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Abstract: We proposed a cloud discrimination method applicable in Japan using MODIS nighttime
data, monitored the singularity of the spatiotemporal correlation of surface temperature anomalies
and investigated the possibility of detecting and monitoring lava activity in Shinmoedake. With the
aim to detect lava eruption activity in 2011, nine years of data from 2003 to 2011 were analyzed. As a
result, the first anomalous singularity in brightness temperature was detected on 26 January 2011.
Moreover, the maximum value was detected on 30 January 2011. The values showed larger ones
until early February 2011. When an anomalous singularity appeared, it was the only period with the
magma-related volcanic activity for Shinmoedake over the analyzed period of nine years. The above
facts indicate the effectiveness of the proposed singularity method to monitor the lava activity for
Shinmoedake. Therefore, it is concluded that if cloud discrimination is realized with high accuracy,
no spurious changes will come to arise, and no false detection of hotspots will be given.

Keywords: Shinmoedake; MODIS; singularity; cloud discrimination; brightness temperature;
brightness temperature difference; volcanic lava activity; volcanic thermal anomaly

1. Introduction

There are many active volcanoes in the world and many volcano-related disasters have been
reported. In order to reduce these natural disasters, monitoring of volcanic activity is essential.
However, it is very difficult to monitor all volcanoes on the ground because of topological, geographical
and economic difficulties. However, we can efficiently monitor global volcanic activities using satellite
remote sensing techniques because a volcanic activity will cause an increase in surface temperature
and satellite (whose sensor can observe the surface temperature) remote sensing can cover a large area
on the surface at high frequency with continuity.

Therefore, various approaches (e.g., [1–17]) have been suggested to monitor volcanic activities
using remote-sensing data collected in the Medium InfraRed (MIR) and Thermal InfraRed (TIR) spectral
range, also by the new sensors, such as Advanced Himawari Imager (AHI) onboard HIMAWARI-8
satellite (e.g., [11]). For example, MODVOLC [2] and MIROVA [12] exploit data acquired by MODerate
resolution Imaging Spectroradiometer (MODIS) to monitor active volcanoes at the global scale in
an operative way, releasing products few hours after the MODIS acquisition. RSTVOLC (Robust
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Satellite Technique to identify volcanic thermal anomalies) [13] by analyzing time series of satellite
imagery collected by polar sensors like Advanced Very High Resolution Radiometer (AVHRR) and
MODIS, as well as the geostationary sensor Spinning Enhanced Visible and InfraRed Imager (SEVIRI),
has provided useful information on ongoing thermal activities of many active volcanoes around the
world. HOTSAT [15], HOTVOLC [16] and AVHotRR [17], which also exploit the data collected by the
MODIS sensor, are other approaches/systems currently used for the volcanoes activity investigations.

On the other hand, medium-high spatial resolution satellite sensors, such as Thematic Mapper
(TM), Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), Operational Land
Imager (OLI) and Multi-Spectral Instrument (MSI), which provide imagery also in the ShortWave
InfraRed (SWIR) spectral range, have been demonstrated good ability to map lava flows (see for
example [18–20]). To understand eruptive precursors and eruptive dynamics of volcanoes, the integration
of multiparametric datasets of satellite and ground data can help better monitor volcanic hazards.

Regarding volcanic activity, considerable damage to human life is often associated with pyroclastic
flows. Therefore, it is crucial to detect the possibility of pyroclastic flow in advance and contribute
to disaster prevention and mitigation by identifying reliable heat sources of the lava dome and lava
flow. Therefore, the satellite remote sensing is the key to accurately detect temperature anomalies
(temperature increase) or hotspots associated with volcanic activity and lava eruption. Obstacles to
this realization are the spatial and temporal resolution of the satellite’s orbit, the cloud coverage over
the targets and contamination by sunlight effects. Nighttime data are often used to detect temperature
anomalies to avoid sunlight influences accurately, but nighttime cloud discrimination is generally
difficult. Various attempts have been performed for cloud discrimination [9–16,18–24]. However,
most of them are available to daytime data for which visible images can be used for verification,
and nighttime data are not universally reported.

It is reported that volcanic eruption activity in Indonesia can be detected using the infrared sensor
(MODIS) onboard satellite Aqua [9]. In their approach, cloud discrimination is an essential factor in
monitoring the lava condition accurately. For example, in Indonesia in the tropics, the convection is
rather simple, and the generated clouds are uniform (cumulonimbus). As a result, there is no seasonal
change, such as the rainy season or the dry season, and it is simple. Using MODIS band 31 (11 µm)
and band 32 (12 µm), cloud discrimination is available and established.

On the other hand, in Mt. Asama in Japan, the accuracy of lava activity monitoring is found to
be inadequate because their cloud discrimination algorithm is too simple to be applied successfully
in Japan. Therefore, the purpose of this study is to remove the cloud accurately and to develop an
adequate algorithm continuously to detect thermal anomalies related to volcanic activities, especially
lava activity in Japan. In this paper, the cloud discrimination algorithm is improved to investigate
the spatiotemporal changes of MODIS data based on the singularity developed by Noguchi et al. [9].
In their approach, to detect only hotspots related to lava activities without faints, the developed
algorithm investigates the difference temperature behavior between a target point and reference points,
and we get the spatial difference of brightness temperature (S). The presence of clouds causes a large
value of S, and this does not relate to volcanic activities. Therefore, removing clouds is essential.
To remove clouds, we use some Brightness Temperature Difference (BTD), which is sensitive to the
cloud. Moreover, we verified the technique of cloud removal as compared with LiDAR data.

In this study, we apply the developed lava activity monitoring algorithm to the 2011 Shinmoedake
eruptive activity with magma effusion, Japan. Moreover, the accuracy of the improved cloud
discrimination algorithm and the effectiveness of lava activity monitoring by spatiotemporal changes
of the singularity of brightness temperature are investigated.

