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Abstract: Compressive sensing (CS) has been widely utilized in inverse synthetic aperture radar
(ISAR) imaging, since ISAR measured data are generally non-completed in cross-range direction,
and CS-based imaging methods can obtain high-quality imaging results using under-sampled data.
However, the traditional CS-based methods need to pre-define parameters and sparse transforms,
which are tough to be hand-crafted. Besides, these methods usually require heavy computational
cost with large matrices operation. In this paper, inspired by the adaptive parameter learning
and rapidly reconstruction of convolution neural network (CNN), a novel imaging method, called
convolution iterative shrinkage-thresholding (CIST) network, is proposed for ISAR efficient sparse
imaging. CIST is capable of learning optimal parameters and sparse transforms throughout the CNN
training process, instead of being manually defined. Specifically, CIST replaces the linear sparse
transform with non-linear convolution operations. This new transform and essential parameters
are learnable end-to-end across the iterations, which increases the flexibility and robustness of CIST.
When compared with the traditional state-of-the-art CS imaging methods, both simulation and
experimental results demonstrate that the proposed CIST-based ISAR imaging method can obtain
imaging results of high quality, while maintaining high computational efficiency. CIST-based ISAR
imaging is tens of times faster than other methods.

Keywords: inverse synthetic aperture radar (ISAR); compressive sensing (CS); convolution neural
network-iterative shrinkage-thresholding algorithm (CIST); radar imaging

1. Introduction

Inverse synthetic aperture radar (ISAR) imaging is capable of imaging the non-cooperative targets,
such as aircraft, ships, missiles, etc. in all-day and all-time environment. Thus, ISAR has been wildly
applied in various field, e.g., target detection and recognition, missile defense, space surveillance,
etc. [1,2]. Generally, ISAR can achieve high range resolution by transmitting wide bandwidth signal,
and achieve high cross-range resolution through targets’ relative rotational motion. Traditional ISAR
imaging methods are mainly based on the Range-Doppler (RD) algorithm [3,4], i.e., Fourier transform
or matched filter. To achieve high cross-range resolution, they require the raw echo data to be complete,
otherwise it may lead to low imaging quality in cross-range direction. However, since the targets
of ISAR are mainly non-cooperative moving target, radar is likely to lost targets while observing.
Therefore, a high cross-range resolution ISAR imaging method with limited data is meaningful.

Compressive sensing (CS) has been successfully utilized to reconstruct sparse signals with limited
measurements [5], so it has been wildly used in ISAR sparse imaging [6]. Many CS-based ISAR
imaging methods have been proposed in recent years [7–10]. Zhang et al. introduced compressed
sensing into ISAR imaging, and showed that CS-based imaging methods outperform the RD types
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methods in resolution [11]. Wang et al. proposed a greedy Kalman filter based sparse ISAR imaging
method [7], which exploits the sparsity in wavelet domain to enhance the reconstruction. Liu et al.
proposed a fully automated ISAR imaging algorithm based on sparse Bayesian learning, but it was
restricted by computational load [12]. In [13], Zhang et al. proposed a combination of local sparsity
constraint and nonlocal total variation (NLTV) to improve the imaging quality. Zhang et al. used
alternating direction method of multipliers (ADMM) [14] to substitute the matrix inversion in sparse
Bayesian learning, and, therefore, dramatically improve computation efficiency [10], which takes 2–4 s
to reconstruct a 256× 256 ISAR image.

Conventional CS-based ISAR imaging has made progress in recent years, since it has compensated
a major flaw of RD types’ ISAR imaging algorithm. However, there are several disadvantages of
CS-based ISAR imaging methods: (1) Conventional CS-based imaging methods generally consume
plenty of time, since they require lots of computing power on iterations and matrix inversion. (2) The
optimization parameters (e.g., regularization parameter and threshold) are usually hand-crafted before
the imaging process and it’s quite challenging to pre-define because they varies from different types
of data. However, these parameters are essential for the imaging quality. (3) The sparse transform is
pre-fixed. ISAR CS imaging uses mainly Fourier transform, although some work has utilized wavelet
to improve the reconstruction [7], a fixed sparse transform can not ensure the best performance for
different types of data. These disadvantages restrict the applications of conventional CS-based ISAR
imaging methods to a great extent.

On the other hand, deep-network-based methods have been utilized to recover sparse
signal [15–17], hence, a few deep-network-based ISAR CS imaging methods have been proposed
recently. Hu et al. utilize a U-net-based network in ISAR imaging [8], which can use very few training
samples as compared to other network-based imaging networks, but it only processes in image domain.
Hu et al. also propose a so-called deep ADMM network (DAN) constructed by unfolding the traditional
ADMM optimization algorithm [9], which can use much fewer measurements than conventional
CS-based imaging methods to reconstruct high-quality ISAR image. Therefore, network-based ISAR
CS imaging methods has become more feasible.

