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Abstract: Unmanned aircraft systems (UAS) have been proven cost- and time-effective remote-sensing
platforms for precision agriculture applications. This study presents a method for automatic
delineation of field areas and boundaries that uses UAS multispectral orthomosaics acquired over
7 vegetated fields having a variety of crops in Prince Edward Island (PEI). This information is needed
by crop insurance agencies and growers for an accurate determination of crop insurance premiums.
The field areas and boundaries were delineated by applying both a pixel-based and an object-based
supervised random forest (RF) classifier applied to reflectance and vegetation index images, followed
by a vectorization pipeline. Both methodologies performed exceptionally well, resulting in a mean
area goodness of fit (AGoF) for the field areas greater than 98% and a mean boundary mean positional
error (BMPE) lower than 0.8 m for the seven surveyed fields.
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1. Introduction

Today, under the scope of climate change, climatic hazards have a higher probability of occurrence
and crop insurance has become more critical to growers. To have proper insurance premiums, both the
growers and the crop insurance agencies need to have precise measurements of the cropped field
area and boundaries. Field areas and boundaries can be determined by Global Navigation Satellite
System (GNSS)-based in situ surveys but they are costly in time and effort. Space-borne optical
images have also been tested [1–3], but they lack in spatial and temporal resolution. Moreover,
this imagery is prone to atmospheric interference and it can be costly when acquired by commercial
satellites. An alternative is to use images acquired by unmanned aircraft systems (UASs) which have
the advantages of being portable, flexible, and cost and time-effective [4]. UAS imagery is big data, but
efficient machine-learning (ML) algorithms with today’s computational capacities have also made the
big data process much easier than in the recent past [5].

There are only a few studies about using UAS imagery for field areas and boundaries extraction,
mainly for cadastral applications. Red, green and blue (RGB) UAS imagery was used for extracting
cadastral boundary features using a deep learning algorithm [6] or using the ENVI (Exelis Visual
Information Solutions, Boulder, CO, USA) segmentation and object generation software [7]. In both
cases, the fields were either bare soil or vegetated. Bare soil field boundaries were delineated from blue
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and red UAS imagery with mean-shift clustering and random forests (RF) [8]. Cork oak stand limits
were mapped by applying the support vector machine (SVM) and RF to RGB and near-infrared (NIR)
imagery [9]. Object-based image analysis with fuzzy clustering was applied to UAS RGB imagery for
mapping soil, shrubs, and grass [10]. In the two last cases, the imagery was segmented and analyzed
with eCognition (Trimble Inc., USA). Thresholding algorithms were applied on UAS RGB and NIR
imagery for crop and weed mapping [11,12] as well as on RGB and NIR imagery for generating skip
maps in sugarcane fields [13]. In most of these studies, the method was either too complex or was
applied to bare soil fields.

Pixel-based image analysis (PBIA) is a classic image analysis procedure using individual pixels,
while geographic object-based image analysis (GEOBIA) is an accomplished ensemble of algorithms and
techniques constructing vector objects from aggregating multiple neighboring pixels, highly suitable for
very- and ultra-high spatial resolution, such as the UAS imagery used in this study [14–16]. GEOBIA
generates objects from groups of pixels based on local minima clustering aiming to contain meaningful
context to human perception. Objects, or super-pixels, make more sense for UAS spatial resolution,
because real-life objects, which are either geometrically or spectrally different, can be described with
enough pixels and thus enough spectral information. In general, the image segmentation algorithms
construct objects with high relative pixel homogeneity and semantic significance. GEOBIA has been
extensively employed in land-use and land-cover applications as reviewed in [17], often outperforming
PBIA [15] while keeping the results free of salt-and-pepper noise. For very high-resolution imagery,
like the sub-decimeter UAS images, PBIA has multiple disadvantages [18]. PBIA cannot incorporate
semantics and does not understand the heterogeneity that exists between different land-cover themes.
For classification purposes of UAS image data, PBIA usually involves a very large number of training
pixels to cover the spatial and spectral range of each class. Additionally, PBIA results usually suffer
from the salt-and-pepper effect related to misclassifications.

Therefore, GEOBIA-based algorithms have been successfully utilized on UAS imagery for weed
mapping with RF [19] and k-means [20]. GEOBIA was also applied to convolutional neural networks
for wetland monitoring [21] and to decision tree algorithms for land-cover classification of arid
rangelands [10].

The purpose of this study is to test simple ML and information extraction techniques to
automatically delineate field areas and boundaries over a variety of crops from UAS multispectral
imagery acquired over corn, barley, and oat vegetated fields located in Prince Edward Island (PEI).
In this study, two ML pipelines have been tested to classify the land features and vectorize each
output as crop field boundaries and areas. The first pipeline consists of a PBIA that utilizes RF as the
classifier. The second one is a GEOBIA that also utilizes RF as the classifier on the objects generated by
segmenting the input UAS imagery. The random forest classifier is a highly robust ensemble classifier
with low tuning complexity, scalable, and fast [22].

2. Materials and Methods

2.1. Study Site

The study sites are located in Prince Edward Island, Canada (Figure 1). We surveyed seven fields
that have barley, corn, or oat as a crop.
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Figure 1. Location of the study sites in Prince Edward Island. ESRI Satellite (ArcGIS/World Imagery). 
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The UAS image data were acquired during summer 2018 through multiple surveying 
campaigns under clear sky conditions (Table 1). The unmanned aerial vehicle (UAV) was a DJI 
Matrice 100 and the multispectral payload was the MicaSense RedEdge 3 camera (MicaSense Inc., 
U.S.A.).  

Table 1. Unmanned aircraft system (UAS) flight parameters. 