2. Shinmoedake Volcano

Shinmoedake in the Kirishima volcano group is located at 31.931◦N, 130.864◦E, the boundary of
Kagoshima prefecture and Miyazaki prefecture in Kyushu, Japan (See Figure 1). It is an active andesitic
stratovolcano. The history of Shinmoedake in 1700–2010 can be characterized in the following. It is a
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major activity in 1716–1717, with phreatic explosions and magma eruptions and phreatic explosions in
1822, 1959, 1991 and 2008 [25–28].
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After these small phreatic events, the Shinmoedake volcano began a new phase of activity
on 19 January 2011. The eruption commenced with a small phreatomagmatic event followed by
subplinian events on 26 and 27 January 2011 [27–29]. Lava emerged as a dome in the summit crater
on 27 January 2011, observed by SAR [30–32], and a small mound of lava was confirmed by aerial
observation [33]. The mound is developed by a 500-m radius on 29 January. The lava filled the crater,
and the development stopped at the beginning of February, and the maximum diameter is about 600 m,
and the volume is estimated by 10 million m3 [27–33]. During the subplinian events and lava dome
growth, deflation of the deep magma chamber was observed by tiltmeters and GPS [27–29]. Some
aerial pictures and figures during the 2011 activity are given in Appendix A [29]. Figures A1 and A2
indicate aerial photos of the summit crater and aerial thermal infrared images of the crater, respectively.
Figure A3 show satellite SAR images.

The first explosive eruption occurred at 15:41 on 27 January. Explosive eruptions occurred 13
times by 1 March, most of them concentrated between 30 January and early February. The largest
outbreak in 2011 was at 7:54 on 1 February. Eruptions have become intermittent since the beginning
of February, and explosive eruptions occurred on 11, 14, 18 February and 1 March. Then, eruptive
activity began to decrease in March. Their frequency and scale gradually declined. The number
of eruptions after 2 March was five times in March, three times in April, one time in August and
in September. No eruptive event occurred after the 2011 September 7 event [27–29]. In addition,
swarming of low-frequency earthquakes was confirmed from 28 January to early February. There will
be no doubt that magma will be supplied into the Shinmoedake Crater by early February.

3. Data

3.1. MODIS

The satellite Aqua was launched on 4 May 2002. NASA conducts the Earth Observation System
(EOS) programs, and the Aqua project is one of them. The major mission of Aqua is to study the Earth’s
global dynamics—interrelation among the atmosphere, oceans and land surfaces. The Aqua satellite is
operable at the altitude of 705 km with a sun-synchronous subrecurrent orbit and can monitor the
same area on the same conditions. The recurrent period of the Aqua satellite is 16 days. This satellite
has a descending orbit at midnight and an ascending orbit in the daytime. Since nighttime data are
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not affected by solar radiation, it is considered that we observe only the heat from the Earth’s interior.
The Aqua has six Earth-observing instruments on board, collecting a variety of global data sets. They are
AIRS, AMSU, CERES, MODIS, AMSR-E and HSB. In this study, we use MODIS (MODerate-resolution
Imaging Spectroradiometer). MODIS is the optical sensor with 36 observation wavelength bands.
Sensors with the same specifications are installed on Terra and Aqua satellites. MODIS can observe a
wide area (2030 × 1354 km) at once. In this study, Band 20—which can measure surface and cloud
temperature—and Bands 27, 31, 32, 34 and 35—which are used for removal of cloud effects—were
analyzed. Table 1 describes MODIS channel characteristics and purpose in this study.

Table 1. MODIS (MODerate-resolution Imaging Spectroradiometer) band.

Band Bandwidth (µm) Spectral Radiance Spatial Resolution
(m)

Purpose in This Study
(W/m2–µm–sr)

1 0.620–0.670 21.8
2502 0.841–0.876 24.7

3 0.459–0.479 35.3

500
4 0.545–0.565 29.0
5 1.230–1.250 5.4
6 1.628–1.652 7.3
7 2.105–2.155 1.0

8 0.405–0.420 44.9

1000

9 0.438–0.448 41.9
10 0.483–0.493 32.1
11 0.526–0.536 27.9
12 0.546–0.556 21.0
13 0.662–0.672 9.5
14 0.673–0.683 8.7
15 0.743–0.753 10.2
16 0.862–0.877 6.2
17 0.890–0.920 10.0
18 0.931–0.941 3.6
19 0.915–0.965 15.0

20 * 3.660–3.840 0.45 (300 K) Hotspots detection and
Clouds discrimination

21 3.929–3.989 2.38 (335 K)
22 3.929–3.989 0.67 (300 K)
23 4.020–4.080 0.79 (300 K)
24 4.433–4.498 0.17 (250 K)
25 4.482–4.549 0.59 (275 K)
26 1.360–1.390 6.00

27 * 6.535–6.895 1.16 (240 K) Clouds discrimination
28 7.175–7.475 2.18 (250 K)
29 8.400–8.700 9.58 (300 K)
30 9.580–9.880 3.69 (250 K)

31 * 10.780–11.280 9.55 (300 K) Clouds discrimination
32 * 11.770–12.270 8.94 (300 K) Clouds discrimination
33 13.185–13.485 4.52 (260 K)

34 * 13.485–13.785 3.76 (250 K) Clouds discrimination
35 * 13.785–14.085 3.11 (240 K) Clouds discrimination
36 14.085–14.385 2.08 (220 K)

* Channel used.

3.2. LiDAR

LiDAR (Light Detection And Ranging) is equipment observing the distribution of a particulate
matter floating in the sky by firing a laser beam and measuring light to be scattered with particulate
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matters. LiDAR uses electromagnetic waves with wavelengths much shorter than RADAR. Therefore,
LiDAR is suitable for detecting aerosols and cloud particles than RADAR, and it is useful for atmospheric
research and meteorology [34,35]. In this paper, we compare the cloud discrimination results of MODIS
data with the ground LiDAR data. In other words, we evaluated the cloud discrimination result
by MODIS using LiDAR data. Here, the ground LiDAR continuous observation data operated by
the National Institute for Environmental Studies (NIES), Tsukuba, Japan)) was used [34]. LiDAR
observations are performed every 15 min, and the attenuated backscattering coefficient is obtained up
to 18,000 m above the ground at a resolution of 30 m. We use the data of 532 nm.

