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Abstract: In this study, we investigate the ability of several convective initiation predictors based
on satellite infrared observations to distinguish convective weak precipitation events from those
leading to intense rainfall. The two types of precipitation are identified according to hourly rainfall,
respectively less than 10 mm and greater than 30 mm. The analysis is conducted on a representative
dataset containing 92 severe and weak precipitation events collected over the Italian peninsula in
the period 2016–2019 over June-September. The events are selected to be short-lived (i.e., less than
12 h) and localized (i.e., less than 50 × 50 km2). Italian National Radar Network products, namely the
Vertical Maximum Intensity (VMI) and the Surface Rain Total (SRT) variables (from Dewetra Platform
by CIMA, Italian Civil Protection Department), are used as indicators of convection (i.e., VMI greater
than 35 dBZ echo intensity) and cumulated rainfall, respectively. The considered predictors are
linear combinations of spectral infrared channels measured with the Rapid Scan Service (RSS)
Spinning Enhanced Visible and InfraRed Imager (SEVIRI) aboard Meteosat Second Generation (MSG)
geostationary satellites. We select a 5 × 5 SEVIRI pixel-box centered on the storm core and perform a
statistical analysis of the predictors up to 2.5 h around the event occurrence. We demonstrate that
some of the proxies—describing growth and glaciation storm properties—show few degrees contrast
between severe and nonsevere precipitation cases, hence carrying significant information to help
discriminate the two types. We design a threshold scheme based on the three most informative
predictors to distinguish weak and strong precipitation events. This analysis yields accuracy higher
than 0.6 and the probability of false detection lower than 0.26; in terms of reducing false alarms,
this method shows slight better performances compared to related works, at the expense of a
lower probability of detection. The overall results, however, show limited capability for these
infrared proxies as stand-alone predictors to distinguish severe from nonsevere precipitation events.
Nonetheless, these may serve as additional tools to reduce the false alarm ratio in nowcasting
algorithms for convective orographic storms. This study also provides further insight into the
correlation between early infrared fields signatures prior to convection and subsequent evolution of
the storms, extending previous works in this field.
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1. Introduction

The large number of convective rainfall events causing intense precipitation over the past
few years represents a threat to society, as high-impact storms are generally accompanied by hail,
strong winds and lightning, and can lead to flash-floods, particularly in complex orography areas,
with dramatic socio-economical consequences. A crucial aspect in nowcasting convective precipitation
events is the assessment of their potential in terms of rainfall severity, aimed at providing means
to prevent false alarms, which also have socio-economic impacts e.g., on the aviation industry as
well as agriculture, transport and public safety. This area of study is very attractive for the scientific
community and to the present there is still need for further investigation.

Large efforts are devoted to the study of these phenomena and to the improvement of nowcasting
(i.e., 0-6 h forecasting) [1] to accurately predict the time and location of the occurrence of such convective
storms, thus providing an early warning tool to reduce socio-economical impacts. A wide plethora of
nowcasting methods exists in literature, based on satellite and radar observations or products [2–16].
Generally, these methods rely on different approaches, ranging from statistical to physical ones [17].
The former are generally based on the projection in time and space of the current state of the weather
event: the projection is typically derived by means of atmospheric wind vectors or by comparing
similar features observed in previous satellite data images [18]. On the other hand, physical approaches
based on Numerical Weather Prediction (NWP) models account for convective and microphysical
processes as well as dissipative mechanisms [19]; their ability to perform nowcasting is however
limited by the horizontal resolution, high computational cost and the non-perfect knowledge of the
initial state. Overall NWP methods are typically outperformed by extrapolation techniques in the
first few hours of the forecast [20], while becoming competitive at subsequent forecast times. It has
also been demonstrated that assimilation with real-time satellite and radar observations can improve
NWP performances, thus improving their nowcasting skills in the first hours of the prediction [21–23].
Parallel to this, satellite observations have also been proven as excellent predictors for convective
initiation (i.e., the first occurrence of a ≥ 35 dBZ radar echo) [2,24–32], showing longer lead time
compared to radar echoes, which seem to be relevant only when precipitation has already started.
Blending techniques are also widespread [33–37], exploiting the advantages of each of the above
methods, depending on the time horizon of the forecast as well as the availability of satellite or radar
observational data.

A typical limitation of nowcasting methods is the accuracy in predicting precipitation severity,
i.e., the ability to distinguish convective events leading to high rainfall from those causing light
precipitation. Recent works deal with this essential aspect by studying the correlation of convective
storm initial features with its subsequent severity [38,39]. The scope of this work is indeed to gain
more insight into the relation between early-stage convective signatures and the following level of
precipitation severity. We investigate ways to assess the potential severity of convective precipitation
events, by identifying indicators that provide information on this aspect and assist conventional
nowcasting tools. To this aim, we perform the analysis of relevant satellite InfraRed (IR) fields
(largely discussed in literature [27,28]) on a dataset of convective precipitation cases leading to severe
and nonsevere rainfall, collected over the Italian territory in the period of June–September between
2016 and 2019. Thermal IR fields are derived from observations with the Rapid Scan (RS) Spinning
Enhanced Visible and Infrared Imager (SEVIRI) aboard Meteosat Second Generation (MSG) satellite
platforms. We show that commonly used IR convective initiation predictors offer relevant information
on the future development of the precipitation. Hereafter, the terms predictor, proxy and indicator
are used as synonyms to indicate those variables providing ahead-of-time relevant information on
subsequent features of the precipitation. The rationale for this work is as follows: we aim to (i) identify
a subset of IR indicators—within the wide literature on convective initiation satellite-based proxies
(see e.g., [27])—showing distinctive signatures or patterns in the case that convection leads to a
hourly cumulative rain greater than 30 mm, as opposed to convective events that only cause less than
10 mm; (ii) show that the spatial extent of the cumuli is, on average, relatively smaller in the case
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of nonsevere precipitation; (iii) derive tentative thresholds for every indicator, and propose an ideal
proxy combination to maximize the predictive skill for the severity of the precipitation. The research
discussed here is along the lines of previous works (see e.g., [40–42]), similar in spirit but different in
both the approach and dataset criteria; we do not use storm-tracking methods but fully characterize
the storm features via a static approach by investigating the temporal evolution of relevant IR fields
for separate groups of pixels within the area surrounding the storm evolution. The criteria used to
design the dataset are peculiar, since we have selected cases where both storm development and
subsequent rainfall occurs in the same area (i.e., convective and orographic nature); we do not use
the rainfall intensity data, but base our dataset choice on the simultaneous presence of convective
initiation and a cumulative hourly rainfall exceeding 30 mm for severe cases (or smaller than 10 mm
for nonsevere cases), according to the Italian Radar Network. Importantly, this work does not intend
to provide a nowcasting tool nor algorithm validation. Overall, the added value of this research is to
shed light on the relation between early infrared signatures of the storms and their potential severity
in terms of cumulated rainfall, and to specifically test the predictive skill of convective initiation IR
satellite field indicators for nowcasting future precipitation severity, on a unique dataset consisting of
convective and orographic induced events, thus providing new knowledge that could be incorporated
in nowcasting methods. The paper is organized as follows: in Section 2 we first outline the criteria
used to collect the dataset (Section 2.1) and then describe the approach adopted to investigate the
infrared fields time series (Section 2.2). We then present the results in Section 3, and further discuss the
achievements of this analysis. Section 4 draws conclusions and also indicates paths for future work.