Flight 
Number 

Field  Number of 
Images 

Date Time 
(UTC-3) 

Area (m2) 

F.1 
Barley1 
Barley2 
Barley3 

3615 2018-07-20 11:30 
310,131 

34,832.00 
61,282.00 

F.2 Corn1 1345 2018-08-21 12:30 89,463.00 
F.3 Corn2 2415 2018-08-21 13:00 309,163 
F.4 Corn3 2450 2018-08-21 13:30 234,493 
F.5 Oat 2675 2018-07-20 14:00 301,261.40 

The RedEdge camera has five sensors capturing the radiation reflected in the blue, green, red, 
red-edge, and NIR bands of the electromagnetic spectrum (Table 2). The spatial resolution or ground 
sample distance (GSD in cm/pixel) is common for all five sensors and depends on the UAV flight 
altitude, the sensors field of view (horizontal: 47.9°, vertical: 36.9°, diagonal: 58.1°), and the focal 
length (5.4 mm). With a flying altitude of 100 m, the corresponding GSD is about 8 cm/pixel. 

Figure 1. Location of the study sites in Prince Edward Island. ESRI Satellite (ArcGIS/World Imagery).

2.2. Unmanned Aircraft System (UAS) Data Collection

The UAS image data were acquired during summer 2018 through multiple surveying campaigns
under clear sky conditions (Table 1). The unmanned aerial vehicle (UAV) was a DJI Matrice 100 and
the multispectral payload was the MicaSense RedEdge 3 camera (MicaSense Inc., USA).

Table 1. Unmanned aircraft system (UAS) flight parameters.

Flight Number Field Number of Images Date Time (UTC-3) Area (m2)

F.1
Barley1

3615 2018-07-20 11:30
310,131

Barley2 34,832.00
Barley3 61,282.00

F.2 Corn1 1345 2018-08-21 12:30 89,463.00
F.3 Corn2 2415 2018-08-21 13:00 309,163
F.4 Corn3 2450 2018-08-21 13:30 234,493
F.5 Oat 2675 2018-07-20 14:00 301,261.40

The RedEdge camera has five sensors capturing the radiation reflected in the blue, green, red,
red-edge, and NIR bands of the electromagnetic spectrum (Table 2). The spatial resolution or ground
sample distance (GSD in cm/pixel) is common for all five sensors and depends on the UAV flight
altitude, the sensors field of view (horizontal: 47.9◦, vertical: 36.9◦, diagonal: 58.1◦), and the focal
length (5.4 mm). With a flying altitude of 100 m, the corresponding GSD is about 8 cm/pixel.

Table 2. MicaSense RedEdge band characteristics.

Band Blue Green Red Red-Edge NIR

Range (nm) 465–485 550–570 663–673 712–722 820–860
Bandwidth (nm) 20 20 10 10 40

Central wavelength (nm) 475 560 668 717 840
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The camera performs radiometric calibration of the acquired imagery with data from the
downwelling light sensor positioned on the top of the UAV, while the sensors are looking at the
nadir position with respect to the UAV flight path. The Micasense RedEdge system also incorporates
a GNSS receiver for the accurate geolocation of the captured imagery. To allow the creation of
reflectance orthomosaics, a MicaSense RedEdge reflectance calibration panel is employed before
every survey to measure the incoming radiation. The UAV flights were conducted at an altitude
of 100 m, at noontime for minimizing shadowing effects and under clear sky conditions to avoid
cloud shadowing. The flight paths were planned so that there is a minimum of 75% overlapping and
side-lapping for neighboring images.

2.3. Data Processing

For this study, the visualization, maps generation, and general Geographic Information Systems
(GIS) procedures were handled through the QGIS software [23]. Two image processing methods were
tested and assessed for their value in the delineation of field areas and boundaries that was performed
with two different levels of information: firstly, on the pixel-level information (PBIA methodology)
and secondly on the object-level information (GEOBIA methodology). The steps and procedures used
for delineating field areas and boundaries are described in Figure 2 for the PBIA methodology and in
Figure 3 for the GEOBIA methodology [15,24].

In both PBIA and GEOBIA methodologies, the first step was to generate georeferenced reflectance
orthomosaics from the blue, green, red, red-edge, and NIR images from each flight campaign through
the photogrammetric commercial software Pix4D Mapper (Pix4D SA, Switzerland). This process
involves Downwelling Light Sensor (DLS) and reflectance panel corrections. All surveyed fields are
treated individually and the corresponding rasters were clipped and extracted from each orthomosaic
with a surrounding area buffer using Geospatial Data Abstraction Library (GDAL) [25].

The blue and red reflectance orthomosaics were then used to compute a simple ratio vegetation
index (VI) between the two reflectance bands as follows: blue-red simple ratio (BRSR) = blue/red [8],
which enhances the spectral difference between soil and vegetation and has already been found to be
useful in our previous study on bare soil field areas delineation [8].
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2.3.1. Random Forests

Both methodologies utilize RF for classification. The classification scheme produces three classes:
soil, crop, and other vegetation. With respect to the input features for classification, while being initially
tested, Haralick et al. [26]’s Gray Level Co-occurrence Matrix (GLCM) textural features were not used
because the classification accuracies were already high enough without using textural features.

Since the RF classifier was introduced by Breiman [27], it has been widely applied in remote
sensing [28] due to its robustness and advantages, being easily parametrized and fast. RF is a
non-parametric decision-tree classification algorithm that does not assume a normal distribution of the
data [27,29]. RF is an ensemble classification model, aggregating a user-defined number of uncorrelated
classification trees, every one of which is grown with a set of randomly chosen features from the
feature space at each tree node. The final class decision is made through the majority voting of the full
ensemble of the trained trees. In this study, we deployed the off-the-self RF implementation from the R
programming language v3.5.1 [30]. The number of trees grown ntree was set to 500 and the number of
random features mtry for the growth of each decision tree in the ensemble was kept as its default value
which is the square root of the total number of features, rounded down.