4. Data Processing

4.1. Bright Temperature Analysis of MODIS Data

Nighttime MODIS binary data (AM 0:30–2:30 in local time) are converted into brightness
temperature and result in the daily map of the brightness temperature, which has an area of 1◦ × 1◦

study area centered at target pixel of the summit or the crater. The analyzed period is from 1 January
2003, to 31 December 2011, for Shinmoedake.

The temporal variation of brightness temperature for all pixels is investigated. Brightness
temperature changes according to the emission are derived from the physical temperature of the
surface and various factors such as climate conditions. The attempt to compare the spatial variation
of brightness temperatures at one point to that of the reference points is considered. It is found that
as the distance between these two points decreases, there is a tendency that their correlation is high.
Conversely, when the distance increases, gradually, the correlation decreases. It means the factor
to affect brightness temperature has its own scale. Therefore, if an appropriate reference distance is
determined, a specific factor can be removed from the original fluctuation.

The spatial difference of brightness temperature is defined by the brightness temperature at
the focused point (FP) and the four reference points (RP) with a certain distance to the north, east,
south and west directions from the FP [9,36].

SFP(x, y, t) = max.
{
BTFP(x, y, t) − BTRP(x− d, y, t), BTFP(x, y, t) − BTRP(x + d, y, t),
BTFP(x, y, t) − BTRP(x, y− d, t), BTFP(x, y, t) − BTRP(x, y + d, t)

}
(BTFP > 0, BTRP > 0, BTFP − BTRP > 0),

SFP(x, y, t) = 0 (otherwise)

(1)

Here, SFP, BTFP and BTRP are spatial differences of brightness temperatures, brightness
temperatures at the focused point and the reference point, respectively. SFP is computed for all
pixels in one scene. Then, the time variation of SFP is investigated for all pixels from the start of the
analysis; and the time for which SFP becomes a maximum value in the series is registered for each FP.
The procedure is illustrated in Figure 2.

We calculate the range correlation from the summit of each volcano as follows;

ρ =
1
n
∑n

i=1(BTFP − µFP)(BTRP − µRP)

σFPσRP
, (2)

where ρ is the correlation factor, µFP and µRP are average of BTFP and BTRP, σFP and σRP indicates
standard deviations of BTFP and BTRP, respectively. Figure 3 shows the variation of the correlation
factor for Shinmoedake for each year. Because eruption occurred in 2011, the correlation of 2011 is
much lower than for other years. We adjust the threshold of high correlation level (=0.95) to detect
minute thermal anomalies, and the distance between FP and RP is 0.05◦ (5 km) in this study.
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4.2. Cloud Effect Reduction

If we subtract brightness temperatures at the RP with that of clouds from the FP, an inaccurate SFP

value is obtained, because the brightness temperature of the cloud pixel is lower than that of the surface
pixels. Therefore, the removal of cloud effects is crucial. To remove cloud effects with MODIS data,
Noguchi et al. use radiances collected at bands 31 and 32. Noguchi et al. adopt a similar approach
(i.e., RST-based) applied by Pergola et al. on AVHRR data (i.e., bands 4 and 5, at ~11 µm and ~12 µm,
respectively) to recognize meteorological clouds [3,9]. Noguchi et al. follows their approach and
apply to detect thermal changes possibly associated with volcanic activity in Mt. Merapi. Indonesia
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and Mt. Asama, Japan [9]. Regarding the case of Mt. Merapi, the results show the effectiveness of
the cloud detection, but in the case of Mt. Asama, the removal of clouds effects is found insufficient.
In this study, a different approach to remove cloud effects is adopted In the Noguchi method, if BTD
is lower than the monthly average of BTD-1σ, then that pixel is classified as a cloud pixel [9]. Here,
σ is a standard deviation over one month. This method can remove clouds in tropical areas such
as Indonesia. However, it cannot remove cloud in temperate zones such as Japan. This is because,
in tropical regions, almost all clouds are cumulonimbus. However, in temperate zones, there are many
kinds of clouds. Therefore, in this study, we use not only BTD between bands 31 and 32, but also other
BTDs (bands 20–31, bands 34–35, bands 31–27, where the wavelength of band 20, 27, 34 and 35 are 3.7,
3.9, 13.7 and 13.9 µm, respectively.

Regarding cloud detection, five tests are examined for all satellite data. If a pixel passes the Test
1, it can proceed to Test 2; if the pixel passes the Test 2, then it can proceed to Test 3, etc. Finally,
only the pixel that passed all five tests can be regarded as a clear pixel that is not a cloud pixel and is
used to further analysis. Figure 4 illustrates the general concept of the proposed cloud discrimination
procedure and detailed procedures in the tests.

At first, we select the pixel whose brightness temperature of band 20 is higher than 260 K. Then,
we calculate the temporal average µ and standard deviation σ of the BTDs for each month. All pixels
whose distance from the mean value is larger than a prescribed value (µ + kσ) are rejected. As Test
2, BTD of band 34–band 35 is investigated. If the BTD is small, the pixel is likely a cloud. The BTD
histogram is considered to be a mixture of many normal distributions.

Specifically, since the purpose of this study is to distinguish between the cloud region and the
clear region, the pixels in which the brightness temperature of band 20 is less than 260 K are rejected as
clouds in Test 1. A histogram is created using the pixels, the average value µ and standard deviation σ

of the BTD is computed, and pixels that do not satisfy the following formula are rejected,

BTD34-35(t) − µ < kσ (3)

where k is the coefficient, which is determined by comparison with LiDAR data and described later.
A new average value µ′ and standard deviation σ′ are calculated from the remaining data, and pixels
that do not satisfy the formula are rejected. This procedure is repeated until there are no more pixels to
be rejected, and the final remaining pixels are set as candidates for the clear sky area, and the next test
is performed. Figure 5 shows the results of cloud discrimination with Tests 1 and 2, as described in
Figure 4b. Pixels in the red colored area in Figure 5c correspond to the clear region.
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A similar cloud discrimination procedure is performed on the BTD31–27 between bands 31 and 27,
as Test 3.