Among the typical conventional CS based ISAR imaging algorithms, such as Iterative Shrinkage-
Thresholding Algorithm (ISTA) [18], Approximate Message-Passing (AMP) [19], Orthogonal Matching
Pursuit (OMP) [20,21], ADMM [9,10], Sparse Bayesian learning (SBL) [22,23], and Sparsity Bayesian
Recovery via Iterative Minimum (SBRIM) [24] algorithm, ISTA has the simplest structure. Accordingly,
it can be easily modified into a convolutional network, while maintaining its advantage on flexibility.
In order to reduce computational time and increase the robustness of conventional algorithms, we seek
help from deep networks for its powerful learning capability.

In this paper, we propose a convolution iterative shrinkage-thresholding (CIST)-based ISAR
sparse imaging method. CIST is based on ISTA, and it is composed with convolution neural network
(CNN) to improve its robustness [25]. CIST unfolds the iterations of ISTA, and replaces the normal
sparse transform with convolution operations. In the process of imaging ISAR target, CIST has
shown its advantages. Firstly, the essential parameters (e.g., thresh-hold and stepsize) are learned
end-to-end across iterative processes. Secondly, additional layer (involving convolution, Leaky
Rectified Linear Unit (LReLU), and convolution) plays the role as nonlinear sparse transformation,
which is self-adaptive updated through iterations. In addition, we use LReLU as activation function,
since negative numbers are also essential in ISAR imaging. With the learnable parameters and
self-adaptive nonlinear sparse transform, CIST has high flexibility and robustness. Furthermore, CIST
has high computational efficiency. Once the CIST is well trained, it takes CIST less than one second to
image a ISAR scene with size of 1024× 2048, which is tens of times faster than conventional algorithms.

The rest of this paper is organized, as follows. Section 2 presents the geometry of ISAR imaging
and conventional ISTA-based ISAR sparse method. In Section 3, we introduce the architecture of
proposed CIST-based ISAR imaging method and training strategy. In Section 4, simulated and
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measured experimental results and analysis are presented. In Section 5, we discuss the influence of the
convolution part in CIST. The conclusions and future work are drawn in Section 6.

2. ISAR Sparse Imaging Methods

In this section, we firstly introduce the typical signal model of ISAR imaging system. Subsequently,
we briefly elaborate how ISTA works.

2.1. ISAR Signal Model

Figure 1 presents the ISAR imaging model. The non-cooperative target is moving with relative
motion, including rotational motion and translational motion. The translational motion error is
supposed to be well compensated through range alignment and phase adjustment [26,27]. R0 denotes
the distance from radar to target center O. Supposed that the radar transmits a linear frequency
modulated pulse signal sT , which can be expressed as:

sT(τ) = AT · rect
( τ

T

)
· exp

[
j2π

(
fc +

γ

2
τ
)

τ
]

, (1)

where τ, T, AT , fc, and γ denotes the fast time, pulse repetition period, signal amplitude,
carrier frequency, and the chirp rate, respectively; rect(·) denotes the unit rectangular function,
as follows:

rect
( τ

T

)
=

{
1, |τ| ≤ T/2
0, |τ| > T/2

(2)

During the coherent processing interval (CPI), rotational angle changes ∆θ(t) = θ
′ − θ, then the

instantaneous distance R(t) from P(x, y) to radar becomes approximately:

R(t) ∼= R0 + x sin ∆θ(t) + y cos ∆θ(t)

≈ R0 + xθ(t) + y,
(3)

since the rotation angle change ∆θ(t) is small enough during CPI. Additionally, ∆θ(t) can be expanded
by Taylor to:

∆θ(t) = ωt +
1
2

αt2 + o(t3), (4)

where ω denotes rotation rate and α denotes its acceleration. Subsequently, the radar returned signal
from P(x, y) can be presented as:

sR(τ, t) =AR · rect
(

τ − td
T

)
rect

(
t

Ta

)
· exp

{
j2π

[
fc(τ − td) +

γ

2
(τ − td)

2
]}

,
(5)

where c, t, AR, and Ta denote the speed of light, slow time, echoed signal amplitude, and the
observation duration, respectively. Additionally, td = 2R(t)/c denotes the round-trip time delay
between radar and target. After range compression, i.e., Fourier transform along the range direction,
the echoed signal can be expressed as:

s(τ, t) = A · rect
(

t
Ta

)
sinc[γT(τ − td)] · exp(−j4π fctd), (6)

where A is the signal amplitude after range compression. The target of ISAR are generally moving,
so td may lead to Doppler ratio. Subsequently, we substitute Equations (3) and (4) into Equation (6):
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s(τ, t) =A · rect
(

t
Ta

)
sinc[γT(τ − 2(R0 + y)

c
)]

· exp(−j4π
2(R0 + y)

λ
) · exp[−j2π( f t +

1
2

βt2)],

(7)

where λ is the wavelength, f = 2ωx/λ denotes Doppler frequency, and β = 2αx/λ denotes the
Doppler rate. Suppose that range cell τ = 2(R0 + y)/c contains N scatters at different cross-range
locations, the returned signal in the range cell can be expressed as:

s(t) =
N

∑
i=1

Ai · rect
(

t
Ta

)
· exp[−j2π( fit +

1
2

βit2)], (8)

where we have neglected the constant phase term.