To determine the classification accuracy, RF performs internally a procedure resulting in an
out-of-bag (OOB) error rate. RF works by bootstrapping a sample dataset from the original training
data for every tree grown. From the original data, an approximate 37% become “out-of-bag” data due
to the replacement strategy in the sampling. These OOB data are then parsed down and classified by
the trees that are not trained with them to estimate the classification error by adding up all the discrete
OOB errors. The OOB error rate is the complementary percentage of the overall classification accuracy
of the RF classification and is a highly robust accuracy indicator. RF also provides a confusion matrix
indicating the misclassifications for each class. This matrix allows us to compute the class user’s and
producer’s accuracies as well as the overall classification accuracy [31].

Additionally, RF provides importance values to indicate the input features significance for the
classification with two metrics in the R implementation: (1) the mean decrease in the Gini index of
node impurity when a feature is split when a node is made and (2) the mean decrease of prediction
when a feature is permutated. In this study, we display the MeanDecreaseAccuracy plot using R’s
ggplot2 [32]. It graphically represents the value of the MeanDecreaseAccuracy metric for each feature
which is the difference between the prediction accuracy of the original OOB data and the prediction
accuracy when the values of that feature are randomly permuted with the OOB data and predicted
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down the trained forest. The final mean difference in prediction errors for every feature is a measure
of feature importance as it exhibits a decrease in accuracy when the feature is assigned random but
realistic values. For unimportant features, the permutation should have minimal to no effect on the
accuracy, whereas, for important variables, the accuracy should be significantly reduced.

For training of the RF classifiers for both the PBIA and GEOBIA methodologies, spatially
representative and uniformly spread training sites for the three classes were delineated on the original
mosaics. These training sites are common for both methodologies.

2.3.2. Jeffries–Matusita Distance

The spectral separability of the three classes was assessed by the distance between the random
probability distributions within the feature space in pairs of classes. The metric used is the
Jeffries–Matusita (J–M) distance [33,34] (Equation (1)) which considers the Bhattacharya (B) distance [35]
(Equation (2)). J–M values range from 0 to 2, with 0 implying the two distributions are entirely correlated
and thus the classes are spectrally inseparable, while the J–M upper asymptotic limit of 2 means a
full non-correlation between classes and is considered as an indication of excellent class separability,
making the J–M transformation more convenient compared to B which falls in the [0, +∞) range.

For each pair of classes C1 and C2, which are two multivariate distributions, assuming data
normality, with means µ1, µ2 and covariance matrices σ1, σ2

JMC1,C2 = 2 ∗
(
1− e−BC1,C2

)
(1)

where

BC1,C2 =
1
8
∗MC1,C2 +

1
2
{ log[det(σ)] −

log[det(σ1)]

2
−

log[det(σ2)]

2
} (2)

σ =
(σ1 + σ2)

2
(3)

MC1,C2 is the root Mahalanobis distance [36] between the class means with respect to σ computed by
Equation (4):

MC1,C2 = (µ1 − µ2)
t
∗ σ−1

∗ (µ1 − µ2) (4)

2.3.3. Pixel-Based Image Analysis (PBIA)

For the PBIA methodology, the RF classification uses the five reflectance bands (blue, green, red,
red-edge, NIR) and the BRSR VI as input features. As a result, for 6 features, mtry = 2.

All the training areas were randomly sampled for a number of pixels that is proportional to the
area of each training site. For each class, approximately 10,000 random pixels in total were employed
for training, resulting in a robust training set with minimized spatially induced bias. The number of
training areas and pixels for each field is shown in Table 3.

Table 3. Number of training areas per class for PBIA.

Figure 1. Soil Crop Other Vegetation Total
Areas Pixels Areas Pixels Areas Pixels Areas Pixels

Barley1 16 10,006 25 10,013 26 10,013 67 30,032
Barley2 11 10,002 15 10,008 15 10,008 41 30,018
Barley3 15 10,003 15 10,008 21 10,011 51 30,022
Corn1 23 10,004 16 10,009 20 10,009 59 30,022
Corn2 23 10,011 28 10,014 17 10,007 68 30,032
Corn3 13 10,008 23 10,008 21 10,006 57 30,022

Oat 22 10,010 20 10,010 21 10,014 63 30,034
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2.3.4. Geographic Object-Based Image Analysis (GEOBIA)

Pre-Segmentation Processing

To generate objects in the GEOBIA methodology optimally, we performed the following
pre-segmentation processing steps for each reflectance band and the BRSR VI used in the multi-resolution
algorithm, in order to have a more consistent segmentation:

1. Set the pixels of the lowest and highest 2% values to the 2% and 98% limit pixel values based on
the image histogram to minimize the number of outliers following [37].

2. Normalize all pixel values in order to avoid features of greater value ranges dominating the ones in
smaller ranges. A linear transformation similar to the linear minimum-maximum normalization
as described in [38,39], is used to rescale pixel values to a new range between 0 and 100 using the
following (Equation (5))

New_pixel_value =
(

Old_pixel_value− a
b− a

)
∗ 100 (5)

with a = 2% limit pixel value and b = 98% limit pixel value.