2. Materials and Methods

In this section, we describe the details of the procedure, criteria and data source products used
to collect both convective storms associated with weak and severe precipitation (Section 2.1), and the
methodology to analyze the relevant infrared fields for all datasets (Section 2.2).

2.1. Dataset Collection Criteria

The analysis presented in this work is conducted on a dataset consisting of convective events
leading to severe and nonsevere rainfall. The classification between severe and nonsevere rainfall
is based on two references: while [43] classifies rainfall into slight to moderate (<10 mm/h),
heavy (>10 mm/h), and violent (>50 mm/h), [44] classifies rainfall into slight to moderate <10 mm/h
and cloudburst (>30 mm/h). To keep the two classes well distinct, we adopt the following classification:
nonsevere (<10 mm/h) and severe (>30 mm/h). The collected events happened over the Italian
peninsula, whose complex orography and coastline proximity make these events both likely to occur
and to cause flooding.

Tables 1 and 2 report the detail of the temporal and spatial attributes for 48 severe and 44 weak
precipitation events selected over June–September in the period 2016–2019 [45], when high temperature
and moisture create the ideal conditions for convection triggering.

The location of the selected severe and nonsevere precipitation cases is reported in Figure 1,
which reveals a fairly uniform distribution over the Italian territory [46,47]. The data source used
to collect the sample relies on the National Radar Network products, provided at 1 km spatial
resolution. In particular, we have used the Vertical Maximum Intensity (VMI) and Surface Rain
Total (SRT) variables as the source for our predictand, i.e., the occurrence of convection and rainfall,
respectively [48,49]. VMI greater than 35 dBZ echo intensity is associated to regions with convection
(for both type of events) [2,24]; shortly after the beginning of convection, the SRT hourly accumulated
is used to distinguish between severe (rainfall > 30 mm) and nonsevere (rainfall . 10 mm) cases,
respectively (see reference hour in Tables 1 and 2). This criterion is used here to select cases belonging
to very distinct rainfall categories, in order to enhance possible differences in the early convection
indicators signatures.
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Table 1. Severe precipitation events date (left), peak cumulated rainfall hour (central) and
position (right).

Date Time [UTC] (Lat,Lon) [◦N,◦E]

23 June 2016 12:00–13:00 (40.43,16.23)
26 June 2016 15:00–16:00 (44.73,11.41)
1 July 2016 12:00–13:00 (41.79,14.07)
1 July 2016 16:00–17:00 (44.64,11.49)
5 July 2016 14:00–15:00 (44.64,10.06)

9 August 2016 5:00–6:00 (38.73,16.05)
2 September 2016 14:00–15:00 (44.64,9.5)

1 June 2017 15:00–16:00 (44.96,7.78)
16 June 2017 14:00–15:00 (44.41,9.82)
17 June 2017 12:00–13:00 (41.41,14.23)
21 June 2017 14:00–15:00 (41.04,15.21)
22 June 2017 12:00–13:00 (41.59,14.36)
23 June 2017 14:00–15:00 (40.88,15.72)
24 June 2017 13:00–14:00 (46.04,10.24)
24 June 2017 14:00–15:00 (41.42,15.29)
24 June 2017 15:00–16:00 (40.89,15.83)
25 June 2017 10:00–11:00 (45.01,12.14)
25 June 2017 11:00–12:00 (44.64,11.45)
26 June 2017 13:00–14:00 (44.32,10.77)
2 July 2017 12:00–13:00 (42.74,13.76)

07 July 2017 13:00–14:00 (46.34,12.96)
15 July 2017 13:00–14:00 (41.5,13.83)

2 August 2017 15:00–16:00 (46.48,12.76)
7 August 2017 12:00–13:00 (39.98,16.33)
7 August 2017 15:00–16:00 (39.30,16.54)
8 August 2017 14:00–15:00 (37.73,15.02)
8 August 2017 14:00–15:00 (37.80,14.67)
8 August 2017 14:00–15:00 (39.30,16.54)

28 August 2017 15:00–16:00 (41.66,14.14)
29 August 2017 13:00–14:00 (38.94,16.83)

2 June 2018 11:00–12:00 (40.70,17.11)
22 June 2018 11:00–12:00 (37.80,14.85)
23 June 2018 15:00–16:00 (39.85,9.35)

3 August 2018 11:00–12:00 (36.92,14.84)
3 August 2018 11:00–12:00 (42.05,14.24)
3 August 2018 11:00–12:00 (43.91,7.65)
9 August 2018 11:00–12:00 (41.10,16.23)
9 August 2018 11:00–12:00 (44.68,8.38)
9 August 2018 12:00–13:00 (44.78,12.06)
9 August 2018 13:00–14:00 (37.03,14.82)

19 August 2018 11:00–12:00 (41.69,15.77)
01 June 2019 11:00–12:00 (40.19,18.14)
04 June 2019 12:00–13:00 (43.92,11.98)
08 June 2019 12:00–13:00 (37.46,14.68)
18 June 2019 12:00–13:00 (40.73,16.38)
04 July 2019 11:00–12:00 (41.73,15.89)
04 July 2019 11:00–12:00 (40.68,15.96)

26 August 2019 10:00–11:00 (37.19,14.84)
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Table 2. Nonsevere precipitation events date (left), peak cumulated rainfall hour (central) and
position (right).