BTD31-27(t) − µ < kσ (4)

Regarding the BTD31–32 of bands 31 and 32, Test 4, the difference in this value corresponds to the
amount of water vapor in the atmosphere, which is negative for lower clouds and smaller for thick
upper clouds (cumulonimbus). This value becomes large when there is a thin upper cloud. Then,
the criterion of the cloud is as follows;

|BTD31-32(t) − µ| < k σ, (5)

where k is a coefficient, which is determined by comparison with LiDAR data.
As for Test 5 of BTD20–31 between band 20 and band 31, lower clouds show negative values and

upper clouds indicate higher values. Therefore, the definition of cloud pixel is

|BTD20-31(t) − µ| < k σ, (6)

where k is a coefficient, which is determined by comparison with LiDAR data. In this test, we must pay
attention to the result of Test 4 because BTD31–32 (t) shows high values in the case of volcanic activity.
Based on the evaluation by LiDAR in the following subsection, k values are experimentally given by
1.8, 2.2, 2.0 and 1.2 for Tests 2–5, respectively.
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Figure 5. Distributions of the brightness temperature difference (BTD) between band 34 and band 35 in
October at Shinmoedake. (a) Original distribution of BTD34–35. The distribution seems to be composed
of multiple normal distributions; (b) BTD34–35 distribution after Test 1. Cloud pixels determined by Test
1 are removed; (c) schematic image of the repeat of the cloud reduction process. A new average value
µ′ and standard deviation σ′ are calculated from the remaining data, and pixels that do not satisfy
the formula are rejected. Finally, pixels in the red area are fixed as clear and the blue region rejected
as clouds.

4.3. Evaluation of Cloud Discrimination by Ground LiDAR

In this study, MODIS nighttime values are used. Therefore, the evaluation of cloud discrimination
described above cannot be performed using a satellite visible image. Therefore, we decide to verify
using ground LiDAR data. In this study, we use LiDAR continuous observation data operated by NIES,
Japan. The data are obtained through the website of AD-Net, Asian dust and aerosol lidar observation
network, NIES, Japan [37]. Details of the LiDAR network are given in [34,35]. Data from 1 January
2005 to 31 December 2008 are used. Since there was no LiDAR data available near the Shinmoedake
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volcano, we compare the LiDAR data and MODIS data over eight sites that are not directly related to
the volcano: Sapporo, Niigata, Tsukuba, Tokyo, Toyama, Nagasaki, Matsue and Hedo, Japan. The map
and the detailed locations are provided in Figure 1 and Table 2, respectively [34,37]. In this paper,
the results at Tsukuba station in December are shown as examples.

Table 2. Coordinates of Shinmoe-dake and LiDAR sites.

Shinmoe Sapporo Niigata Toyama Tsukuba Tokyo Matsue Nagasaki Hedo

Latitude 31.931◦ 43.10◦ 37.84◦ 36.70◦ 36.05◦ 35.69◦ 35.48◦ 33.81◦ 26.87◦

Longitude 130.864◦ 141.30◦ 138.94◦ 137.10◦ 140.12◦ 139.71◦ 133.01◦ 129.85◦ 128.25◦

Figure 6 shows the results of the comparison between cloud discrimination results of MODIS
and LiDAR data at the LiDAR site. These figures are scatter plots in which the ordinate and abscissa
represent the BTD values used for cloud discrimination, Tests 2–5. In figures, the red circle corresponds
to the BTD value of the day when it is determined that there is no cloud by LiDAR, and the black-cross
indicates the BTD value of the day when it is determined that there is a cloud by LiDAR. The area
surrounded by the blue lines represents the area determined to be cloudless by the cloud discrimination
based on the BTD method of MODIS data proposed in this paper. The blue lines in Figure 6a,b are
criteria for eliminating cloud pixels in this study. The green line in Figure 6a is the threshold between
cloud and clear in a previous study [9]. The pixel with BTD between band 31 and band 32 is lower
than the green line (green area) is identified and dismissed as a cloud pixel in the previous study [9].
From Figure 6, it can be seen that the proposed BTD method succeeds in clustering the cloud and
non-cloud regions. It is also well understood that the previous cloud discrimination method using
only bands 31 and 32 is not sufficient in Japan. It is safe to say that the proposed method is one of
the possible ways to discriminate cloud pixels in nighttime data in the temperate zone area more
accurately. We got similar results regarding the other LiDAR sites.

Actually, in order to set the threshold value that can more accurately distinguish the cloud area
from the clear zone, the values of the parameter k in Equations (3)–(6) (Tests 2–5) are adjusted while
comparing with the scatter charts as shown in Figure 6. In this procedure, a different value of k is set at
each LiDAR site, practically. In this paper, the average value of 8 sites is adopted as the value of k to be
used at Shinmoedake. It can be said to be the representative over the Japan region.Remote Sens. 2020, 12, x FOR PEER REVIEW 11 of 24 
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In this method, multiyear homogenous time–series of satellite records are exploited to characterize 
(in terms of expected value and its historical variability) each location of the analyzed portion of the 
satellite scene. Volcanic anomalies are identified by means of a local variation index. In [38], it is 
possible to find a detailed description of the systems as mentioned above and the other methods 
devoted to the detection of volcanic anomalies, as well as their historical review. 
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Figure 6. Scatter diagrams of BTDs for cloud discrimination at Tsukuba, Japan. (a) BTD31–32 vs.
BTD20–31; (b) BTD34–35 vs. BTD31–27. Blue lines in panels (a) and (b) correspond to the upper or
lower threshold values in BTDs between clear and cloud pixels for the proposed method in this study.
Green line in panel (a) indicates the threshold of the previous Noguchi method. Below this line, it is
determined by clear pixels. Red and black symbols correspond to clear and cloud pixels distinguished
by LiDAR data.
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4.4. Spatiotemporal Singularity

In order to obtain the temporal singularity of the evaluation function S obtained in equation (1),
the singularity, deviation rate, δ is defined as follows,

δ = SFP/SFP, (7)

where SFP is the average of SFP over the analyzed period (9 years). In this study, we investigate the
relationship between the spatiotemporal variation of δ and the volcanic activity accompanied by lava activity.