Segmentation

The fundamental step of a GEOBIA pipeline is the segmentation of the image. For very
high-resolution UAS imagery, which usually has high spectral variability, GEOBIA can be challenging
when trying to construct and parametrize the segmentation algorithm for generating meaningful objects.
We performed the image segmentation with eCognition 9.4 (Trimble Inc., USA) using the multiresolution
segmentation algorithm [40]. This algorithm is one of the most utilized in eCognition. It is an iterative
clustering process that minimizes heterogeneity through a local optimization procedure [41]. It begins
at the individual pixel level by merging bottom-up regions until convergence to a threshold that
represents the object variance limit that is parametrized by the “Scale” parameter, which in turn is
weighted by the “Shape” and “Compactness” parameters ranging from 0.1 to 0.9. The larger the Scale
value, the higher the allowed variability within each segment, resulting in larger objects generation
tolerating more deviation within the homogeneity rules. The Shape parameter determines the spectral
information weight that one would like to give to the objects. The higher the Shape value, the less the
influence of the spectral information on the segmentation. The Compactness parameter determines
how well-defined objects will be with respect to the shape criterion in order to create clear edges.
We applied a Scale value of 30, which was selected by a trial and error procedure as it is usually done in
GEOBIA, to maintain small objects at the field borders in order to discriminate well between different
vegetation types and to consider the natural vegetation transition at the borders. The Shape parameter
was set to a value of 0.1 to use the full weight on the spectral information (color = 1-shape) for good
discrimination between the different vegetation signatures. Finally, for the Compactness parameter,
we used a value of 0.4 which is the median of its value range. The Compactness parameter does not
have any significant impact on the objects because of the very low value of the Shape parameter. All the
parameter values were kept constant for every field. Finally, all features were weighted by an equal
value of 1, as we consider all the input features equally important. Table 4 shows the number of objects
generated for each field and their mean area (m2).
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Table 4. Number of objects and objects mean area (m2) per field.

Field Number of Objects Mean Object Area

Barley1 55,625 5.6
Barley2 8944 3.9
Barley3 11,153 5.5
Corn1 23,118 3.9
Corn2 44,057 7.0
Corn3 58,897 3.9

Oat 38,558 7.8

Object Feature Generation

The selected object features are related to spectral properties of the objects—but not their textural
or spatial (size-shape) properties—because spectral differences are the most meaningful for object
classification in land cover classes in the case of crops. The resulting vector file that has all the objects
which were generated by the segmentation was exported as a georeferenced tiff file to be used in the
following step that consists of generating object features from the original datasets. The following
features were generated for each object from the BRSR VI and the blue, green, red, red-edge and
NIR reflectance bands (Table 5). These features are related to the objects’ spectral properties and are
commonly used for spectral discrimination [42–44]:

1. The mean reflectance or VI;
2. The standard deviation (SD) of the reflectance or VI;
3. The median reflectance or VI;
4. The mean reflectance or VI calculated from the range of the 10th to the 90th percentiles of the

pixel values distribution, removing outliers for more robust statistics;
5. The SD of the reflectance or VI calculated from the range of the 10th to the 90th percentiles of the

pixel values distribution.

Table 5. List of the GEOBIA object features with their associated names used in the study.

Mean Standard
Deviation (SD) Median Mean - Percentiles SD - Percentiles

Blue reflectance Blue_Mean Blue_SD Blue_Median Blue_Perc_Mean Blue_ Perc_SD
Green reflectance Green_Mean Green_SD Green_Median Green_ Perc_Mean Green_ Perc_SD
Red reflectance Red_Mean Red_SD Red_Median Red_ Perc_Mean Red_ Perc_SD

Red-Edge reflectance RedEdge_Mean RedEdge_SD RedEdge_Median RedEdge_ Perc_Mean RedEdge_ Perc_SD
NIR reflectance NIR_Mean NIR_SD NIR_Median NIR_ Perc_Mean NIR_ Perc_SD

BRSR VI BRSR_Mean BRSR_SD BRSR_Median BRSR_ Perc_Mean BRSR_ Perc_SD

Classification

For the GEOBIA RF classification, we used a total of 30 features, resulting in mtry = 5, and the
forest was trained with all the objects that fall within the training polygons. The number of training
objects per class and their mean area (m2) are shown in Table 6. On average, the training objects
represent 8.9% of the study site areas.

Table 6. Number of training objects per class for GEOBIA and their mean object area (m2).

Field Soil Crop Other Vegetation Total Mean Object Area

Barley1 262 4526 5241 10,029 2.8
Barley2 27 1502 542 2071 1.8
Barley3 128 1610 716 2454 2.4
Corn1 86 2419 1808 4313 1.9
Corn2 321 4172 2049 6542 3.6
Corn3 247 6387 3917 10,551 2.2

Oat 194 1930 3192 5316 3.6
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2.3.5. Vectorization

The final map with the field borders and areas is produced by inserting every classified image into a
vectorization pipeline. For the PBIA classified image, the System for Automated Geoscientific Analyses
(SAGA) Majority filter with a radius of 5 pixels [45] was first applied to the classified image in order to
clear misclassifications and salt and pepper noise. For the GEOBIA classified image, the filtering step is
omitted because the objects have the desired homogeneity and consistency. Afterward, the polygonize
function of the GDAL library was employed to vectorize the PBIA majority-filtered image and the
GEOBIA classified image. Finally, the field area is defined by extracting the polygon refined from holes
that has the largest area, after smoothening the borders with vector buffering and debuffering.

2.4. Accuracy Assessment

2.4.1. Actual Field Boundaries and Areas

The accuracies provided by RF give only a comparison between the classified image and the
training areas, but a better accuracy assessment should be made by comparing the field boundaries
and areas to the actual ones. Actual field boundaries and areas can be measured in the field using
GNSS equipment that records in situ border waypoints at regular intervals. Such equipment has a
measurement accuracy that depends considerably on how many GNSS networks the equipment can
receive and how many satellites are present for every measurement. The accuracy is also related to
factors such as the surrounding environment (trees) and the weather conditions. Also, the method is
quite expensive and time-consuming. An alternative is to manually delineate the field boundaries and
areas on the RGB raster composite made with the UAS imagery, such as was done in our previous
work [8]. Indeed, the RGB composite provides enough visual details because it has a pixel size
of ~8cm as it was made with the photogrammetrically stitched UAS images that have an excellent
geolocation accuracy.