Date Time [UTC] (Lat,Lon) [◦N,◦E]

7 June 2016 11:00–12:00 (41.52,15.79)
28 June 2016 5:00–6:00 (42.39,14.27)
1 July 2016 15:00–16:00 (40.09,9.43)
2 July 2016 14:00–15:00 (39.97,9.57)
3 July 2016 11:00–12:00 (37.61,15.01)
4 July 2016 10:00–11:00 (38.09,15.73)
7 July 2016 13:00–14:00 (43.20,11.01)
9 July 2016 17:00–18:00 (40.40,16.45)

11 July 2016 12:00–13:00 (38.09,15.94)
12 July 2016 13:00–14:00 (40.90,16.47)
30 July 2016 16:00–17:00 (41.13,15.29)
31 July 2016 16:00–17:00 (40.19,16.13)

1 August 2016 12:00–13:00 (40.65,16.70)
2 August 2016 13:00–14:00 (41.61,12.93)
4 August 2016 14:00–15:00 (41.86,12.86)
6 August 2016 14:00–15:00 (37.91,13.75)
6 August 2016 15:00–16:00 (37.95,14.08)

10 August 2016 15:00–16:00 (44.32,12.07)
1 June 2017 14:00–15:00 (40.84,9.13)
1 June 2017 16:00–17:00 (40.42,9.35)
3 June 2017 12:00–13:00 (41.37,14.68)
7 June 2017 14:00–15:00 (37.33,14.14)
4 July 2017 17:00–18:00 (45.15,7.13)

13 July 2017 8:00–9:00 (46.19,12.91)
13 July 2017 10:00–11:00 (45.33,11.72)
21 July 2017 15:00–16:00 (40.31,16.11)

04 August 2017 16:00–17:00 (40.80,15.27)
05 August 2017 14:00–15:00 (40.15,15.91)
08 August 2017 14:00–15:00 (40.14,9.54)

16 June 2018 11:00–12:00 (41.30,16.03)
16 June 2018 13:00–14:00 (40.89,16.54)
18 June 2018 13:00–14:00 (40.29,8.83)
19 June 2018 15:00–16:00 (39.94,15.99)
03 July 2018 13:00–14:00 (41.86,15.56)

10 August 2018 12:00–13:00 (38.42,16.34)
10 August 2018 14:00–15:00 (39.45,9.40)

22 September 2018 14:00–15:00 (41.93,14.35)
01 June 2019 11:00–12:00 (42.65,13.26)
10 June 2019 13:00–14:00 (37.57,14.34)
06 July 2019 14:00–15:00 (40.19,16.24)
20 July 2019 14:00–15:00 (43.20,11.13)

01 August 2019 15:00–16:00 (46.67,11.41)
06 August 2019 15:00–16:00 (40.63,9.28)

05 September 2019 13:00–14:00 (41.70,12.78)
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Figure 1. Spatial distribution for the collected severe (circles) and nonsevere (triangles)
precipitation events.

Figure 2 shows representative severe and nonsevere precipitation cases where both VMI and SRT
radar layers are reported (1 × 1 km2 grid resolution); the values for VMI and SRT are consistent
with the above requirements. Figure 2 also reports the SEVIRI grid, which will be used in the
analysis, as explained in Section 2.2. It should be noticed that both convection and rainfall occur
roughly within the same area and the event is quite localized; moreover the time of rainfall peak
(see Tables 1 and 2) is not anticipated by light long-lasting rain. We have also carried out visual
inspection of each case to ensure that selected events are localized, non-advective, and mostly feature
clear surrounding conditions. Such features make these events well-suited for a static analysis approach
(see Section 2.2), without using a sophisticated tracking methodology; in addition, the typical sudden
growth of a cumulus occurs, spreading out in the surrounding area, which is typical of such convective
precipitation events. We should stress that the criteria described above for the design of the severe
and weak precipitation dataset are very peculiar. These events are classified as brief and localized
(according to the classification in [50]) since they are short-lived (i.e., last less than 12 h) and feature
small spatial extent (i.e., less than 50 × 50 km2). While the case studies selected in this work fall into
this classification, they actually feature a much lower spatio-temporal extent than the above limit
(∼3–4 h).

2.2. Static Approach

Let us now describe the method used to study the observables of interest for the collected
dataset. In particular, we have proceeded to the analysis of infrared fields derived by the SEVIRI
rapid scan aboard MSG platforms. This provides radiometric measurements in the Visible (0.6, 0.8µm),
Near Infrared (1.6µm) and Infrared (3.9, 6.2, 7.3, 8.7, 9.7, 10.8, 12.0, 13.4µm) spectral range at 5 min
intervals over Europe and North Africa (covering a latitude range from approximately 15◦ to 70◦N),
with 3 × 3 km2 spatial resolution at nadir (for further details and specifications of the instrument
see [51]. Such a high scan frequency proves to be crucial in this context, since the typical evolution
of convective precipitation events is on the order of tens of minutes. In fact, these events are hard to
forecast with sufficient accuracy solely with NWP methods, and need real-time observational support.
The infrared fields considered here are largely discussed in the scientific literature, and have been
demonstrated to be robust indicators for nowcasting early convection stages.
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(a)

(b)

Figure 2. Severe (a) and nonsevere (b) storm examples on 4 July 2019 and 11 July 2016, with Surface
Rain Total (SRT, red) values >30 mm and .10 mm, respectively. Virtual Maximum Intensity (VMI,
yellow) values higher than 35 dBZ echo intensity indicate convection occurs in both cases (Source: [45]).
The SEVIRI 5 × 5 gridded box (white diamonds) is also reported. Severe case (a) is located in Basilicata
near Potenza, whereas the nonsevere case (b) is in Calabria, near Reggio Calabria.
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Table 3 reports the indicators considered in this work: these are divided into three groups,
according to the classification in [27] based on the storm physical properties described, namely growth,
glaciation and updraft strength. In fact, each proxy is either a channel difference or its corresponding
temporal gradient, whose physical interpretation is based on the weighting functions associated with
the MSG channels. Brightness temperatures relative to each channel tend to decrease when growing
cumuli approach high levels in the troposphere, and accordingly, differences among channels tend to
zero (saturation). For example, proxy P1 in Table 3 (6.2–10.8µm) is expected to progressively become
higher and closer to zero as cumuli grow up to the tropopause. It is then implied that the updraft
strength of the growing cumuli can be extracted from the rate of change of the 10.8µm brightness
temperature as well as other channel differences (e.g., [52,53]).

Table 3. Infrared Field Indicators (classification is based on the storm physical properties [27]).