O
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Figure 1. ISAR imaging model.

When considering that the rotational motion is assumed to be stationary in RD-type algorithms,
rotation acceleration α is zero, so Equation (8) can be simplified as:

s(t) =
N

∑
i=1

Ai · rect
(

t
Ta

)
· exp(−j2π fit). (9)

After applied cross-range Fourier transform and ignoring the constant phase term, the final ISAR
imaging result can be formulated, as follows:

s( fd) =
N

∑
i=1

Ai · sinc [Ta( fd − fi)] , (10)

where fd denotes the frequency domain. It can be seen from Equation (10) that the resolution
in cross-range direction is proportional to CPI Ta. However, the targets of ISAR are usually
non-cooperative, so the CPI is greatly limited, leading to low cross-range resolution for RD imaging
algorithm. As a result, ISAR CS imaging with limited data becomes more significant and practical.

When the CPI is very short and takes noise into account, the echoed signal from a single point
after ranged compression in Equation (9) can be rewritten as:

s′(t) =
M

∑
i=1

Ai · rect
(

t
Ta

)
· exp(−j2π fit) + n(t), (11)
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where M is the total number of scattering centers, but M < N since the observation time is shorter
and some scattering centers are lost; n(t) denotes the independent and identically distributed complex
Gaussian noise. Equation (11) can be formulated in matrix form, as follows:

sss′ =HHHwww + nnn, (12)

where www ∈ CN , nnn ∈ CM, and sss′ ∈ CM denote weighted vector, Gaussian noise, and observed data,
respectively. The time and frequency resolution can be defined as ∆t and ∆ fd. Supposing that the
pulse repetition frequency is fr, then ∆t = 1/ fr and ∆ fd = fr/N. Accordingly, matrixHHH ∈ CM×N can
be presented, as follows:

HHH =


ϕ1,1 ϕ1,2 · · · ϕ1,N
ϕ2,1 ϕ2,2 · · · ϕ2,N

...
...

...
ϕM,1 ϕM,2 · · · ϕM,N

 , (13)

where ϕm,n = exp(−j2π · n∆t ·m∆ fd), 0 6 n 6 N, 0 6 m 6 M. After using the Fourier transform along
cross-range direction, i.e., to achieve cross-range compression, the ISAR imaging result is as follows:

sss′ =HHHFFFwww + nnn, (14)

where FFF ∈ CN×N is the cross-range Fourier transform matrix. Equation (14) shows the linear
relationship between the imaging result and input echo data, which is crucial to construct the CS-based
ISAR imaging model.

2.2. ISTA Sparse Imaging

In general, given the fine ISAR image xxx ∈ CN in cross-range direction, linear measurements
yyy ∈ CM, M < N and the measurements matrix ΦΦΦ ∈ CM×N , CS-based ISAR imaging model can be
presented as:

yyy = Φxxx + nnn. (15)

Specifically, yyy denotes the measurements in data domain (can be regarded as echoed data);
measurements matrix Φ is constructed by Φ = DDDFFF , whereDDD ∈ CM×N and FFF ∈ CN×N denotes the
down-sampling matrix and Fourier transform matrix, respectively. To obtain the imaging result xxx in
Equation (15), regularized minimization under the CS theorem can be presented, as follows:

x̂xx = arg min
xxx

1
2
‖yyy−ΦΦΦxxx‖2

2 + λ ‖ΨΨΨxxx‖1 , (16)

where x̂xx ∈ Cn denotes the ISAR scene to be imaged, λ denotes the regularization coefficient, and ΨΨΨxxx
denotes the transform coefficients of xxx with respect to sparse transform ΨΨΨ ∈ CM×N . The sparsity of ΨΨΨxxx
is constrained by the l1 norm [28,29].

The sparse imaging problem presented in Equation (16) can be solved with ISTA as the following
iterative steps: 

vvv(k) = yyy−ΦΦΦxxx(k)

zzz(k) = xxx(k) + γΦΦΦTvvv(k)

xxx(k+1) = arg min
xxx

1
2

∥∥∥xxx− zzz(k)
∥∥∥2

2
+ λ ‖ΨΨΨxxx‖1 .

(17)

Here, k denotes the ISTA iteration number; vvv(k) denotes the residual measurement error in
iteration-k; γ is the stepsize. To solve the last step in Equation (17) (so-called proximal mapping) [30,31],
an efficient way is using the soft thresh-holding shrinkage, as follows:

xxx(k+1) = ηst(xxx(k) + γΦΦΦTvvv(k); λ), (18)
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where ηst(·) denotes the soft thresh-holding shrinkage function; λ is the shrinkage. ηst(·) function is
defined as:

ηst(r; λ) = sgn
(
rj
)

max
{∣∣rj

∣∣− λ, 0
}

. (19)

We let zzz(k) denote the input of ηst(·) function in Equation (18):

zzz(k) = xxx(k) + γΦΦΦTvvv(k)

= xxx(k) + γΦΦΦT(yyy−ΦΦΦxxx(k)).
(20)

Hence, the second part of Equation (17) can be rewritten as

xxx(k+1) = ηst(zzz(k), λ). (21)

With iterations from Equations (20) and (21), the traditional ISTA can obtain a satisfactory imaging
result. However, it requires extensive computation, and the parameters (e.g., thresh-hold λ, stepsize γ,
and sparse transform ΨΨΨ) need to be carefully pre-defined [32] in order to obtain satisfactory results,
which are not easy to be optimally hand-crafted.

