compared with OCO-2. East Asia exhibits
lower correlation and higher RMSD values relative to other regions. The CT shows smaller RMSD
with OCO-2 compared to GOSAT.

Table 6. The table shows the monthly averaged statistical relationship between the CT and GOSAT
over Asia and its regions. The monthly averaged statistics are computed for 5 years starting from
September 2014 to August 2019.

Region R CT-GOSAT RMSD Dataset Quantity

Asia 0.98 −0.29 0.98 230,763
Central Asia 0.99 −0.25 0.83 57,838

East Asia 0.94 −0.11 1.74 74,982
South Asia 0.98 −0.27 0.99 36,256

Southeast Asia 0.97 −0.10 1.10 9974
Western Asia 0.98 −0.37 0.86 51,713

Table 7. The table shows the statistical relationship between the CT and OCO-2 over Asia and its
regions. The monthly averaged statistics are computed for 5 years starting from September 2014 to
August 2019.

Region R CT-OCO2 RMSD Dataset Quantity

Asia 0.98 0.37 0.49 25,841,330
Central Asia 0.99 0.38 0.43 5,677,871

East Asia 0.94 −0.63 1.09 6,869,504
South Asia 0.98 0.31 0.66 5,171,216

Southeast Asia 0.99 0.34 0.36 1,306,978
Western Asia 0.99 0.03 0.27 6,815,761

Figure 7 shows the annual growth of XCO2 derived from the model and the two satellite datasets
over Asia, Central Asia, East Asia, South Asia, Southeast Asia, and Western Asia.
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The annual growth rate has been computed by subtracting the mean from the mean of the next
year. The annual growth of CO2 rate ranges from 0.98 to 3.28 ppm. It is important to note that in
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all the data products, the annual growth rate is relatively higher in 2015. This is because of 2015
El Niño which occurred in March 2015. El Niño–Southern Oscillation (ENSO), characterized by
anomalous sea surface warming and cooling in the eastern and central Pacific is closely related to the
growth rate of atmospheric CO2 [71]. Atmospheric CO2 growth rate is increased during El Niño and
decreases during La Nina [72]. The computed growth rates are in agreement with the NOAA growth
rates from CO2 surface observations [5] and the World Data Center for Greenhouse Gases (WDCGG)
(https://gaw.kishou.go.jp/publications/global_mean_mole_fractions).

3.1.2. Seasonal Climatology Comparison

Figure 8 shows the seasonal variations of XCO2 derived from the CT and GOSAT over Asia for a
period of 10 years staring from September 2009 to August 2019 for four seasons based on the three
months; winter (December January February or DJF), spring (March April May or MAM), summer
(June July August or JJA) and autumn (September October November or SON). The seasonal cycle has
significant effects on CO2 concentration.
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The higher CO2 concentrations have been observed in winter and spring while the lower ones
occurred in summer and autumn. This trend is common in the Northern Hemisphere [33]. The weak
photosynthesis, microorganism activity, and the heating measures are the major causes of the increased
CO2 concentrations in winter and the spring; while CO2 uptake from vegetation in summer removes
CO2 from the atmosphere and decreases the CO2 concentrations. In winter, spring, and autumn,
the CT XCO2 is smaller than that of GOSAT (Figure 8). During winter, the difference between the two
datasets is significant and it reaches over −2 ppm in western China and the western part of Central
Asia. Kog et al. [56] compared the seasonal climatology of CT2017 with GOSAT and found that the
differences in most of the regions were within ±2.5 ppm. In the summer, the CT shows higher CO2

concentrations relative to GOSAT. It is important to note that during this season, the monsoon is active

https://gaw.kishou.go.jp/publications/global_mean_mole_fractions
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in Asian regions. Nalini et al. [70] also found that the CT shows higher concentrations over Indian
regions during the monsoon. More detail about seasonal climatology comparison between the two
datasets over Asian regions is given in the Table 8.