Class Proxy (P1, P2, ..., P18)

Cloud Depth
P1 6.2–10.8µm
P2 6.2–7.3µm
P3 7.3–13.4µm
P4 6.2–9.7µm
P5 8.7–12µm

Glaciation
P6 8.7–10.8µm
P7 5-min trend: 8.7–10.8µm
P8 (8.7–10.8)–(10.8–12)µm
P9 5-min trend: (8.7–10.8)–(10.8–12)µm
P10 12–10.8µm
P11 5-min trend: 12–10.8µm

Updraft Strength
P12 5-min trend: 6.2–7.3µm
P13 15-min trend: 10.8µm
P14 10-min trend: 10.8µm
P15 5-min trend: 10.8µm
P16 5-min trend: 6.2–10.8µm
P17 5-min trend: 6.2–12µm
P18 5-min trend: 9.7–13.4µm

In order to study the infrared properties of each convective precipitation event and its surrounding
area, we have selected a 5 × 5 SEVIRI pixel-box, centered on the radar pixel identified as the center
of the event, i.e., where the reference peak of cumulated hourly rainfall occurs. This size of the box
has been chosen to account for different storm spatial extensions (up to the largest one) and to study
the evolution stages roughly until maximum expansion. Other works use different box sizes [40],
ranging from 3 × 3 to 51 × 51 pixels, depending on the scale of interest. We have found this size is
the optimal trade-off fitting the purpose of the study, i.e., to investigate the immediate area near the
central pixel close to the maximum peak rainfall. Potential sources of error due to parallax effect could
account for a pixel shift in the North–South direction. All information about the early stage of storms is
fully contained inside the box, as the pixels surrounding the box do not show brightness temperature
values typical of storm presence. The selected case studies consist of non-advective storms, where both
convection and rainfall occur roughly within the same area, hence a static approach is appropriate
for the purpose of the analysis. Given the 5 × 5 gridded box, we then investigate the time series of
relevant infrared fields for each pixel within the box. The grid box size is large enough to contain
information both in the area of the storm core as well as in the neighbour pixels where the effects
of the storm are only minor. To take this into account we have therefore carried out the analysis
separately for different clusters of pixels, namely: (1) all pixels in the box, (2) only those near the
maximum rainfall peak region, (3) pixels with TB < 240 K (widely used threshold to detect convective
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systems, e.g., [54]) and finally (4) the ones exhibiting the lowest brightness temperature at 10.8µm
within the reference hour (see Tables 1 and 2). This will help us differentiate the dynamical behaviour
near the core of the storm from the outer regions of the box. Furthermore, a common time frame
(similarly to [41]) is used in the study, in order to ensure synchronization among the dynamics over all
SEVIRI pixels from all cases (both severe and nonsevere). This is achieved by investigating the trend of
each indicator for every pixel as a function of a common relative time coordinate (trel = t− tmin,10.8µm),
where tmin,10.8µm refers to the time when the brightness temperature at 10.8µm reaches its lowest
value over that pixel. Such a method allows for a meaningful comparison between the dynamics over
different pixels, whereby trend indicators are compared at equivalent times up to 2.5 h before and after
trel = 0. We therefore decided to compute the time series of the indicators by averaging their observed
values separately over severe and nonsevere precipitation cases (and for different clusters of pixels
within the box) through standard mean:

Pi,j =

[(
∑

events
∑
pix

Pi(tj)

)/(
Npix Nevents

)]
, (1)

where i refers to the proxy number (see Table 3) and j indicates the time tj when the mean value
is computed. Besides, the index events runs over the number Nevents of severe or nonsevere cases,
whereas pix indicates the considered type of pixels of size Npix. It may also be useful to compare
temporal averages of the above quantity (e.g., on 30 min intervals), so to smooth time differences
between the events:

Pi =

(
∑

j
Pi,j

)/(
tn

)
, (2)

where j runs over the single time interval tn, taken as 30 min in our analysis, hence including seven
samples of 5 min SEVIRI Rapid Scans. Standard deviation is also computed:

σi(tn) =

√
∑ j
(
Pi,j − Pi

)2

tn − 1
. (3)

The following section analyzes the trend of each indicator using the statistics introduced
above [55].

3. Results and Discussion

This section presents the temporal variation of the indicators reported in Table 3 around the time
of the precipitation occurrence. Then we attempt to single out the main proxies carrying information
on the subsequent convective precipitation severity level, and derive tentative thresholds to distinguish
between the two classes of events. As mentioned above, the indicators investigated here (see Table 3)
are generally used as convective initiation stand-alone predictors with a typical lead time of the
order of tens of minutes. In this context, we investigate whether this still holds up for the selected
dataset (which features a convective initial stage in all samples), and further explore the potential
of these indicators to predict the severity level of the storms. For proxies related to the severity of
the precipitation, we expect to take on distinctive pattern trends or different values depending on
the severity level discussed above (i.e., accumulated hourly rainfall >30 mm or .10 mm). Indeed,
we find that some of the proxies in Table 3 do carry information about the future evolution of the
precipitation, and are potentially able to distinguish between convective events leading to severe and
nonsevere rainfall. For the sake of conciseness, we report here only the infrared fields identified as
the best candidates by means of criteria we explain below. Figure 3 shows the temporal variation
(i.e., time series) of indicators P1, P2, P4, P6, P8 (from Table 3) up to 2.5 h around the time origin trel = 0.
This is the relative time when—for each pixel of the box—the 10.8µm brightness temperature reaches
its lowest value within the reference hour of the event. Both severe and nonsevere precipitation cases
are shown.
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The variation is shown in terms of both the instantaneous values (based on Equation (1),
i.e., mean over events only) and the average over 30 min time intervals (based on Equation (2)) prior to
the event.

As mentioned above, the SEVIRI box was chosen to contain the storm region as well as pixels
away from it. To account for this, we have performed a separate analysis for distinct clusters of pixels
within the box, which allows us to highlight crucial information on the average features of the storm
core as opposed to less perturbed nearby regions in the box. This is particularly interesting if we
compare the analysis including all pixels (black line) to the one where only ‘cold’ pixels are considered
(green line), i.e., those where TB at 10.8µm reach values smaller than 240 K within the reference peak
hour. This comparison reveals smaller differences for severe precipitation cases (solid line) compared
to nonsevere ones (dashed line), suggesting on average a relatively limited spatial extent of nonsevere
events—in terms of pixels where cumuli reach freezing levels in the troposphere—as opposed to severe
events, where most pixels are actually ‘cold’ ones. This is also supported by a low percentage found
on average of ‘cold’ pixels for nonsevere cases, namely 23% against 69% for severe ones. Furthermore,
we notice a clear trend of the proxies for both severe and nonsevere precipitation cases, whose values
approach zero on average at the time origin; however, mean channel differences for severe cases
become higher and closer to zero at the time origin, implying that cumuli on average grow further up
in the atmosphere. A sharp peak is present around the time origin for all groups of pixels and both
types of events; the trend pattern inverts afterwards demonstrating that precipitation events have
actually passed the mature phase and started fading. This peak is a clear sign that dynamics are well
separated before and after this point, supporting the choice of a synchronized time reference.