3. Proposed CIST-Based Imaging Method

In the proposed CIST-based ISAR sparse imaging method, iterations of ISTA are strictly mapped
to a deep network, as shown in Figure 2. Each iteration corresponds to one phase of ISTA operation,
as illustrated in Figure 3. CIST unfolds the conventional ISTA, and parameters in CIST are set to be
learnable, which means essential parameters (e.g., λ and γ) can achieve optimal value automatically
through iterations. In addition, the linear transform ΨΨΨ is substituted by a more general nonlinear
transform T (·), which contains two convolution operations and a LReLU in between, as illustrated in
Figure 2. In order to increase the capacity of the proposed method, the convolution size is set by N f ,
where N f is the filter size of convolution kernel (by default is 32). And the filter size of convolution
kernel is set by 3× 3. Inspired by ResNet [33], a skip connection is also applied (from the start to end
of one phase, as the red line in Figure 3 shows), in order to avoid vanishing gradient.

Figure 2. Convolution iterative shrinkage-thresholding (CIST) network in Kth phase.

Figure 3. CIST network for Inverse synthetic aperture radar (ISAR) imaging.
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3.1. Network Model

To map ISTA into a convolutional network, the linear transform ΨΨΨ is replaced by a nonlinear
transform T (·), where T (xxx) = BBB ⊗ (LReLU(AAA ⊗ xxx)), ⊗ denotes convolution operation, AAA and BBB
denote the first and second convolution respectively. Subsequently, Equation (16) can be rewritten as:

x̂xx = arg min
xxx

1
2
‖yyy−ΦΦΦxxx‖2

2 + λ ‖T (xxx)‖1 , (22)

T (·) is shown in Figure 2, framed by a red dotted rectangle. By Solving Equation (22) with ISTA
and applying the new sparse transform T (·) to x, we can obtain a new form of Equation (16):

xxx(k) = arg min
xxx

1
2

∥∥∥xxx− zzz(k)
∥∥∥2

2
+ λ ‖T (xxx)‖1 . (23)

In the CIST, Equations (20) and (21) are mapped into a new form. Firstly, stepsize γ is allowed to
be variable across iterations, so the first part of CIST is as follows:

zzz(k) = xxx(k−1) − γ(k)ΦΦΦT(ΦΦΦxxx(k−1) − yyy). (24)

Secondly, compute xxx(k+1) in Equation (21) associated with nonlinear transform T (·), which can
be presented in matrix form as:

T (xxx) = BBB⊗ (LReLU(AAA⊗ xxx)) =

{
B · Axxx, x > 0
ρ2B · Axxx, x < 0

(25)

where ρ is a coefficient in LReLU (set to 0.01 by default) and AAA and BBB can be any matrices.
Subsequently, E[‖xxx− E[xxx]‖2

2] and E[‖T (xxx)− E[T (xxx)]‖2
2] are linear related, i.e., the linear relationship

can be expressed, as follows: ∥∥∥T (xxx)− T (zzz(k))∥∥∥2

2
≈ α

∥∥∥xxx− zzz(k)
∥∥∥2

2
, (26)

where α is a scalar and only related to T (·), By applying the linear relationship in Equation (26) into
Equation (23), we obtain:

xxx(k) = arg min
xxx

1
2

∥∥∥T (xxx)− T (zzz(k))∥∥∥2

2
+ σ(k) ‖T (xxx)‖1 , (27)

where σ = λα. Similar to Equation (21), the solution processes of Equation (23) are as follows:

T (xxx(k)) = ηst(T (zzz(k)), σ(k)) (28)

Here, step size γ(k) and regularization parameter σ(k) are set to be variables. After every iteration,
they will update their values, which is more flexible than traditional ones.

To solve xxx(k) in Equation (28), a left inverse of T (·) is needed, so we introduce T̃ (·), such that
T̃ · T = EEE, where EEE is identity matrix. Taking T̃ (·) into Equation (28), we can obtain the final
presentation of xxx(k):

xxx(k) = T̃ [ηst(T (zzz(k), σ(k))] (29)

Equations (24) and (29) are illustrated in Figure 2, every step of ISTA is mapped strictly into
every phase of CIST, which guarantees the feasibility of CIST. Meanwhile, learnable parameters and
transforms increase its flexibility.
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3.2. Algorithm Flow

We cascade the structure of Figure 2 to complete the network, as illustrated in Figure 3.
The number of cascades P is set by six, which means that every input is reconstructed by the
structure in Figure 2 six times. Inputs are echo data down-sampled in cross-range, which has
been range compressed and well motion compensated. Note that input measurements are in data
domain, while imaging results are in image domain. Because, in this paper, considering that sparsity
of cross-range direction is more practical in ISAR imaging, we focus on non-completed data in
cross-range only.