In comparison with other systems that also exploit MODIS data, it should be noted that the
applied method is a single channel approach. In fact, the detection of the volcanic hotspots is only
based on radiances acquired in the MIR spectral range (i.e., band 20 of MODIS sensor). Instead,
the other systems, e.g., RSTVOLC, MODVOLC, MIROVA, HOTVOLC, HOTSAT and AVHotRR, use also
radiances acquired in the TIR wavelength (i.e., band 31 and/or band 32), and they can be classified
as dual channel approaches. In particular, some of these systems use the MIR and TIR radiances
to compute differential indices (i.e., HOTSAT) and normalized differential indices (i.e., MODVOLC,
MIROVA, HOTVOLC) on analyzed scene. Hence, volcanic hotspots are detected by means of fixed
threshold tests and/or contextual approaches. Regarding the AVHotRR method, it uses data recorded
in the MIR and TIR bands to resolve numeric simulations (e.g., dual-band techniques) for hotspot
detection and effusion rate estimation. Instead, a different approach is used in the RSTVOLC method.
In this method, multiyear homogenous time–series of satellite records are exploited to characterize
(in terms of expected value and its historical variability) each location of the analyzed portion of the
satellite scene. Volcanic anomalies are identified by means of a local variation index. In [38], it is
possible to find a detailed description of the systems as mentioned above and the other methods
devoted to the detection of volcanic anomalies, as well as their historical review.

The Noguchi singularity method can be considered as a hybrid method. Volcanic anomalies are
identified on the base of a multitemporal analysis of a spatial differential variable (i.e., SFP), which was
computed as in a contextual approach (see Section 4.1).

It worth noting that by using a statistical approach of homogenous long time-series (as in RSTVOLC),
it is expected a reduction of the false alarms (e.g., possible anomalies due to site effects). Nevertheless,
the results of the analysis could be influenced by the not correct discrimination of clouds (over the
summit and/or the reference pixels), that lead to a wrong estimation of the SFP.

Finally, even if the false negatives can be observed due to the use of the radiances not atmospherically
correct, here the TOA radiances are taken in account to avoid that, the use of the not appropriate
atmospheric models (i.e., standard models) could generate a wrong estimation of the reflectance and
consequent proliferation of anomalies independent from volcanic activity.

5. Results

Figure 7 shows an example of the two-dimensional brightness temperature map of band 20 in
the ±0.5◦ area centering on the summit crater of Shinmoedake, which was observed at UT (Universal
Time) 17:10 on 29 January (LT (Local Time) 02:10 on 30 January), 2011. The brightness temperature is
indicated by the color bar in figure. According to the report, lava effusion was confirmed in the crater
lake on 27 January by SAR observation, and it had grown to a diameter of 500 m on 29 January [27–33].
Moreover, hot volcanic products such as cinders were deposited in the southeast area from the crater.
The hotspots in figure can be related to the volcanic activity of Shinmoedake. Therefore, we investigate
the temporal changes of brightness temperature and singularity at each pixel.
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Figure 7. Example of a 2D distribution map of the brightness temperature of band 20. Brightness
temperature is given by legend. A and B in Figure 2b corresponds to the locations near the summit
crater and the region far from the summit, respectively. For Japan, LT = UT + 9 h. The nighttime images
of Aqua have one day difference in date between LT and UT.

Figure 8 shows the temporal variations of brightness temperature and the singularity of S, δ,
which provides a spatial difference of brightness temperature, at the summit of Shinmoedake, for all
analyzed periods. In figure, the top panel (a) indicates the variation of brightness temperature of band
20, and the lower two panels (b, c) show the variation of δ. The panels (b, c) correspond to the result
for the previous Noguchi method [9] and the proposed method for cloud discrimination, respectively.
In panels (b, c), anomalous δ is defined by the mean value of δ + 6 σ, which is given by a green line,
and red vertical lines indicate the days when δ value exceeds the threshold. These anomalous days
are concentrated in the volcanically highly active period, colored by pink in the panel (c). However,
some anomalies are detected in volcanically inactive periods in the panel (b). These are errors caused
by cloud pixels. It is highly suggestive that the new method can reduce faint changes due to clouds.
From the distribution of singularity values over the analyzed period, the values in the case of the lava
ejected to the surface are considerably large. These are confirmed through Figure 8c and Figure 10a.
The 6 σ threshold was also effective for monitoring volcanic activity with lava activity in Indonesia
by the Noguchi method, which is the prototype in this study. In addition, even though there were
spurious when the Noguchi method was applied to monitor Mt. Asama in Japan, the 6σ threshold
seems to be useful because the activity with lava could successfully be detected [9]. Taking account of
these empirical facts, we have chosen the 6 σ threshold in this study.
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Shinmoedake in 2011 began on 19 January and ended on 7 September. Considering from the records 
of GPS crustal deformation and earthquakes comprehensively, the 2011 activity of Shinmoedake 
shows that from around December 2009, magma supplied to a magma chamber about 6–10 km depth 
at several km northwest of Shinmoedake summit, and it is suggested that it erupted at Shinmoedake 
in 2011 [27–29,31–33,39–41]. 