2.4.2. Area Goodness of Fit (AGoF)

The first accuracy metric of the method compares the manually- and machine-delineated areas.
It is an area similarity measure that is called the area goodness of fit (AGoF) [46]. AGoF calculates
the overlapping percentage between the manually- and machine-delineated areas for a given field by
Equation (6):

AGoF =
( C

AC + C

)
∗

( C
BC + C

)
(6)

where:

� A is the manually delineated field area (ha);
� B is the machine-delineated field area (ha);
� C is the area of the intersection between the manually- and the machine-delineated crop

polygons (ha);
� AC is the absolute value of the total area difference between A and C (ha): AC = |A−C|;
� BC is the absolute value of the total area difference between B and C (ha): BC = |B−C|.

2.4.3. Boundary Mean Positional Error (BMPE)

The second accuracy metric of the method compares for a given field the manual- and the
machine-delineated boundaries. It is a positional similarity measure that is called the boundary mean
precision error (BMPE) [8]. To compute BMPE, sequential geographical points are first sampled at a
0.5 m interval along the machine-delineated boundaries. Secondly, the minimum distance between
each of these points and the manually delineated boundary is calculated. BMPE is finally the mean
distance between the N machine-delineated boundary points and the manually delineated boundary
polygon (Equation (7)):
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BMPE =
1
N

N∑
i=1

MinDisti (7)

where:

N = number of sample points from the machine delineated boundary;
MinDisti = minimum distance between the i-th point of the machine-delineated boundary and the
manually delineated boundary (m).

3. Results

3.1. Jeffries–Matusita (J–M) Distance

For the PBIA classification, the J–M distances are computed for each pair of the bare soil, crop,
and other vegetation classes, using the original feature space of the BRSR VI, blue, green, red, red-edge,
NIR reflectance and the PBIA training areas (Table 7). On average, the J–M distances are very high,
indicating very good class spectral separabilities. The lowest average (1.75) is between crop and other
vegetation classes, with the lowest one being for the Barley3 field (1.32). The spectral separability for
the Crop-Soil and Soil-Vegetation pairs are excellent, with average J–M distances higher than 1.96.

Table 7. Jeffries–Matusita distance between the three classes computed with the pixel-based image
analysis training areas using the blue, green, red, red-edge, NIR reflectance, and BRSR VI features.

Field Crop-Soil Crop-Vegetation Soil-Vegetation

Barley1 1.999925 1.782663 1.99192
Barley2 1.973503 1.602653 1.962501
Barley3 1.999999 1.322589 1.999988
Corn1 1.999999 1.878568 1.999456
Corn2 1.999999 1.929277 1.989666
Corn3 1.999984 1.898402 1.998441

Oat 1.998787 1.846792 1.961582
Average 1.996028 1.751563 1.986222

For the GEOBIA classification, the J–M distances are computed for each pair of bare soil, crop, and
other vegetation classes from the training objects with the blue, green, red, red-edge, NIR reflectance,
and BRSR images (Table 8). The feature space of the J–M distances is the mean, SD, and median from
all the pixel values within each object and the mean and SD from the pixel values after removing their
10% lower and higher values. All three pairs of classes have excellent class separabilities, with a mean
J–M distance higher than 1.99 and a J–M distance for each field higher than 1.96. The J–M distances for
the GEOBIA classification are on average and for every individual field higher than those with the
PBIA training areas, showing that a better classification can be potentially achieved with the GEOBIA
classification and that the feature selection is very important for discriminating between the probability
distributions of each pair of classes.

Table 8. Jeffries–Matusita distance between the three classes in the case of the geographic object-based
image analysis classification using the full GEOBIA feature list of Table 5.

Field. Crop-Soil Crop-Vegetation Soil-Vegetation

Barley1 1.999999 1.999672 1.999999
Barley2 1.999854 1.960241 1.999805
Barley3 1.999999 1.991511 1.999999
Corn1 1.999999 1.999945 1.999999
Corn2 1.999999 1.999992 1.999643
Corn3 1.999999 1.999989 1.999996

Oat 1.999999 1.999997 1.999999
Average 1.999978 1.993049 1.999920
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3.2. Classification Accuracy

The OOB error rate from the RF is presented in Table 9 for each field in the case of the PBIA and
GEOBIA classification. For both classifications, the lowest OOB error rate occurs for the Corn3 field,
while the highest OOB error rate occurs for the Barley2 field.

Table 9. Random forest pixel-based image analysis and geographic object-based image analysis
out-of-bag error rates (%) as a function of the field.

Field PBIA GEOBIA

Barley1 2.96 2.17
Barley2 7.17 6.23
Barley3 5.11 4.97
Corn1 1.38 1.32
Corn2 1.33 1.02
Corn3 0.89 0.65

Oat 1.77 1.20
Average 2.94 2.51

The related confusion matrices including the user’s, producer’s, and overall classification
accuracies (UA, PA, OA) and errors of omission and commission (EO, EC) are shown for each
field in Table 10 for the PBIA RF classifier applied to the blue, green, red, red-edge, NIR reflectance and
BRSR VI features and in Table 11 for the GEOBIA RF classifier applied to objects’ generated features
for the blue, green, red, red-edge, NIR reflectance and the BRSR VI. In both cases, the highest overall
classification accuracies and the lowest OOB error rates were observed for the Corn3 field. This is
the opposite in the case of the Barley2 field, mainly because of confusion between the crop and the
bordering vegetation due to a vegetation transition and mixture at the field borders. On average,
the overall classification accuracy with the PBIA classification was slightly lower than with the GEOBIA
classification (97.06% versus 97.49%). This is also the case for every individual field.

Table 10. Confusion matrices and associated class user’s accuracies, producer’s accuracies, overall
accuracies, errors of omission and errors of commission obtained by applying the PBIA random forest
classifier to the blue, green, red, red-edge, near-infrared reflectance and blue-red simple ratio images.
The bold diagonal number elements are the correctly classified pixels for each class.