As for the initial reconstruction xxx0, as denoted in Figure 3, we use least squares estimation to
compute the initialization. Given the label and input pairs {xxxi, yyyi}, i = 1, 2, · · · , Nd, where Nd is the
total training number. So that the label and input can be presented as XXX = [xxx1, xxx2, · · · , xxxNd ] and
YYY = [yyy1, yyy2, · · · , yyyNd

], respectively. Subsequently, the initial reconstruction xxx0 can be determined,
as follows:

xxx0 = XXXYYYT(YYYYYYT)−1yyy, (30)

where yyy denotes any given input.
ISAR data are generally in the form of complex number; however, normal CNN networks support

real number only. As a result, the plural data and measurement matrix need to be separated into real
part and imagery part. According to [34], complex multiply βββ = ΦΦΦ× ααα can be expressed as:[

<(βββi)

=(βββi)

]
=

[
<(ΦΦΦij) −=(ΦΦΦij)

=(ΦΦΦij) <(ΦΦΦij)

]
·
[
<(αααj)

=(αααj)

]
(31)

where βββ and ααα are complex value vectors, i and j are index numbers in row and column direction,
<(·) denotes real part of the plural, and =(·) denotes imaginary part. To process real ISAR data,
we decompose the complex-valued data and measurement matrix before importing data into the
network, and compose the output to generate imaging results.

3.3. Loss Function

Given the characteristic of input and output data, we need the relative error from every pixel of
reconstructed result; hence, the loss function for the network training is designed, as follows:

loss =
1

Nd

Nd

∑
i=1

∥∥∥xxxp
i − xxxi

∥∥∥2

2

‖xxxi‖2
2

+ µ
1

Nd

Nd

∑
i=1

∥∥∥T̃ (T (xxxp
i ))− xxxi

∥∥∥2

2

‖xxxi‖2
2

(32)

where Nd denotes the total training number, xxxp
i denotes the imaging result after p phases, and xxxi denotes

the corresponding label. The first part in Equation (32) denotes the error between reconstruction signal
and the label; the second part denotes the error between T̃ (T (xxxp

i )) and the label, to ensure the
assumption of inverse matrix T̃ · T = EEE. Besides, µ is a regularization parameter, which is set to 0.01
by default. The loss function is optimized while using Adaptive Moment Estimation (Adam) [35].

4. Experiments

We use plenty of simulation data as training data and then test the network performance with
simulated data and real measured ISAR data in order to validate the performance of the proposed
method. In addition, results of some conventional CS methods, such as ISTA, AMP, and OMP, are also
presented for comparison. Several metrics are also introduced to quantitatively evaluate performance
of the CIST-based imaging method and traditional CS-based methods.
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4.1. Simulated Data

To match the size of real measured ISAR data, simulation scene size is set by Nr × Na,
where Nr = 1024 denotes range dimension and Na = 2048 denotes cross-range dimension. We generate
20 scenes with random points, i.e., the total number of training samples in cross-range dimension
is Nd = 20× 1024 = 20,480. Other parameters of simulated radar signal include carrier frequency,
bandwidth, pulse width, and pulse repetition frequency are set by 10 GHz, 600 MHz, 100 µs, 200 Hz,
respectively. As for measurements matrix, we construct it by ΦΦΦ = DDDFFF , whereFFF ∈ Cn×n is the Fourier
Transform matrix, andDDD ∈ Cm×n is a randomly down-sampling matrix, i.e., m = 512, n = 2048 for
the 25% down-sampled rate. Besides, Gaussian white noise is added to echo data, so that the Signal
to Noise Ratio (SNR) is 20 dB, to simulate different noise environment. All of the inputs and labels
are divided into real parts and imagery parts before the training and composed together after the
reconstruction, as described in Section 3.2.

The details of the training processes is as follows. In the training process of CIST, the parameters
σ and γ are treated as trainable parameters with initialization 0.02 and 0.002, respectively. The iteration
number is set to six and the size of mini-batch is set to 64. Adam optimizer with learning rate 0.0001
was used for training.

We introduce several quantification standards, such as normalized mean square error (NMSE),
false alarm (FA), image entropy (ENT), target-to-clutter ratio (TCR), where NMSE and FA take the
high resolution result in Figure 4c as reference, in order to quantitatively evaluate the performance
of different CS-based ISAR imaging methods. Note that the evaluation results are computed after
normalized. TCR is defined, as follows:

TCR = 20 ∗ log10

(
‖St‖2

2

‖S− St‖2
2

)
, (33)

where S denotes the sum of whole simulated imaging result, and St denotes the target area in it.
Target area is defined as the valid area in the labeled imaging result, which can be determined by a
threshold. FA is defined as:

FA =
Num(St

⊕
S
′
t)

Num(S)
× 100%, (34)

where function Num(·) denotes the length of the input; S
′
t denotes the target area in imaging result;⊕

is the exclusive OR operation. Note that target area St are determined by the high resolution ISAR
imaging result (referring as label), as shown in Figure 4c. In addition, the computational times were
collected on a platform of Intel Core i7-7700k @ 4.20 GHz and Nvidia 1080ti.