As for the lava effusion, the expansion beneath the summit of Shinmoedake was confirmed on 
18 January 2011 from tiltmeter data [27–29,31,32]. There was a small phreatomagmatic eruption at 
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3000–7000 m and at about 16:00 (LT), tiltmeter monitoring the magma chamber in the northwest of 
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Figure 8. Temporal variation of brightness temperature and singularity at the summit crater of
Shinmoedake from 1 January 2003 to 31 December 2011 in UT. (a) Brightness temperature of band 20
(raw data); (b) singularity with the Noguchi method for cloud discrimination; (c) singularity with this
study for cloud detection. Green lines in (b,c) represent the threshold for the anomaly in singularity
defined by average +6 σ. Red vertical bars show the day when the singularity exceeds the threshold.
The period with pink color is the period of a volcanically active period. Yellow ellipses are false changes
due to errors in cloud detection.

6. Discussions

In Figure 8c, the first specific anomaly was detected on 26 January. The maximum value is detected
on 30 January. The second peak value is observed on 2 February. The remarkable singularity in d is
continuously detected and terminates in March. This is the only period in which abnormal values
appear at the summit (crater) over the analyzed nine years. The eruptive activity of Shinmoedake
in 2011 began on 19 January and ended on 7 September. Considering from the records of GPS
crustal deformation and earthquakes comprehensively, the 2011 activity of Shinmoedake shows
that from around December 2009, magma supplied to a magma chamber about 6–10 km depth at
several km northwest of Shinmoedake summit, and it is suggested that it erupted at Shinmoedake in
2011 [27–29,31–33,39–41].

As for the lava effusion, the expansion beneath the summit of Shinmoedake was confirmed on
18 January 2011 from tiltmeter data [27–29,31,32]. There was a small phreatomagmatic eruption at 1:27
on 19 January and a subplinian eruption on 26 January after a small eruption. The plume reached
3000–7000 m and at about 16:00 (LT), tiltmeter monitoring the magma chamber in the northwest of
Shinmoedake recorded a fluctuation indicating underground contraction. A precursory fluctuation
of tiltmeter showing expansion just under Shinmoedake was also recorded several hours before the
subplinian eruption. In addition, satellite SAR image analysis confirmed the eruption of lava in the
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crater on 27 January (See Figure A3 in Appendix A). On 28 January, Earthquake Research Institute,
the University of Tokyo confirmed the appearance of lava with a diameter of several tens of meters
in the crater. It is reported that the erupted lava expanded to a diameter of 500 m on 29 January
and reached a diameter of 600 m in early February by aerial photos (See Figure A1 in Appendix A).
After that, there were no significant changes in the size and shape of the lava in the crater and the
condition of ejecting fumarole gases around it [27–29,31–33,39–41].

Moreover, preliminary results of the implementation of an RST-based [42,43] approach on ASTER
TIR data also provide a certain certificate of the presence of lava in the summit crater of Shinmoedake.
Figure 9 shows anomalous values (i.e., pixels exceed three times higher than their historical variability)
identified by ASTER scenes on 31 January and 7 February 2011.
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Earthquake, tilt and tephra data also indicate that magma supply into the crater from the 
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Figure 9. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Thermal
InfraRed (TIR) data (band 13: 10.25–10.95 µm). (a) 13:23:52 on 31 January 2011 (UT) (b) 13:29:57 on
7 February 2011 (UT). Red pixels on the zoomed portion indicate anomalous pixels identified by an
RST-based analysis on 20 years (2000–2020) of ASTER TIR data.

According to the ground surface temperature distribution by aerial thermal infrared images
(See Figure A2 in Appendix A), the central part of the lava dome was very hot at the beginning of
the magma eruption in January and early February [27–33,39–41]. However, when the supply from
the underground stopped, the surface temperature of the lava gradually decreased. From March,
the fumarole gases emitted from the center of the crater was only from the edge of the lava that filled
the crater, and the relatively high temperature area was recorded only around the fumarole. Almost no
hot part was detected in the crater in May, and surface temperature in the crater was below 50 ◦C in
September [28,29].

Changes in lava size and temperature changes in the crater from aerial and satellite SAR
observations strongly validate that our results are effective [27–33]. In particular, aerial thermal infrared
images and the formation of lava domes inside the crater are intermittent, but they suggest that the
maximum heat release could be expected from the end of January to the beginning of February.

Earthquake, tilt and tephra data also indicate that magma supply into the crater from the
underground is from around 28 January and terminated in early February [27–29,39–41]. Therefore,
it is expected that the surface temperature of lava in the crater will gradually decrease thereafter and
become undetectable in May.

Marchese et al. reported the eruptive activity of Shinmoedake on 26–27 January 2011 using
sunflower MTSAT-2 [44]. They report an increase in sensitivity at 3.5–4.0 µm on days 26 and 27 using
the RSTVOLC algorithm [3,8,10]. The singularity in Figure 8 also took an abnormally large value for the
first time on 26 January. Therefore, we compare the results of applying the RSTVOLC algorithm and the
singularity algorithm proposed in this study to the MODIS data for the 2011 Shinmoedake volcanic
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activity. Here, since it is difficult to evaluate with only the summit pixel, it is difficult to evaluate,
we use nine pixels near the summit (a total of nine pixels: the summit pixel + eight surrounding pixels).
The results are shown in Figure 10.

Figure 10a shows the temporal change of singularity proposed in this study (blue dot). Anomalous
value in singularity near the summit is defined by greater than about 80 (See Figure 8c). Figure 10b
indicates the variations of RSTVOLC calculated in the mid-infrared and thermal infrared bands (red
dot) and that computed in the mid-infrared bands (black dot). The green symbol on the axis is the day
when the area near the summit was covered with clouds and RSTVOLC could not be calculated. When
the pixel has RSTVOLC values of greater than 3, that is both red and black dots exceed 3, the pixel is
determined as the volcanic hotspot. You can see that the trends among these figures are mostly the
same. That is, the first abnormal increase was recognized on 26 January, and the maximum increase
was 30 January. Moreover, also, large values were found to be concentrated from 26 January to early
February and the middle of February in UT.
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Figure 10. Temporal variation of singularity and RSTVOLC at the summit crater of Shinmoedake during
January–February 2011 in UT. (a) Singularity with this study for cloud detection; (b) hotspot intensity
defined by RSTVOLC.