Since we are interested in the early stage prior to the peak time, 30 min temporal averages
are shown in Figure 3 only up to 2.5 h before the peak. The intent here is to investigate how long
before the peak time, a net average difference persists between proxy values for severe and weak
precipitation cases. We find that this is relatively higher for proxies P1, P2, P4 (on the order of few
degrees) compared to the others (∼1 K); besides, for all indicators, the separation between mean
values of severe and nonsevere precipitation cases decreases for trel < −1 h. We can, therefore, argue
that only within the hour before the peak time there is potential for the distinction between the two
classes. This is somewhat expected, since convective precipitation events arise and evolve on short
time scales, and convective initiation fields are valid predictors only a few tens of minutes before
the event occurrence. Nonetheless it is useful to check the analysis up to 2.5 h before, as to provide a
reference showing for both classes of events that proxy values are roughly similar on average in clear
conditions, but then evolve differently near the peak time. Importantly, the method to choose the best
candidate predictors (out of the ones reported in Table 3) is related to the standard deviations extracted
with Equation (3) (see vertical bars in Figure 3). The indicators selected as potential predictors are
the ones where temporal averages for severe and nonsevere precipitation cases do not overlap up to
one standard deviation from the mean, at least in the interval trel = [−1, 0] h, relative to the analysis
on the central pixels and the ones where TB at 10.8µm is lowest within each box. This criterion has
been taken for these infrared fields to actually being able to distinguish in a systematic and stable way
the two classes of events. Hence, this criterion has led us to narrow the initial number of indicators
considered in Table 3 to the six shown in Figure 3 as potentially carrying information on the severity of
the precipitation, and hence being valuable predictor candidates. All other proxies have been excluded
from the subsequent analysis since they do not fulfil this requirement, and have been deemed to
be inadequate to provide early information about the rainfall severity. In fact, we have not found
substantial and temporally stable differences for all updraft strength indicators; this seems to suggest
that events not leading to strong precipitation appear to have similar strength in the updraft compared
to severe ones, at least in terms of these indicators and according to the requirements discussed above.
While it is not the scope of this study, we note that values for all proxies from Table 3 are well within
the range of acceptable values found in the literature for predicting convective initiation, supporting
these indicators as valid stand-alone predictors for early convective stages.
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(g) (h)

(i) (j)

Figure 3. Time series of indicators P1 (a,b), P2 (c,d), P4 (e,f), P6 (g,h) and P8 (i,j) from Table 3 for
convective events leading to severe (solid line) and nonsevere (dashed line) precipitation. The mean
over cases (left column, Equation (1)) and the time average over 30 min intervals (right column,
Equation (2)) up to 2.5 h before trel = 0, are computed for separate clusters of pixels within the box,
namely all (black), central (blue), lowest brightness temperature at 10.8µm within the reference hour
(red) and TB < 240 K (green) pixels. Vertical bars are standard deviation based on Equation (3). Time
average for TB < 240 K pixels and standard deviations for all pixels analysis are not necessary in our
study, hence these are not shown in the graph.

However, our focus in this work is not on the occurrence of convection, but rather on the
predictive potential to distinguish between severe and nonsevere precipitation events. For this reason,
we focussed on the selected indicators in Figure 3, and explored further their predictive skill via a
simple diagnostic procedure (i.e., no separation between training and test datasets). We are therefore
interested in the early stage prior to the peak time, to find early signatures of incoming precipitation
events and to maximize the lead warning time to nowcast the event. Hereafter we exclusively deal
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with the pixel in each box reaching the lowest brightness temperature at 10.8µm, representing the
highest cloud top which is a good indicator for the precipitation intensity. Notice that in some cases
(most nonsevere precipitation events) the lowest brightness temperature achieved within the box in
the reference peak hour may be higher than 240 K. We have looked into a probability detection scheme,
based on simultaneous and interdependent fulfilment of a set of critical threshold conditions on these
indicators. It is anticipated that only three indicators were chosen for this scheme, as adding more
proxies would make the statistics less accurate. Instead of looking for the best threshold on each
proxy separately, we have evaluated the skill of an hypothetical interdependent three-proxy based
predictive scheme. This was achieved by searching for the best proxy-thresholds combination that
would maximize the difference between the accuracy (ACC) and the probability of false detection
(POFD), as this option tends to favour a relative reduction of false alarms, while keeping a reasonable
accuracy. We recall the standard expressions for these statistical measures, together with the probability
of detection (POD) and BIAS:

ACC =
Hits + Correct Negatives

Total Number of Cases

POD =
Hits

Hits + Misses

POFD =
False Alarms

Correct Negatives + False Alarms

BIAS =
Hits + False Alarms

Hits + Misses

In this work, Hits (Correct Negatives) refers to the number of severe (nonsevere) precipitation
cases whose proxy values are simultaneously greater (smaller) than the critical thresholds found on
each proxy. Conversely, Misses (False Alarms) denote the difference between the total number of
severe (nonsevere) precipitation cases and Hits (Correct Negatives), i.e., the remaining cases that have
not fulfilled the above requirement. When searching for the most performant three-proxy combination,
we have therefore adopted a strict requirement based on the simultaneous fulfilment of each proxy
condition (i.e., giving the same importance level to each predictor). Out of all possible combinations
with the above six indicators (only including three of these at a time), the most performant solution
yielding the higher difference between ACC and POFD was found to be based on indicators P1, P2, P8.
Therefore Hits refer to the number of severe precipitation cases fulfiling the following simultaneous
conditions on each proxy, i.e., [P1 > Th1]

⋂
[P2 > Th2]

⋂
[P8 > Th8]; conversely, Correct Negatives

refer to the number of nonsevere precipitation cases satisfying the above with < replacing >. Here,
the symbol Th stands for the computed critical thresholds maximizing the difference ACC-POFD.
Outcomes for this diagnostic statistical evaluation are reported in Table 4.

Table 4. Threshold values for indicators P1 (Th1), P2 (Th2) and P8 (Th8), together with statistical
performances for a three-proxy based predicting scheme, based on accuracy (ACC), probability of
detection (POD), probability of false detection (POFD) and BIAS, relative to three 30 min time intervals
prior to trel = 0.