Table 8. The table shows the seasonal statistics of the CT and GOSAT for 10 years over Asia and its
regions. The statistics are based on the seasonal average of the difference between the CT and GOSAT
(D), correlation, Route Mean Square Deviation (RMSD), and the standard deviation.

Region Season D (ppm) R RMSD CT2019 Std GOSAT Std Dataset Quantity

Asia

DJF −1.59 0.93 2.90 3.03 3.15 113,260
MAM −0.61 0.94 2.49 2.85 2.60 78,882

JJA 0.91 0.92 2.95 3.25 3.12 78,543
SON −0.49 0.94 2.65 2.42 2.56 150,676

Central Asia

DJF −1.21 0.92 2.23 2.92 3.01 8150
MAM 0.33 0.95 0.95 2.56 2.22 22,990

JJA 0.31 0.94 2.05 2.60 2.55 34,231
SON −0.18 0.98 1.48 1.99 2.23 38,009

East Asia

DJF −2.01 0.89 3.24 3.48 3.48 32,194
MAM −0.90 0.90 3.12 2.67 2.48 24,525

JJA 1.19 0.88 3.39 3.53 3.58 19,237
SON −0.88 0.90 3.06 2.43 2.56 55,023

South Asia

DJF −1.01 0.95 2.18 2.72 2.85 30,398
MAM −1.07 0.96 2.38 3.02 2.58 14,247

JJA 0.45 0.93 2.88 2.89 2.70 5614
SON −0.19 0.94 2.08 2.46 2.60 20,781

Southeast Asia

DJF −1.22 0.95 2.30 2.79 2.77 10,066
MAM −0.52 0.95 2.10 3.50 3.19 3853

JJA 1.00 0.96 1.83 2.39 2.42 1164
SON 0.21 0.95 1.94 2.68 2.87 2531

Western Asia

DJF −1.58 0.96 2.39 1.49 1.48 32,452
MAM −0.45 0.97 1.95 2.10 1.95 13,267

JJA 0.24 0.96 1.86 2.23 2.41 18,297
SON −0.55 0.97 1.65 1.58 1.59 34,332

Figure 9 shows the spatial distribution of seasonal averaged XCO2 from the CT (left panel), OCO-2
(middle panel), and their differences (right panel) over Asia for a period of 5 years ranging from
September 2014 to August 2019. Spatial distribution characteristics are consistent between CT and
OCO-2. XCO2 increases from winter (DJF) to spring (MAM), with the highest concentration observed
during spring and decreases from summer (JJA) to autumn (SON), with the lowest concentration
during SON. The decreasing trend from MAM to JJA to SON has likely resulted from the vegetation
awakening as the photosynthesis from the vegetation leads to decaying of the CO2 concentration.
The decay of vegetation in autumn and the heating measures in winter result in increasing the CO2

concentration. Figure 9 (right panel) displays the seasonal mean differences of XCO2 from the two
datasets. Both of the datasets show good agreement with each other. In most of the regions of the
continent, the mean seasonal difference ranges from −1 to +1 ppm. East Asia is the region with
the highest uncertainties in the continent. The highest mean difference (>2 ppm) and the lowest
mean difference (<−2 ppm) have been observed in summer (JJA) and autumn (SON), respectively,
over East Asia. This indicates that CT produces higher XCO2 concentration when the vegetation cover
decreases and produces the opposite when the vegetation cover is strong relative to OCO-2. The CT
is overestimated during all the seasons over Asia when compared with OCO-2. More detail about
seasonal climatology comparison between CT and OCO-2 datasets is given in the Table 9.
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Table 9. The table shows the seasonal statistics of the CT and OCO-2 for 4 years over Asia and its
regions. The statistics are based on the seasonal average of the difference between the CT and OCO-2
(D), correlation, RMSD, and the standard deviation.