Field Class Soil Crop Other Vegetation UA (%) EC (%) OA (%)

Barley1 Soil 9922 1 83 99.16 0.84

97.04
Crop 13 9635 365 96.22 3.78

Other vegetation 58 368 9587 95.75 4.25
PA (%) 99.29 96.31 95.54
EO (%) 0.71 3.69 4.46

Barley2 Soil 9937 40 25 99.35 0.65

92.83
Crop 154 9042 812 90.35 9.65

Other vegetation 71 1051 8886 88.79 11.21
PA (%) 97.79 89.23 91.39
EO (%) 2.21 10.77 8.61

Barley3 Soil 9998 4 1 99.95 0.05

94.89
Crop 5 9517 486 95.09 4.91

Other vegetation 6 1031 8974 89.64 10.36
PA (%) 99.89 90.19 94.85
EO (%) 0.11 9.81 5.15

Corn1 Soil 9998 0 6 99.94 0.06

98.62
Crop 0 9802 207 97.93 2.07

Other vegetation 9 192 9808 97.99 2.01
PA (%) 99.91 98.08 97.87
EO (%) 0.09 1.92 2.13
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Table 10. Cont.

Field Class Soil Crop Other Vegetation UA (%) EC (%) OA (%)

Corn2 Soil 9974 0 37 99.63 0.37

98.67
Crop 4 9843 167 98.29 1.71

Other vegetation 81 109 9817 98.10 1.90
PA (%) 99.15 98.90 97.96
EO (%) 0.85 1.10 2.04

Corn3 Soil 9982 1 25 99.74 0.26

99.11
Crop 0 9884 124 98.76 1.24

Other vegetation 36 82 9888 98.82 1.18
PA (%) 99.64 99.17 98.52
EO (%) 0.36 0.83 1.48

Oat Soil 9974 1 35 99.64 0.36

98.23
Crop 8 9786 216 97.76 2.24

Other vegetation 36 235 9743 97.29 2.71
PA (%) 99.56 97.65 97.49
EO (%) 0.44 2.35 2.51

Table 11. Confusion matrices and associated class user’s accuracies, producer’s accuracies, overall
accuracies, errors of omission and errors of commission obtained by applying the GEOBIA random
forest classifier to the blue, green, red, red-edge, near-infrared reflectance and blue-red simple ratio
images. The bold diagonal number elements are the correctly classified objects for each class.

Field Class Soil Crop Other Vegetation UA (%) EC (%) OA (%)

Barley1 Soil 252 2 8 96.18 3.82

97.83
Crop 3 4440 114 97.43 2.57

Other vegetation 7 84 5119 98.25 1.75
PA (%) 96.18 98.10 97.67
EO (%) 3.82 1.90 2.33

Barley2 Soil 23 10 8 56.10 43.90

93.77
Crop 2 1412 27 97.99 2.01

Other vegetation 2 80 507 86.08 13.92
PA (%) 85.19 94.01 93.54
EO (%) 14.81 5.99 6.46

Barley3 Soil 126 2 1 97.67 2.33

95.03
Crop 2 1524 33 97.75 2.25

Other vegetation 0 84 682 89.03 10.97
PA (%) 98.44 94.66 95.25
EO (%) 1.56 5.34 4.75

Corn1 Soil 86 0 5 94.51 5.49

98.68
Crop 0 2400 33 98.64 1.36

Other vegetation 0 19 1770 98.94 1.06
PA (%) 100.00 99.21 97.90
EO (%) 0.00 0.79 2.10

Corn2 Soil 310 0 13 95.98 4.02

98.98
Crop 1 4157 28 99.31 0.69

Other vegetation 10 15 2008 98.77 1.23
PA (%) 96.57 99.64 98.00
EO (%) 3.43 0.36 2.00

Corn3 Soil 241 3 13 93.77 6.23

99.36
Crop 0 6366 28 99.56 0.44

Other vegetation 6 18 3876 99.38 0.62
PA (%) 97.57 99.67 98.95
EO (%) 2.43 0.33 1.05

Oat Soil 188 0 7 96.41 3.59

98.80
Crop 2 1919 40 97.86 2.14

Other vegetation 4 11 3145 99.53 0.47
PA (%) 96.91 99.43 98.53
EO (%) 3.09 0.57 1.47

(*)mean reflectance or VI; standard deviation (SD) of the reflectance or VI; median reflectance or VI; mean reflectance
or VI after removing the lowest and highest 10% reflectance or VI pixel values; SD of the reflectance or VI after
removing the lowest and highest 10% reflectance or VI pixel values.
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3.3. Random Forest (RF) Variable Importance

The variable importance plots show by decreasing order each feature’s MeanDecreaseAccuracy
value for the RF classification. These values have no physical meaning apart from a feature importance
comparison metric within the feature space. For the PBIA-RF classification, the red-edge and NIR
reflectance images appear to be the most important input features (Figure 4). For the GEOBIA-RF
classification, the red and NIR reflectance images appear to be the most important input features
(Figure 5).
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Figure 5. Variable importance plot from the geographic object-based image analysis random forest 
classification for the following fields: (a) Barley1; (b) Barley2; (c) Barley3; (d) Corn1; (e) Corn2; (f) 
Corn3; (g) Oat. 