Time Range Prior to Storms Th1 [K] Th2 [K] Th8 [K] ACC. POFD POD BIAS

trel = −[0.5 , 0] h −9.48 −3.54 −0.68 0.60 0.26 0.48 0.72
trel = −[1 , 0.5] h −27.16 −12.12 −1.72 0.63 0.16 0.43 0.57
trel = −[1.5 , 1] h −40.46 −15.25 −3.41 0.48 0.32 0.29 0.58

The difference between ACC and POFD is—as expected—higher near the maximum time
peak (i.e., within the previous two 30 min time intervals trel = −[0.5 , 0] h and trel = −[1 , 0.5] h)
while at earlier times (trel = −[1.5 , 1] h) it drops significantly, as convection is not yet present and
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discrimination between severe and nonsevere precipitation is pointless at this stage. Time ranges before
trel = −1.5 h have not been included, since proxies distributions of severe and nonsevere precipitation
cases overlap within less than a standard deviation (see Figure 3). Table 4 also reports the critical
threshold value combination (maximizing the pre-definined statistical criterion) for each of these
indicators and for every time interval prior to the peak time. One first observation is that critical
thresholds for proxies P1, P2, P8 are much closer to the mean proxies values of severe precipitation cases
(the reader should compare these values to Figure 3, right column). This is somewhat expected since
maximizing ACC-POFD tends to reduce false alarms, at the cost of a lower accuracy in identifying
potentially severe precipitation events. Absolute values for the reported statistical performances
prove that a clear distinction exists between the early stage (trel = −[1.5 , 1] h) prior to maximum time
peak—when ACC drops under 0.5 and POFD is higher than 0.3—and the time range (trel = −[1 , 0] h),
when ACC actually takes a stable value over 0.6 and POFD goes down to 0.26 and 0.16. Comparison to
other works addressing the focus of this study (e.g., [40]) is not straightforward because of different
research designs, dataset features, relative times the statistics is performed and different predictors.
This is further limited by the severe/nonsevere classification in this work; moreover, homogeneous
standards are lacking in this kind of research and not many works are showing the effects of temporal
synchronization. Nonetheless, we have evaluated the comparison against the statistical performance
from the related work in [40]; based on our analysis, we find on average a slight improvement in
terms of POFD (0.25 against 0.38), at the expense of a lower capability to identify severe precipitation
events (POD: 0.44 against 0.69), with about the same accuracy (ACC ∼ 0.62). One then could argue
whether the given performances make this method sufficiently reliable as a stand-alone predictive
scheme to distinguish severe from nonsevere precipitation events. Indeed, we believe this method
could be valuable when used in combination with other nowcasting methods to mutually improve
robustness and reduce false alarm ratio. Finally, potential sources of errors in this work may be related
to satellite-radar grids colocation and satellite parallax due to MSG view azimuth angles. Despite these
errors, because of the relatively large sample, the wide box and standard deviation calculations,
we believe this uncertainty is fully accounted for, and the bulk storm representative properties relevant
for this work have been captured.

4. Conclusions

In this work, we perform a study on convective initiation infrared field indicators, in order to
evaluate their skill to discriminate convective events evolving in severe precipitation from those causing
weak rainfall only. The analyzed proxies consist of linear combinations of passive remote sensing
infrared observations (channel differences and time trends) with SEVIRI Rapid Scan aboard MSG
geostationary satellites. We collected a dataset of 48 convective severe and 44 convective nonsevere
precipitation events over the Italian peninsula in the period June–September between 2016 and 2019.
Using National Radar Network data products as a source of predictand, convective severe (non
severe) storms are defined in this study as convective events with Virtual Maximum Intensity greater
than 35 dBZ echo intensity, and an hourly cumulated Surface Rainfall Total value >30 mm (.10 mm).
Moreover, events are short-lived and feature a small spatial extent. We use a static approach, whereby
a SEVIRI 5 × 5 gridded box is centered near the storm peak cumulated rainfall. We investigate the
temporal dependence of these indicators up to 2.5 h around the event peak time (identified as the time
when TB[10.8µm] reaches its minimum), separately for different clusters of pixels within the boxes,
as to isolate the core area of the storm from less affected regions. We also ensure synchronization among
events by introducing a common time frame. As time approaches the event occurrence, we observe a
pronounced peak whereby mean proxy values tend to zero, and invert their trend afterwards. We find
that out of the initial eighteen indicators, six of them (describing growth and glaciation properties)
show unique signatures when events evolve toward severe precipitation. For severe events, these mean
proxy values are much closer to zero compared to nonsevere ones. In particular, these indicators
feature a larger difference between temporal averages—over 30 min intervals—of severe and nonsevere
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precipitation events, such that no overlap occurs up to one standard deviation prior to maximum peak.
We have selected only those proxies where this difference is systematic at least for two hours before
peak time. These are, therefore, deemed to carry crucial information to help discriminate severe from
nonsevere precipitation events based on the relative difference between their corresponding mean
proxy values. According to the above requirements, updraft strength indicators do not hold significant
discrimination signatures instead. Moreover, nonsevere precipitation events are more likely to feature
a smaller spatial extent (in terms of cumuli reaching freezing levels in the troposphere) compared to
their severe counterpart, as only 23% of pixels are identified as cold (i.e., TB < 240 K) compared to 69%
for severe cases.

As a follow-on goal of this study, we have evaluated the potential skill of these indicators as
predictors for precipitation level severity. Based on a preliminary diagnostic procedure we have
found the best three-proxy-based combination by maximizing the difference between accuracy and
probability of false detection, so as to reduce false alarms while keeping relatively high accuracy.
Statistical scores show that values for accuracy are relatively high (greater than 0.6) within the hour
before peak time, with POFD less than 0.26. In particular, such a POFD is an improvement over
previous results though at the expenses of decreased probability of detection. Therefore, we can
conclude that some infrared observations do hold significant information to discriminate between
severe and nonsevere precipitation events, however with relatively good predictive skill. While we
consider these scores not good enough to make this a stand-alone algorithm to distinguish between
convective events leading to severe and nonsevere precipitation, we believe it could be a valuable tool
to integrate and support other nowcasting methods. To achieve this, in future work we plan to include
microwave observations—when available for the selected events—which would potentially increase
the confidence level of the prediction. Moreover, we will also further explore alternative ways to
define temporal synchronization and time reference, which would support the consideration of these
results into an operational forecasting framework. In fact, storm management in the Italian territory
could also benefit from this, as the findings of this work may contribute to the improvement of the
exact temporal and spatial collocation of the precipitation events (restricting the potential time/area
of occurrence), and secondly they could help to limit the false alarms, which are also a typical issue
for storm prediction. Given the design of the project, the features used to select the dataset and the
approach used in the analysis, this work contributed to shedding light in the correlation between
infrared observations prior to convection and precipitation severity level, thus extending previous
works in this field.
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17. Bližňák, V.; Sokol, Z.; Zacharov, P. Nowcasting of deep convective clouds and heavy precipitation:
Comparison study between NWP model simulation and extrapolation. Atmos. Res. 2017, 184, 24–34.
[CrossRef]