Region Season D (ppm) R RMSD CT Std OCO-2 Std Dataset Quantity

Asia

DJF 0.10 0.85 2.22 1.69 1.66 5,895,404
MAM 0.11 0.87 2.38 1.81 1.31 5,236,005

JJA 0.82 0.87 2.40 2.31 2.23 6,734,436
SON 0.10 0.88 1.95 1.31 1.25 7,975,485

Central Asia

DJF −0.11 0.89 2.33 1.73 2.05 363,017
MAM 0.96 0.93 1.76 1.18 0.96 1,264,566

JJA 1.04 0.90 2.44 1.99 1.07 2,442,988
SON 0.19 0.95 1.33 0.88 0.85 1,607,300

East Asia

DJF −0.23 0.79 2.80 2.06 1.84 980,407
MAM −0.07 0.80 2.70 1.63 1.27 1,465,443

JJA 1.12 0.81 3.17 2.61 2.09 1,884,846
SON −0.12 0.83 2.17 1.60 1.55 2,538,808

South Asia

DJF 0.02 0.90 1.80 0.81 0.58 2,135,507
MAM −0.23 0.88 2.53 1.82 0.94 1,022,046

JJA 1.08 0.84 2.88 1.91 2.23 538,615
SON 0.37 0.88 1.88 0.84 0.97 1,475,048

Southeast Asia

DJF 0.45 0.91 1.64 1.60 1.75 539,871
MAM 0.17 0.93 1.45 1.39 1.53 313,243

JJA 0.58 0.93 1.59 1.46 1.43 213,821
SON 0.43 0.90 1.71 1.49 1.43 240,043

Western Asia

DJF −0.32 0.92 1.44 0.77 0.90 1,876,602
MAM 0.06 0.92 1.45 0.84 0.76 1,170,707

JJA 0.24 0.93 1.54 1.26 1.47 1,654,166
SON 0.01 0.93 1.31 0.55 0.49 2,114,286
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4. Conclusions

This study compared the NOAA CT XCO2 with that of GOSAT and OCO-2. Comparison between
the CT and GOSAT has been achieved using 10 years of data ranging from September 2009 to August
2019 and the comparison between the CT and OCO-2 has been performed using 5 years of data starting
from September 2014 to August 2019.

The results found that the CT XCO2 is underestimated by 0.61 ppm when compared with GOSAT
and overestimated by 0.31 ppm when compared with OCO-2. The differences between CT and
OCO-2 are within ±1.0 ppm over most of the regions, while CT and GOSAT differ greatly as the
differences between the CT and GOSAT are within ±2.0 ppm over most of the regions. Comparison
between CT and satellite datasets (GOSAT and OCO-2) showed larger differences over China which
may be attributed to the greater uncertainties in model terrestrial flux. The CT shows higher CO2

concentrations compared to GOSAT and OCO-2 over the Tibet Plateau and the other mountain ranges.
The monthly time-series showed an agreement between CT and both GOSAT and OCO-2 in

terms of amplitude and pattern. However, this agreement deteriorates over South Asia and East Asia
during monsoon. The CT also showed higher XCO2 concentrations and more fluctuations during
the monsoon when compared with the XCO2 retrieved from GOSAT and OCO-2. In the seasonal
climatology comparison, the CT XCO2 is more than that of OCO-2 during all the seasons whereas,
the CT shows lower XCO2 concentrations during autumn, winter, and spring when compared with
GOSAT. The seasonal climatology between and model and the satellite datasets shows that the CT has
the ability to capture the seasonal cycle.

The model and the satellite datasets have a good agreement in terms of the spatial distribution,
monthly averaged distribution and seasonal climatology. These results suggest that CO2 can be used
from either of the datasets to understand its role in the carbon budget at a regional scale. The large
uncertainties in East Asia, in particular, China are challenging. The land-use activities such as
deforestation and intense agriculture also affect the CO2 concentrations. Moreover, recent studies have
suggested that current aerosol loading over China may affect the terrestrial carbon fluxes as well as
the atmospheric CO2 concentrations by diffuse radiation fertilization effects and hydrometeorological
feedbacks. These effects also need to be considered in future studies.
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