(a) (b) (c)

Figure 4. (a) Simulated F35 Plane Model, (b) Full echo data and (c) ideal ISAR image.
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We use a model of F35 plane as simulated data, and the full data echo as well as high resolution
ISAR image result are given in Figure 4. In addition, we validate the performance of CIST with
different down-sampling ratio and SNR. In this experiment, simulated echo data with down-sampling
rates of 40%, 20% and 12.5% are considered, and the SNR of each echo data are set to 20 dB and 0 dB,
respectively. Figures 5 and 6 give the imaging results of four methods under higher and lower SNR,
respectively, and Tables 1 and 2 present the corresponding quantitative results. In Figures 5 and 6,
the first column gives the echo data at different random down-sampling rate; the second, third,
fourth, and fifth give the ISAR imaging results of ISTA, AMP, OMP, and CIST, respectively; the first,
second, and third row present random down-sampling rate at 40%, 20%, and 12.5%, respectively.
As shown in Figure 5, as compared with the traditional methods, the proposed method CIST can
obtain ISAR imaging results of high quality with a more clean background. In addition, as the
echo ratio decreases, the image results of the traditional ISTA become worse, while results of CIST
remain satisfactory. Furthermore, Table 1 gives the quantitative evaluation of these algorithms.
Among the four methods, the proposed CIST-based ISAR imaging method obtains the lowest RNMSE,
highest TCR, lowest entropy, and lowest FA in most cases. Except the one for down-sampling ratio at
20%, where OMP has obtained slightly lower entropy than CIST.

Figure 5. ISAR imaging results (SNR = 20 dB) of different methods at ratio 40%, 20%, and 12.5%, respectively.

Furthermore, Figure 6 and Table 2 give the result of a more strict condition, in which the SNR is
only 0dB. From the imaging results, it is seen that AMP, OMP, and CIST can achieve satisfactory results,
except for traditional ISTA, which has a high side lobe in results. However, there are many ’ghost’ in
the results of AMP and OMP. CIST has the best focused image and clean background. As demonstrated
in Table 2, CIST achieves the lowest RNMSE, ENT, FA, and highest TCR in most cases, which indicates
that CIST is more robust than the other three algorithms. In addition, while other algorithms need tens
of seconds or even hundred of seconds for ISAR imaging, it takes CIST only less than one second to
achieve the satisfactory results.

Under the condition of different down-sampling ratio and SNR, among the four CS-based
imaging methods, the proposed CIST-based ISAR imaging method is capable of obtaining imaging
results of highest quality within less than one second, which confirms its robustness and efficiency.
Most importantly, it takes CIST only less than one second to obtain a satisfactory ISAR imaging result
for a data size of 1024× 2048, while other traditional algorithms generally need tens of second or even
thousands of second.
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Figure 6. ISAR imaging results (SNR = 0 dB) of different methods at ratio 40%, 20%, and 12.5%, respectively.

Table 1. Evaluation of Simulated Experiments (SNR = 20 dB).

Ratio Method NMSE TCR (dB) ENT FA (%) Time (s)

40%

ISTA 0.7426 20.3126 1.0056 7.9273 44.5487
AMP 0.6599 45.8388 0.3912 8.2295 71.6221
OMP 0.6977 39.3184 0.4570 3.8948 468.1091
CIST 0.6313 50.8584 0.3834 2.8658 0.9031

20%

ISTA 1.5125 7.4179 1.4951 13.8876 20.9817
AMP 1.8814 −1.8350 3.0402 37.5987 33.1211
OMP 0.7171 20.5169 0.5231 4.4982 230.7727
CIST 0.6730 33.5822 0.6981 2.0802 0.8641

12.5%

ISTA 5.6054 −10.9690 3.4825 40.2085 12.7870
AMP 0.7158 14.4029 1.4040 10.0269 18.2701
OMP 0.6977 37.3184 0.4570 3.8948 179.2718
CIST 0.6596 38.7568 0.3838 1.0618 0.8732

Table 2. Evaluation of Simulated Experiments (SNR = 0 dB).

Ratio Method NMSE TCR (dB) ENT FA (%) Time (s)

40%

ISTA 4.8811 −5.4672 4.7616 79.4230 31.3632
AMP 2.9544 −3.7446 3.3459 41.8848 70.0527
OMP 0.6778 9.4313 0.5125 4.4954 435.4453
CIST 0.6116 26.7183 0.5187 3.8697 0.9025

20%

ISTA 5.6621 −12.2639 4.9115 75.0532 15.7180
AMP 1.1017 1.9251 1.7633 17.7155 34.2185
OMP 0.7073 2.4763 0.8527 5.5791 229.8903
CIST 0.6844 23.7948 1.0959 4.8680 0.8723

12.5%

ISTA 7.1987 −16.9600 4.9618 65.9731 9.7665
AMP 0.8076 23.0803 1.6008 15.0631 18.7310
OMP 0.7447 20.5169 0.5231 4.4982 183.8871
CIST 0.7443 24.3366 0.5012 1.3129 0.8852
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4.2. Measured Data

In order to test the network’s performance realistically, we use two group of real measured ISAR
scatter of a plane(Yak-42) as test data (named as data I and data II). The Yak-42 data was collected by a
ground-landed radar which operated at C-band and the bandwidth is 400 MHz. Each of the full data
consists of 2048 pulses in cross-range, and each pulse contains 1024 samples. Note that the echo data
has been range compressed and well motion compensated.The high resolution ISAR imaging results
achieved by RD algorithm with full data are presented in Figure 7. The range compressed data are
imported into CIST after randomly down-sampled to ratio at 40%, 20%, and 12.5%.