18. Steinheimer, M.; Haiden, T. Improved nowcasting of precipitation based on convective analysis fields.
Adv. Geosci. 2007, 10, 125–131. [CrossRef]

19. Ricciardelli, E.; Di Paola, F.; Gentile, S.; Cersosimo, A.; Cimini, D.; Gallucci, D.; Geraldi, E.; Larosa, S.;
Nilo, S.T.; Ripepi, E.; et al. Analysis of Livorno Heavy Rainfall Event: Examples of Satellite-Based
Observation Techniques in Support of Numerical Weather Prediction. Remote Sens. 2018, 10, 1549. [CrossRef]

20. Di Paola, F.; Ricciardelli, E.; Cimini, D.; Romano, F.; Viggiano, M.; Cuomo, V. Analysis of Catania Flash Flood
Case Study by Using Combined Microwave and Infrared Technique. J. Hydrometeorol. 2014, 15, 1989–1998.
[CrossRef]

21. Dixon, M.; Li, Z.; Lean, H.; Roberts, N.; Balland, S. Impact of data assimilation on forecasting convection
over the United Kingdom using a high-resolution version of the met office unified model. Mon. Weather Rev.
2009, 137, 1562–1584. [CrossRef]

22. Da Silva Neto, C.P.; Barbosa, H.A.; Beneti, C.A.A. A method for convective storm detection using satellite
data. Atmósfera 2016, 29, 343–358. [CrossRef]

23. Marco, M.; Victor, V.; Dirk, S.; Clemens, S. Assimilation of radar and satellite data in mesoscale models:
A physical initialization scheme. Meteorol. Z. 2008, 17, 887–902. [CrossRef]

http://dx.doi.org/10.1175/2009JAMC2286.1
http://dx.doi.org/10.1175/JTECH-D-12-00114.1
http://dx.doi.org/10.1175/WAF-D-13-00113.1
http://dx.doi.org/10.1175/WAF-D-14-00062.1
http://dx.doi.org/10.1175/BAMS-D-14-00054.1
http://dx.doi.org/10.1175/WAF-D-15-0135.1
http://dx.doi.org/10.1175/MWR-D-14-00399.1
http://dx.doi.org/10.1175/1520-0426(1993)010<0785:TTITAA>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1995)034<1286:NOMAGO>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2002)130<2859:SDOTPO>2.0.CO;2
http://dx.doi.org/10.1016/j.jhydrol.2003.11.011
http://dx.doi.org/10.1175/2011JTECHA1496.1
http://dx.doi.org/10.1175/WAF-D-11-00050.1
http://dx.doi.org/10.1002/qj.3364
http://dx.doi.org/10.1016/j.atmosres.2016.10.003
http://dx.doi.org/10.5194/adgeo-10-125-2007
http://dx.doi.org/10.3390/rs10101549
http://dx.doi.org/10.1175/JHM-D-13-092.1
http://dx.doi.org/10.1175/2008MWR2561.1
http://dx.doi.org/10.20937/ATM.2016.29.04.05
http://dx.doi.org/10.1127/0941-2948/2008/0340


Remote Sens. 2020, 12, 2562 17 of 18

24. Roberts, R.D.; Rutledge, S. Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data.
Weather Forecast. 2003, 18, 562–584. [CrossRef]

25. Zinner, T.; Mannstein, H.; Tafferner, A. Cb-TRAM: Tracking and monitoring severe convection from onset
over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteorol. Atmos. Phys.
2008, 101, 191–210. [CrossRef]

26. Mecikalski, J.R.; Bedka, K.M.; Paech, S.J.; Litten, L.A. A Statistical Evaluation of GOES Cloud-Top Properties
for Nowcasting Convective Initiation. Mon. Weather Rev. 2008, 136, 4899–4914. [CrossRef]

27. Mecikalski, J.R.; MacKenzie, W.M.; Koenig, M.; Muller, S. Cloud-Top Properties of Growing Cumulus
prior to Convective Initiation as Measured by Meteosat Second Generation. Part I: Infrared Fields. J. Appl.
Meteorol. Climatol. 2010, 49, 521–534. [CrossRef]

28. Mecikalski, J.R.; MacKenzie, W.M., Jr.; König, M.; Muller, S. Cloud-Top Properties of Growing Cumulus
prior to Convective Initiation as Measured by Meteosat Second Generation. Part II: Use of Visible Reflectance.
J. Appl. Meteorol. Climatol. 2010, 49, 2544–2558. [CrossRef]

29. Sieglaff, J.M.; Cronce, L.M.; Feltz, W.F.; Bedka, K.M.; Pavolonis, M.J.; Heidinger, A.K. Nowcasting Convective
Storm Initiation Using Satellite-Based Box-Averaged Cloud-Top Cooling and Cloud-Type Trends. J. Appl.
Meteorol. Climatol. 2011, 50, 110–126. [CrossRef]

30. Siewert, C.W.; Koenig, M.; Mecikalski, J.R. Application of Meteosat second generation data towards
improving the nowcasting of convective initiation. Meteorol. Appl. 2010, 17, 442–451. [CrossRef]

31. Merk, D.; Zinner, T. Detection of convective initiation using Meteosat SEVIRI: Implementation in and
verification with the tracking and nowcasting algorithm Cb-TRAM. Atmos. Meas. Tech. 2013, 6, 1903–1918.
[CrossRef]

32. Mecikalski, J.R.; Williams, J.K.; Jewett, C.P.; Ahijevych, D.; LeRoy, A.; Walker, J.R. Probabilistic 0–1-h
Convective Initiation Nowcasts that Combine Geostationary Satellite Observations and Numerical Weather
Prediction Model Data. J. Appl. Meteorol. Climatol. 2015, 54, 1039–1059. [CrossRef]

33. Koenig, M.; de Coning, E. The MSG Global Instability Indices Product and Its Use as a Nowcasting Tool.
Weather Forecast. 2009, 24, 272–285. [CrossRef]