To compare two methods, the method using singularity that we propose simplifies the concept of
RSTVOLC in space and makes it complicated in cloud discrimination. It is important that the brightness
temperature anomaly was detected near the crater on 26 January by two independent methods.
It was one day before the eruption of lava at the crater confirmed by the SAR image on 27 January.
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This abnormal rise has also been confirmed by temperature analysis using Japanese MTSAT. A small
eruption occurred at 1:19 on 26 January (LT) and at 14:49 (LT), the momentum of the volcanic plume
increased and indicating a subplinian event. From around 16:00, inclinometer fluctuations indicating
the contraction of magma chambers were recorded. There occurred three subplinian eruptions until
27 January (LT). Considering these facts, it can be said that it probably suggests that the magma effusion
had started on the crater surface in the early morning of the 26 (around 01:00 LT), or that the precursor
of magma effusion was detected.

In addition, the supply of magma to the crater from inclinometers, seismic records, and aerial
observations is thought to have stopped in early February. From the aerial infrared photograph,
the maximum period of heat from the crater is considered to be from the end of January to the beginning
of February. This is consistent with the period of remarkable singularity. A dimple was confirmed
in the center of the crater on 18 February, and it may be associated with increased thermal infrared
activity in the middle of February. These results show the effectiveness of satellite infrared data for
monitoring and predicting lava activity in volcanic lava activity.

Figure 11 shows a compilation of various data on the activity of Shinmoedake from January to
February 2011. (a) shows the timing when the MODIS anomaly appeared and the timing when the
eruption occurred [27–29]; (b) temporal change of lava dome volume obtained from satellite SAR
image analysis [30,32]; (c) erupted lava volume estimated from tiltmeter data indicated in panel
(f) [31]; (d) deflation rate of lava [31]; (e) variation of 10 min average value of the amplitude of
seismometer [31]; (f) tiltmeter data near the Shinmoedake [31] and (g) schematic view of lava activity
of the 2011 Shinmoedake activity [27–33].

From the inclinometer and GPS deformation data, magma was supplied to the main magma
reservoir about 10 km northwest of Shinmoedake and 6–8 km underground. In January 2011, it moved
to a magma chamber right below the crater of Shinmoedake, and the first phreatomagmatic explosion
occurred on 19 January (LT). A petrological investigation confirmed that the first phreatomagmatic
explosion on 19 January involved fresh magma. Supply of magma into the secondary chamber
just below the crater continues, which leads to phreatomagmatic eruptions on 26–27 January and a
sub-Plinian eruption on 27 January in LT. The satellite SAR image confirmed the lava effusion into the
crater on 27 January and by eyes onboard aircraft on 28 January. Based on the tiltmeter and satellite
SAR data, lava effusion into the crater went on through three sub-Plinian eruptions and the following
continuous eruptions from 28 January to around 1 February. Then, the original crater was filled by
lava. Based on the tiltmeter and satellite SAR data, lava effusion into the crater went on through three
sub-Plinian eruptions and the following continuous eruptions from 28 January to around 1 February.
Then, the original crater was filled by lava. MODIS images provide the first brightness temperature
anomaly on 26 January, when was the before the first sub-Plinian eruption.

Since the erupted magma was gradually and slowly ascending from the deep magma chamber
toward the crater in the conduit, it is considered that there are no apparent precursory changes in
mechanical parameters regarding the 2011 Shinmoedake activity (small imminent precursory changes
were registered just before the sub-Plinian eruptions eruption). In such a situation, it is quite difficult
to use tiltmeters and microearthquakes to predict volcanic eruptions. However, satellite infrared
observation may have the advantage of capturing thermal anomaly because magma heat is likely to be
easily transferred to the surface from the magma body under the ground if a volcanic vent (conduit)
is established. Infrared monitoring from satellites, in addition to ground-based mechanical sensors,
is likely to be useful for monitoring and forecasting the volcanic eruption related to lava activity.
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Figure 11. Schematic view of the 2011 Shinmoedake volcanic activity from January to February 2011 in
LT [27–33]. (a) Timing of MODIS anomaly and the timing and type of eruptions; (b) temporal variation
of lava dome volume obtained from satellite SAR data; (c) erupted lava volume estimated by tiltmeter
data shown in panel (f); (d) deflation rate of lava; (e) variation of 10 min average value of the amplitude
of seismometer; (f) tiltmeter data near the Shinmoedake and (g) schematic view of lava activity of the
2011 Shinmoedake activity. Arrows in the magma indicate the intensity of the effusion rate.



Remote Sens. 2020, 12, 2637 18 of 24

7. Conclusions

We proposed a cloud discrimination method applicable in Japan using MODIS nighttime data,
monitored the singularity of the spatiotemporal correlation of surface temperature anomalies and
investigated the possibility of detecting and monitoring lava activity in Shinmoedake. With the aim
to detect lava eruption activity in 2011, nine years of data from 2003 to 2011 were analyzed. As a
result, the first anomalous singularity in brightness temperature was detected on 26 January 2011.
Moreover, the maximum value was detected on 30 January 2011 and the values showed larger ones
until early February 2011. When the anomalous singularity appeared was the only period with the
magma-related volcanic activity for Shinmoedake over the analyzed period of nine years.

Comparing comprehensively with satellite SAR images, aerial infrared images, photos of lava
dome photo in the crater, tiltmeter data, seismograph data, etc., the period of large singularity values is
consistent with the active period of lava effusion at the crater. In addition, the magnitude of specificity
corresponds to the surface temperature of the crater. There is no contradiction that the anomaly in
singularity disappears as the surface cools after February 2011.

The above facts indicate the effectiveness of the proposed singularity method to monitor the lava
activity for Shinmoedake. Therefore, it is concluded that if cloud discrimination is realized with high
accuracy, no spurious changes will come to arise, and no false detection of hotspot will be given.