3.4. Field Area and Border Maps 

Figure 5. Variable importance plot from the geographic object-based image analysis random forest
classification for the following fields: (a) Barley1; (b) Barley2; (c) Barley3; (d) Corn1; (e) Corn2; (f) Corn3;
(g) Oat.
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3.4. Field Area and Border Maps

Both PBIA (Figure 6) and GEOBIA (Figure 7) methodologies show very satisfying results in regard
to the final border vector products. The field border maps after the vectorization pipelines show a
good fit comparing the machine- and the manually delineated borders. The GEOBIA classification
field borders are cleaner and more robust. The PBIA misclassifications between all classes have to be
dealt with using greedy expensive algorithms for noise removal. For PBIA, the border comparison
displays the best result for Corn1 and worst for Oat (Figure 6). For GEOBIA, the best result is achieved
for Corn1 and the worst for Barley1 (Figure 7). A visual comparison between the manual and machine
delineated field borders allows the detection of several minor factors that lead to misclassifications and
border skewness explaining most of the divergence between the machine- and the manually delineated
borders. For all the crop fields at their borders, such factors are surrounding tree canopies and canopy
shadows on top of the crops and transitional mixture of wild weeds and crops.
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Figure 6. Red, green and blue (RGB) image composites comparing the manually-delineated and 
PBIA-delineated borders for the following fields: (a) Barley1, (b) Barley2, (c) Barley3, (d) Corn1, (e) 
Corn2, (f) Corn3, (g) Oat; (h) Legend. The manually delineated borders are represented in yellow. 
The machine delineated borders are represented in red. 

Figure 6. Red, green and blue (RGB) image composites comparing the manually-delineated and
PBIA-delineated borders for the following fields: (a) Barley1, (b) Barley2, (c) Barley3, (d) Corn1,
(e) Corn2, (f) Corn3, (g) Oat; (h) Legend. The manually delineated borders are represented in yellow.
The machine delineated borders are represented in red.
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Figure 7. RGB image composites comparing the manually-delineated and GEOBIA-delineated 
borders for the following fields: (a) Barley1, (b) Barley2, (c) Barley3, (d) Corn1, (e) Corn2, (f) Corn3, 
(g) Oat; (h) Legend. The manually delineated borders are represented in yellow. The machine 
delineated borders are represented in red. 
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important difference between both classifications for the mean AGoFs (98.91% and 98.78%, 
respectively). Concerning BMPE (in m), it is on average slightly higher with the GEOBIA 
classification (0.76 m) than with the PBIA classifications (0.68 m), indicating that PBIA is a slightly 
more accurate method on average (Table 13). For most of the fields, the difference is less than 0.1 m 
and thus is not important. 
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Figure 7. RGB image composites comparing the manually-delineated and GEOBIA-delineated borders
for the following fields: (a) Barley1, (b) Barley2, (c) Barley3, (d) Corn1, (e) Corn2, (f) Corn3, (g) Oat; (h)
Legend. The manually delineated borders are represented in yellow. The machine delineated borders
are represented in red.

3.5. Accuracy Metrics

Table 12 compares the AGoF (in %) between the PBIA and GEOBIA classifications. There is no
important difference between both classifications for the mean AGoFs (98.91% and 98.78%, respectively).
Concerning BMPE (in m), it is on average slightly higher with the GEOBIA classification (0.76 m) than
with the PBIA classifications (0.68 m), indicating that PBIA is a slightly more accurate method on
average (Table 13). For most of the fields, the difference is less than 0.1 m and thus is not important.

Table 12. Area goodness of fit (%) computed by comparing the manually- and machine-delineated field
areas for the pixel-based image analysis and geographic object-based image analysis classifications.

Field PBIA GEOBIA (PBIA-GEOBIA)

Barley1 98.91 98.40 0.51
Barley2 98.89 98.32 0.57
Barley3 99.03 98.96 0.07
Corn1 99.10 99.03 0.07
Corn2 99.26 99.47 –0.21
Corn3 99.74 99.68 0.06

Oat 97.48 97.62 –0.14
Average 98.91 98.78 0.13

Table 13. Boundary mean positional error (in meters) computed by comparing the manually- and
machine-delineated field boundaries for the pixel-based image analysis and geographic object-based
image analysis classifications.

Field PBIA GEOBIA (PBIA-GEOBIA)

Barley1 1.05 1.72 −0.67
Barley2 0.62 0.69 −0.07
Barley3 0.58 0.63 −0.05
Corn1 0.26 0.24 0.02
Corn2 0.61 0.44 0.17
Corn3 0.32 0.37 −0.05

Oat 1.34 1.21 0.13
Average 0.68 0.76 −0.08



Remote Sens. 2020, 12, 2640 20 of 24

4. Discussion

We performed PBIA and GEOBIA with RF classification to delineate crop field boundaries and
extract field areas using UAS multispectral imagery acquired over corn, oat, and barley vegetated fields.
In both cases, we achieved an average classification accuracy higher than 97%, a mean AGoF greater
than 98%, and a mean BMPE lower than 0.8 m. All these values are on the same order of magnitude as
Vlachopoulos et al. [8] who applied the mean-shift clustering and the RF classifier to perform field
areas and boundaries delineation from UAS imagery acquired over bare soil fields. The average overall
classification accuracies in this study were higher than De Luca et al. [9] (89–97.6%) who applied RF and
SVM to RGB and NIR UAS imagery and on the same order of magnitude as Laliberte and Rango [10]
(95–100%), who used GEOBIA with decision tree analysis on UAS RGB imagery soil, shrubs, and grass
demarcation. The lower accuracies we obtained with the Barley1 and Oat fields are mainly due to
the surrounding tree shadows and tree canopies on top of the crops, the transitional mixture of wild
weeds and crops at the field boundaries, and the sparsely crop-planted areas at the borders.