34. Atencia, A.; Rigo, T.; Sairouni, A.; Moré, J.; Bech, J.; Vilaclara, E.; Cunillera, J.; Llasat, M.C.; Garrote, L.
Improving QPF by blending techniques at the Meteorological Service of Catalonia. Nat. Hazards Earth
Syst. Sci. 2010, 10, 1443–1455. [CrossRef]

35. De Coning, E.; Koenig, M.; Olivier, J. The combined instability index: A new very-short range convection
forecasting technique for southern Africa. Meteorol. Appl. 2011, 18, 421–439. [CrossRef]

36. Cintineo, J.L.; Pavolonis, M.J.; Sieglaff, J.M.; Lindsey, D.T.; Cronce, L.; Gerth, J.; Rodenkirch, B.; Brunner, J.;
Gravelle, C. The NOAA/CIMSS ProbSevere Model: Incorporation of Total Lightning and Validation.
Weather Forecast. 2018, 33, 331–345. [CrossRef]

37. Nerini, D.; Foresti, L.; Leuenberger, D.; Robert, S.; Germann, U. A Reduced-Space Ensemble Kalman
Filter Approach for Flow-Dependent Integration of Radar Extrapolation Nowcasts and NWP Precipitation
Ensembles. Mon. Weather Rev. 2019, 147, 987–1006. Available online: https://journals.ametsoc.org/mwr/
article-pdf/147/3/987/4849993/mwr-d-18-0258_1.pdf (accessed on 8 August 2020). [CrossRef]

38. Cintineo, J.L.; Pavolonis, M.J.; Sieglaff, J.M.; Heidinger, A.K. Evolution of Severe and Nonsevere Convection
Inferred from GOES-Derived Cloud Properties. J. Appl. Meteorol. Climatol. 2013, 52, 2009–2023. [CrossRef]

39. Sandmæl, T.N.; Homeyer, C.R.; Bedka, K.M.; Apke, J.M.; Mecikalski, J.R.; Khlopenkov, K. Evaluating the
Ability of Remote Sensing Observations to Identify Significantly Severe and Potentially Tornadic Storms.
J. Appl. Meteorol. Climatol. 2019, 58, 2569–2590. [CrossRef]

40. Mecikalski, J.R.; Rosenfeld, D.; Manzato, A. Evaluation of geostationary satellite observations and the
development of a 1–2 h prediction model for future storm intensity. J. Geophys. Res. Atmos. 2016, 121,
6374–6392. [CrossRef]

41. Senf, F.; Deneke, H. Satellite-Based Characterization of Convective Growth and Glaciation and Its
Relationship to Precipitation Formation over Central Europe. J. Appl. Meteorol. Climatol. 2017, 56, 1827–1845.
[CrossRef]

42. Patou, M.; Vidot, J.; Riédi, J.; Penide, G.; Garrett, T.J. Prediction of the Onset of Heavy Rain Using SEVIRI
Cloud Observations. J. Appl. Meteorol. Climatol. 2018, 57, 2343–2361. [CrossRef]

http://dx.doi.org/10.1175/1520-0434(2003)018<0562:NSIAGU>2.0.CO;2
http://dx.doi.org/10.1007/s00703-008-0290-y
http://dx.doi.org/10.1175/2008MWR2352.1
http://dx.doi.org/10.1175/2009JAMC2344.1
http://dx.doi.org/10.1175/2010JAMC2480.1
http://dx.doi.org/10.1175/2010JAMC2496.1
http://dx.doi.org/10.1002/met.176
http://dx.doi.org/10.5194/amt-6-1903-2013
http://dx.doi.org/10.1175/JAMC-D-14-0129.1
http://dx.doi.org/10.1175/2008WAF2222141.1
http://dx.doi.org/10.5194/nhess-10-1443-2010
http://dx.doi.org/10.1002/met.234
http://dx.doi.org/10.1175/WAF-D-17-0099.1
https://journals.ametsoc.org/mwr/article-pdf/147/3/987/4849993/mwr-d-18-0258_1.pdf
https://journals.ametsoc.org/mwr/article-pdf/147/3/987/4849993/mwr-d-18-0258_1.pdf
http://dx.doi.org/10.1175/MWR-D-18-0258.1
http://dx.doi.org/10.1175/JAMC-D-12-0330.1
http://dx.doi.org/10.1175/JAMC-D-18-0241.1
http://dx.doi.org/10.1002/2016JD024768
http://dx.doi.org/10.1175/JAMC-D-16-0293.1
http://dx.doi.org/10.1175/JAMC-D-17-0352.1


Remote Sens. 2020, 12, 2562 18 of 18

43. Met Office. Fact Sheet No.3: Water in the Atmosphere; Met Office/National Meteorological Library and Archive:
Exeter, UK, 2007. Available online: https://web.archive.org/web/20120114162401/http://www.metoffice.
gov.uk/media/pdf/4/1/No._03_-_Water_in_the_Atmosphere.pdf (accessed on 8 August 2020).

44. Corazzon, P.; Giuliacci, E. La Meteorologia Per Tutti; Alpha Test: Milano, Italy, 2008.
45. Hanachi, C.; Bénaben, F.; Charoy, F. (Eds.) The Dewetra Platform: A Multi-perspective Architecture for Risk

Management during Emergencies. In Information Systems for Crisis Response and Management in Mediterranean
Countries; Springer International Publishing: Cham, Switzerland, 2014; pp. 165–177.

46. Pucillo, A.; Miglietta, M.M.; Lombardo, K.; Manzato, A. Application of a simple analytical model to severe
winds produced by a bow echo like storm in northeast Italy. Meteorol. Appl. 2020, 27, e1868. [CrossRef]

47. Giaiotti, D.B.; Giovannoni, M.; Pucillo, A.; Stel, F. The climatology of tornadoes and waterspouts in Italy.
Atmos. Res. 2007, 83, 534 – 541. [CrossRef]

48. Vulpiani, G.; Pagliara, P.; Negri, M.; Rossi, L.; Gioia, A.; Giordano, P.; Alberoni, P.P.; Cremonini, R.;
Ferraris, L.; Marzano, F.S. The Italian radar network within the national early-warning sys-tem for multi-risks
management. In Proceedings of the Fifth European Con-ference on Radar in Meteorology and Hydrology
(ERAD 2008), Helsinki, Finland, 30 June–4 July 2008; Finnish Meteorological Institute: Helsinki, Finland,
2008; Volume 184.
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