In the future, it is necessary to apply this method to other volcanoes in the temperate zone and
investigate its universal effectiveness. It is also necessary to develop applications such as volcanic
monitoring in cold latitudes where snow and ice are covered.

In order to understand eruptive precursors and eruptive dynamics of volcanoes, analysis of the
integration of multiparametric data observed in space and on the ground can be required. Continuous
monitoring with high sampling by satellite also helps better monitor volcanic hazards. Since MODIS
has a problem with the regression rate and its time resolution is not proper, it is necessary to develop an
algorithm using meteorological satellites such as MTSAT (HIMAWARI-8/9) in this sense. Since thermal
infrared rays are affected by clouds, it is also essential to develop a method based on microwaves.
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Appendix A

Appendix A provides some pictures and figures reported by JMA [29]. Figures A1 and A2 indicate
aerial photos of the summit crater of Shinmoedake and aerial thermal infrared images of the crater,
respectively. Figure A1 gives the change of shape and lava effusion in the crater with volcanic activity.
Figure A2 supplies the direct ground truth of MODIS analysis. Figure A3 shows satellite SAR images
to give topological changes in the summit crater.

https://www-lidar.nies.go.jp/AD-Net
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2011 (after JMA report [29]). On 19 January, there was a small eruption, probably due to a 
magmatophreatic explosion. The condition of the plume was unknown due to bad weather, but 
ashfall was confirmed from Shinmoedake in the southeast direction (a) 21 January: After 
magmatophreatic explosion, it was confirmed that the fumaroles, formed by the eruption on 27 May 
2010, expanded, the ejecta was thickly accumulated in the crater and the cinder was scattered in the 
crater. Clear traces of ashfall were confirmed around the Shinmoedake crater and in the southeast 
direction from the crater. (b) The photo of the crater after the small eruption at 7:31 but before the 
magmatic explosion at 14:49 on 26 January. The plume was flowing to the southeast. The eruption at 
07:31 shifted to the magmatic eruption around 14:49. Due to the magmatic eruption, small volcanic 
blocks (volcanic debris) with a diameter of 7–8 cm about 3 km southeast of Shinmoedake crater and a 
diameter of 4–6 cm about 7 km southeast of the crater were confirmed. This eruption continued until 
February 7. (c) The first explosive eruption occurred on 27 January. The plume was flowing to the 
southeast. (d) Accumulation of discharged lava in the crater on 31 January. It was about 500 m in 
diameter and the top of the lava dome reached near the crater edge; (e) Accumulation of discharged 
lava in the crater on 1 February. It was about 500 m in diameter and a part of the top of the lava dome 
was slightly lower than that of yesterday; (f) Accumulation of ejected lava in the crater on 2 February: 
Expanded to a diameter of 600 m. The top of the lava dome turned to be flat; (g)–(l) There was no 
particular change in the size and shape of the lava accumulated in the crater and the surrounding 
fumarole and the plume was rising from the north and east sides of the lava. 

Figure A1. Aerial images of the summit crater of Shinmoedake from 21 January 2011 to 21 December 2011
(after JMA report [29]). On 19 January, there was a small eruption, probably due to a magmatophreatic
explosion. The condition of the plume was unknown due to bad weather, but ashfall was confirmed
from Shinmoedake in the southeast direction (a) 21 January: After magmatophreatic explosion, it was
confirmed that the fumaroles, formed by the eruption on 27 May 2010, expanded, the ejecta was thickly
accumulated in the crater and the cinder was scattered in the crater. Clear traces of ashfall were
confirmed around the Shinmoedake crater and in the southeast direction from the crater. (b) The photo
of the crater after the small eruption at 7:31 but before the magmatic explosion at 14:49 on 26 January.
The plume was flowing to the southeast. The eruption at 07:31 shifted to the magmatic eruption around
14:49. Due to the magmatic eruption, small volcanic blocks (volcanic debris) with a diameter of 7–8 cm
about 3 km southeast of Shinmoedake crater and a diameter of 4–6 cm about 7 km southeast of the
crater were confirmed. This eruption continued until February 7. (c) The first explosive eruption
occurred on 27 January. The plume was flowing to the southeast. (d) Accumulation of discharged
lava in the crater on 31 January. It was about 500 m in diameter and the top of the lava dome reached
near the crater edge; (e) Accumulation of discharged lava in the crater on 1 February. It was about
500 m in diameter and a part of the top of the lava dome was slightly lower than that of yesterday;
(f) Accumulation of ejected lava in the crater on 2 February: Expanded to a diameter of 600 m. The top
of the lava dome turned to be flat; (g)–(l) There was no particular change in the size and shape of the
lava accumulated in the crater and the surrounding fumarole and the plume was rising from the north
and east sides of the lava.
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May, (h) 22 September. The central part of the discharged lava was very hot at first, but the surface 
temperature of the lava gradually decreased. 

Figure A2. Aerial thermal infrared images of the summit crater of Shinmoedake (after JMA report [29]).
(a) 31 January, (b) 1 February (c) 2 February, (d) 3 February, (e) 18 February (f) 7 March, (g) 31 May, (h) 22
September. The central part of the discharged lava was very hot at first, but the surface temperature of
the lava gradually decreased.



Remote Sens. 2020, 12, 2637 22 of 24
Remote Sens. 2020, 12, x FOR PEER REVIEW 22 of 24 

 

 

 
(a) January 2, 2010 (LT) 

 
(b) January 27, 2011 (LT) 

 
(c) January 29, 2011 (LT) 

 
(d) February 1, 2011 (LT) 

Figure A3. ALOS/PALSAR images of the summit crater of Shinmoedake (after JMA (Japan 
Meteorological Agency) report [29]). ALOS means Advanced Land Observing Satellite and the 
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center of the crater; (d) 1 February 2011. Discharged lava fills the crater and the diameter of lava is 
about 500 m. 
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