Since the AGoF and BMPE values do not differ too much between the two methodologies,
this indicates that the methods can be considered equally strong. However, each methodology
has its advantages and disadvantages. The PBIA methodology has fewer steps but is more time-
and computing resource-consuming mainly because of the majority filtering step. For the GEOBIA
methodology, such filtering is not needed because the classified objects are homogenous and do not
have individual pixels, as shown in Figure 7. Because the GEOBIA methodology classifies objects but
not pixels, the number of training samples are much lower than those of PBIA, thus resulting in a
quicker RF training and classification, even if the feature space for the GEOBIA method has a higher
number of input features than that of the PBIA method. The feature space in each methodology is
related to the fact that we used either pixels or objects. In PBIA, the features are five reflectance bands
and one VI. For GEOBIA, the feature space is the mean, median, standard deviation of the pixel values
and the mean and standard deviation of the pixel values in the range of the 10th and 90th percentile
associated with the objects for each reflectance band and the BRSR VI. As a result, a direct comparison
cannot be done for the two feature spaces. However, it is worth mentioning that we use the same
reflectance bands and VI both for PBIA and GEOBIA, thus making the original information a common
ground in both methodologies. The high number of features used in GEOBIA is needed firstly to add
discriminatory information to each object and secondly because the training dataset in GEOBIA is
limited as it is related to a limited number of objects. In order to construct a robust training dataset and
an informative feature space, one needs to have multiple spectral characteristics of the objects that
allow having the appropriate number of input features for the classification, by excluding outliers.

The GEOBIA method utilizes the eCognition software for image segmentation, which is
a commercial product that may not always be available. It would be interesting to explore
other segmentation methods such as the open-source Orfeo Toolbox (OTB) [47] and compare
their performance.

Both methods rely on random forests as the classifier. RF is an open-source ML algorithm that is
easily implemented, cost-effective, and conveniently replicated and generalized to other crops and
fields. The training data for the RF algorithm have a very high level of randomness for both PBIA
and GEOBIA due to the RF methodology used for feature selection and bootstrapping. Specifically,
training samples for PBIA are randomly selected from all the training areas. This randomness reduces
the bias from both the user and algorithm sides making both methodologies scalable. The proposed
methodologies are better performing in comparison to the convolutional neural network method
proposed by Crommelinck et al. [6] as the latter requires distinct features such as roads and water
bodies to detect cadastral plot boundaries. Our methodologies do not need multitemporal series of
images such as by DeLuca et al. [9] and Persello et al. [1]. The PBIA methodology used in this study
does not need commercial software, whereas Fetai et al. [7] employ ENVI which may be inaccessible
due to commercial costs.
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The time to perform both methodologies depends on the computational power of the computer
used and the size of the UAS imagery. For example, to apply the proposed methodologies, computational
time might be in the order of seconds or a few minutes with a standard server-driven solution and
the order of minutes with a personal computer. For the fields we tested, the proposed methodologies
were more efficient than the manual delineation. Additionally, manual delineation is quite demanding
as fields can be very irregular. Also, it is highly laborious to outline the borders of a crop field with
hundreds or thousands of geographical points. Another advantage of the proposed methodology
is that it can be used on any number and size of fields. It is therefore service-driven, scalable, and
refraining from user bias.

5. Conclusions

This study presents a method to delineate field areas and boundaries from UAS multispectral
images that were acquired over 7 vegetated fields having various crops (barley, corn, and oat).
The imagery was classified using the non-parametric supervised classifier random forests which
was applied either to the raw images (pixel-based image analysis or PBIA) or the images that were
previously segmented with the multiresolution segmentation algorithm implemented in eCognition
(geographic object-based image analysis, or GEOBIA). Both methodologies classify the images in three
classes (soil, crop, other vegetation) using the blue, green, red, red-edge, NIR reflectance bands and
the BRSR VI. For PBIA, the RF classification used the class statistics derived from the training areas.
The GEOBIA classification used the following statistical parameters for each object from the same
training areas: mean reflectance or VI; standard deviation (SD) of the reflectances or VIs; median
reflectance or VI; mean reflectance or VI after removing the lowest and highest 10% reflectance or VI
pixel values; SD of the reflectances or VIs after removing the lowest and highest 10% reflectance or VI
pixel values. The accuracy of both methods was assessed using the classification accuracies and two
metrics following Vlachopoulos et al. [8]: area goodness of fit (AGoF) for the field area and boundary
mean positional error (BMPE) for the crop borders. Both classifications performed exceptionally well
with an average accuracy higher than 97%, leading to a mean AGoF greater than 98% and a mean
BMPE lower than 0.8 m. Also, both classification methods rely on random forests, an open-source ML
algorithm that is easily implemented, highly efficient, and can be replicated and generalized to other
crops and fields.

Our excellent results indicate only some minor divergences between the photo-interpreted and
machine-delineated field areas and boundaries which depend on some field-specific characteristics,
such as tree shadows, tree canopies, the transitional mixture of vegetation and crop plants at the field
boundaries, and sparsely cropped areas at the borders. Further research is needed to investigate
the effect of these factors on the results. While there were no significant differences between both
classification methods in terms of AGoF and BMPE values, the GEOBIA classification shows more
promising results than the PBIA classification, because the first method is faster to perform, gives higher
classification accuracies and class separability, does not need a post-classification filtering process
and it is less intensive in terms of data processing. However, compared to the PBIA classification,
it depends on the use of the eCognition software which is not free. Future research is needed to perform
GEOBIA segmentation with open-source segmentation algorithms. Also, the GEOBIA classification
we tested uses a single segmentation step and further work is needed to assess whether an eCognition
hierarchy of processes can refine and simplify the segmentation and thus the classification. Our
results were obtained using multispectral UAS imagery acquired under specific flight altitudes and
clear sky conditions as well as over particular crops (barley, oat, corn). Further work is needed to
test UAS imagery acquired at a different flight altitude that leads to a different GSD. It will also be
interesting to test UAS imagery acquired under diverse weather conditions and on other crops. Finally,
the scalability of the proposed methodologies can be tested and generalized with sufficient training
data from other crops and land-cover classes. Our study is an important step towards the development
of an operational and efficient methodology for the automatic delineation of field boundaries and areas
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from UAS multispectral data with a combined ML pipeline and vectorization steps, to quickly acquire
field areas and boundaries for various applications in precision agriculture, for example, determining
crop insurance premiums.
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