(a) (b)

Figure 7. High resolution RD imaging results with Full echo of data (a) I and (b) II.

Figure 8 gives the imaging results of data I of the four algorithms at different down-sampling
ratio. The first column shows the the input echo data at different down-sampling ratio; the other four
columns present the imaging results. It can be seen that as sampling ratio decreases, the imaging
quality of ISTA, AMP, and OMP become worse obviously. Specifically, ISTA and AMP lost the weak
reflective parts of the target, and OMP has the highest side lobe. On the other hand, the results of CIST
maintain a relatively complete target as well as a clean background. When the sampling ratio is as low
as 12.5%, the results of ISTA and AMP are almost unusable, while CIST can still achieve satisfactory
imaging result, which implies the robustness of CIST.

When considering the lack of true value of imaging target, which determines the results of
RNMSE and FA, we use only TCR and ENT as the quantitation criteria of different methods. From the
evaluation result of data I in Table 3, CIST achieves the highest TCR and lowest ENT at sampling
ratio at 40% and 20%. In the special case, where the ratio is 12.5%, results of ISTA and AMP have the
highest TCR and lowest ENT. But their imaging results are lacking some part of the target, i.e., the
wings and fuselage only contain the stronger points but missing some weak points (around cross-range
1010–1040 and range 350–500), which leads to the superficially best evaluation results. After ignoring
these disturbing results, CIST still has the better evaluation results than OMP. In addition, while
conventional methods take generally more than 30 s for imaging process, CIST only takes less than one
second (tens of times faster). Therefore, from the results of measured experiments, CIST has shown its
robustness and high computational efficiency.
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Figure 8. ISAR imaging results of data I of different methods at ratio 40%, 20% and 12.5% respectively.

Table 3. Evaluation for Measured Experiments of data I.

Ratio Method TCR (dB) ENT Time (s)

40%

ISTA 22.2390 0.0383 28.1188
AMP 18.0834 0.0749 41.7755
OMP 8.8795 0.4223 423.0314
CIST 22.3466 0.0222 0.8882

20%

ISTA 23.2729 0.0314 14.2475
AMP 23.1530 0.0229 44.3105
OMP 10.4075 0.4142 206.7307
CIST 23.4010 0.0206 0.8876

12.5%

ISTA 23.3454 0.0191 9.0207
AMP 29.5635 0.0074 27.7906
OMP 11.1394 0.2510 44.4780
CIST 22.5672 0.2418 0.8742

Figure 9 gives the imaging results of data II. It can be seen that the images that were obtained by
ISTA, AMP, and OMP are defocused as sampling ratio decreases, but CIST maintains the fine imaging
quality and clean background under all condition. It implies the superior performance of the proposed
CIST imaging method. Furthermore, Table 4 gives the numerical evaluation of data II. It shows that
CIST reaches the lowest ENT and highest TCR at every down-sampling ratio. Most importantly,
CIST takes around 0.9 s for the target imaging, which is much faster than other algorithms that take
over 25 s at best and can take up to two minutes to complete. The better imaging quality and less
computational time indicate the superior performance and high efficiency of the proposed CIST-based
ISAR imaging method.
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Figure 9. ISAR imaging results of data II of different methods at ratio 40%, 20% and 12.5%, respectively.

Table 4. Evaluation for Measured Experiments of data II.

Ratio Method TCR (dB) ENT Time (s)

40%

ISTA 11.1156 0.3193 36.8382
AMP 12.6834 0.5329 43.9997
OMP 17.6741 0.2568 122.7069
CIST 18.8741 0.2015 0.8863

20%

ISTA 11.2704 0.2417 23.4636
AMP 12.3927 0.4850 32.6397
OMP 17.3148 0.2602 79.3270
CIST 21.3082 0.1222 0.8754

12.5%

ISTA 11.1156 0.3193 36.8382
AMP 11.9356 0.3537 28.8230
OMP 17.6741 0.2568 122.7069
CIST 18.9328 0.2473 0.8692

5. Discussion

5.1. Effectiveness of Convolution Layer

A suitable sparse transform is one of the key questions in CS problem. The convolution layer in
CIST plays an essential role in sparse transform. Candes and Tao have proven that Restricted Isometry
Constants (RIP) is the sufficient condition for a perfect reconstruction [5]. For a given measurement
matrix Φ and a constant δk ∈ (0, 1), it should obey:

(1− δk) ‖xxx‖2
2 ≤ ‖ΦΦΦxxx‖2

2 ≤ (1 + δk) ‖xxx‖2
2 (35)
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for all k-sparse signal xxx. However, to validate whether the measurement matrix Φ satisfy RIP condition
is NP-hard. Hence, coherence µ(ΦΦΦ) is more common approach, which is defined, as follows:

µ(ΦΦΦ) = max
1≤i,j≤N

∣∣〈χχχi, χχχj
〉∣∣

‖χχχi‖2 ‖χχχi‖2
, (36)

where χχχi denotes the ith column of ΦΦΦ. In conventional CS imaging methods, they generally use
Fourier transform, Discrete cosine transform(DCT), wavelet transform, [36] etc. as sparse transform.
The sparsity of measurements should be sparse enough to accurately reconstruct the signal [37,38].
To be specific, the sparsity K of the signal to be accurately reconstructed under l1-regularization
should satisfy:

K <
1 + µ(ΦΦΦ)

4µ(ΦΦΦ)
, (37)

where µ(ΦΦΦ) denotes the coherence of measurement matrix ΦΦΦ. Therefore, a fixed sparse transform is
based on the prior information, which is not suitable for different types of data.

One of the advantages of CIST is the convolution-based sparse transform, which is a crucial
improvement for conventional ISTA. Whether it is self adaptive and learnable depends on the data
characteristic. To validate the effectiveness of convolution layer, we compare CIST with learned ISTA
(LISTA) network [39] proposed by Grefor and LeCun, based on which we construct a simplified version
of CIST, so that the only difference between them is the existence of convolution layers. We train CIST
and LISTA under the same condition, where stepsize, regularization parameters, iteration number and
learning rate are initialized as γ0 = 0.002, σ0 = 0.02, 6 and 0.0001, respectively. Besides, training data
are simulated echoed signal at down-sampling rate 20%.

Figure 10 gives the NMSE along with the training epochs. It is seen that CIST has the lower
NMSE throughout the training process. Especially when the training just starts, CIST reaches the much
lower (around one tenth smaller) NMSE than LISTA. At the end of training, the NMSE of CIST is still
averagely one-tenth smaller than LISTA. Besides, CIST has a faster convergence since the NMSE of
CIST reaches lowest point after 20 epochs, but LISTA needs around 30 epochs. In addition, Figure 11
shows the Yak-42 imaging results of CIST and LISTA. LISTA lost most part of the target, while CIST
remain the fine imaging quality. As a result, we believe that the lower NMSE during training and
the better imaging result of CIST can prove the effectiveness of convolution-based sparse transform
in CIST.

(a) (b)

Figure 10. Convergence of CIST and LISTA of Epoch (a) from 0 to 80, (b) from 30 to 80.



Remote Sens. 2020, 12, 2641 16 of 18

(a) (b)

Figure 11. Imaging results of (a) CIST and (b) LISTA.

5.2. Prospect of Network-Based ISAR Sparse Imaging Methods

ISAR plays a crucial role in the detection and recognition of moving targets, but non-cooperative
targets could be lost during the observation. Accordingly, the CS-based ISAR sparse imaging methods
are meaningful. There are two main obstacles of conventional CS imaging methods: low computational
efficiency and manually defined parameters. The heavy computational cost limits the real-time
applications of ISAR CS imaging to a large extent. Some essential parameters can greatly affect the
imaging quality, so they need to be defined carefully, which usually takes several times for trial.
Network-based ISAR imaging methods are highly promising to overcome the limitations. Firstly,
they generally have higher computational efficiency once they are well trained. For instance, CIST can
obtain imaging results of fine quality using much less time than conventional CS imaging methods,
which can meet the demand for real-time processing. Secondly, parameters and sparse transform are
set to be learnable, which means that they could achieve the optimal point through iterations. To obtain
a fine imaging result, we have tuned the parameters of conventional ISTA several times, and every
attempt takes tens of second. In addition, as discussed above in Section 5.1, the convolution-based
sparse transform along makes a great difference under the same condition.

In a nutshell, network-based ISAR sparse imaging methods have higher computational efficiency
and more flexible for moving targets imaging.

6. Conclusions and Future Work

In this paper, we proposed a CIST-based ISAR imaging method. Because CIST composed the
advantage of convolution neural network and traditional ISTA, CIST can learn essential parameters
automatically from end-to-end. Besides, CIST replaces the linear sparse transform with nonlinear
convolution operations, which makes it more flexible and suitable for target-uncooperative ISAR
imaging with under-sampled or non-completed data. Furthermore, it takes CIST less than one second
to image an ISAR scene with size of 1024× 2048, which is dozens of times faster than other three
conventional algorithms. Experimental result based on both simulated and measured data indicate
that compared with state-of-art traditional CS-based methods, our proposed method can obtain results
of sound quality, while maintaining high computational efficiency. In addition, when considering that
AMP is an improved version of ISTA (faster for convergence and better reconstruction) and CIST has
shown its advantages over other three conventional algorithms evaluated (ISTA, AMP, and OMP),
to develop a convolution-involved version of AMP will be our future work.
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