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Abstract: Spectral reflectance-based vegetation indices have sensitive characteristics to crop growth
and health conditions. The performance of each vegetation index to a certain condition is different
and needs to be interpreted, correspondingly. This study aimed to assess the most suitable vegetation
index to identify the crop response against elevated air temperatures, heat stress, and herbicide
damage. The spectral reflectance, yield components, and growth parameters such as plant height,
leaf area index (LAI), and above-ground dry matter of paddy rice, which was cultivated in a
temperature gradient field chamber to simulate global warming conditions, were observed from 2016
to 2018. The relationships between the vegetation indices and the crop parameters were assessed
considering stress conditions. The normalized difference vegetation index (NDVI) represented the
changes in plant height (R-square = 0.93) and the LAI (R-square = 0.901) before the heading stage.
Furthermore, the NDVI and the cumulative growing degree days had a Sigmoid curve and an R-square
value of 0.937 under the normal growth case, but it decreased significantly in the herbicide damage
case. This characteristic was useful for detecting the damaged crop growth condition. Additionally,
to estimate the grain yield of paddy rice, the medium resolution imaging spectrometer (MERIS)
terrestrial chlorophyll index was better: R-square = 0.912; root mean square error = 95.69 g/m2.
Photochemical reflectance index was sensitive to physiological stress caused by the heatwave, and it
decreased in response to extremely high air temperatures. These results will contribute towards
determining vegetation indices under stress conditions and how to effectively utilize them.

Keywords: temperature gradient field chamber (TGFC); growing degree days (GDD); NDVI; MTCI;
PRI; crop stress

1. Introduction

Remote sensing is a useful technique to directly monitor crop conditions non-destructively [1,2].
Crop spectral reflectance response varies depending on the distribution of crop biomass, crop conditions
(e.g., disease, nutrition), and soil background [3–7]. This response constitutes the vegetation indices
developed to represent the structural, biochemical, and physiological characteristics of vegetation [8].
Moreover, certain vegetation indices have been used to estimate the crop yield using an empirical
relationship [9–11]. However, this method, with only one input of a vegetation index, has some
limitations in various spatial and temporal applications [12,13]. Current crop yield models not
only use meteorological variables but also the vegetation indices instead of the input parameters
related to crop condition [14]. Thus, these crop models, unlike other crop models that only use
meteorological variables and the fixed crop parameter values, can accurately represent the influence
of the cultivation environment, such as agrometeorological disaster, disease stress, and nutriture
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conditions [15,16]; this is because most meteorological-based crop models are developed under normal
meteorological conditions [12,17].

Generally, the vegetation indices that have been widely used in the crop models are calculated using
spectral reflectance such as red and near-infrared (NIR) wavelengths. These vegetation indices, which were
estimated from the data provided by satellite, unmanned aerial vehicle (UAV), and handheld-based
optical devices, represent structural characteristics of vegetation [14,18]. According to Mosleh et al. [19],
numerous remote sensing-based studies on forecasting grain yield have used vegetation indices from red
and NIR wavelength data [9,20]. Thus, the use of other vegetation indices that include biochemical and
physiological characteristics is needed to comprehend crop conditions and to forecast the grain yield.

Various spectral reflectance-based vegetation indices have been developed using hyper-spectrometers;
these indices can be classified depending on the water content in the canopy, structural, biochemical,
and physiological characteristics [8]. The ratio vegetation index (RVI), usually called simple ratio (SR),
was first estimated using a ratio of the red and NIR (NIR/red) bands in 1969 [21], and it represents a
structure of vegetation. After that, other structural vegetation indices, such as the normalized difference
vegetation index (NDVI), the soil-adjusted vegetation index (SAVI), and the enhanced vegetation index
(EVI) were created to represent biomass, a fraction of vegetation per area, and leaf area index (LAI),
respectively [22–25]. After the SR and NDVI, other types of vegetation indices such as water content,
biochemical, and physiology were developed. Normalized difference water index (NDWI), normalized
difference infrared index (NDII), and water band index (WBI) were the representative indices to indicate
water content of vegetation [26–28]. These indices were usually obtained from NIR and shortwave
infrared (SWIR) wavelength. Vegetation indices such as the chlorophyll absorption ratio index (CARI),
the carotenoid reflectance index (CRI), and the medium resolution imaging spectrometer (MERIS)
terrestrial chlorophyll index (MTCI) were developed to estimate the biochemical characterization as
pigments [29–31]. Chlorophyll and carotenoid are related to blue, green, and red-edge wavelengths;
vegetation indices, which have a biochemical characteristic, were made using a relatively narrow
band, unlike structural vegetation indices. Lastly, the physiological feature of vegetation has been
detected by the photochemical reflectance index (PRI) since 1992 [32]. PRI was known to respond
to sunlight; thus, it has diurnal change [33,34]. In addition, pigment pool size changes induce the
vegetation growth and senescence affects the seasonal change of PRI [35–37]. In other words, PRI has
seasonal features as well as diurnal characteristics, so it includes not only physiological features but
also biochemical characteristics. Like this, although numerous vegetation indices can be classified
based on structure, biochemical, physiology, and water content characteristics, vegetation index can be
included both characteristics.

Given that the vegetation index behaves differently under normal (meteorological) and stress
situations (e.g., extremely high air temperature, drought, and disease), the temporal change of
vegetation index should be analyzed in an extended observation period [38]. The relative change of
vegetation index based on the mean value of observation data measured for multiple years or decades
can reveal vegetation conditions [39]. The vegetation condition index (VCI), which is calculated using
minimum and maximum NDVI values observed for many years, is one of the representative indices
for the structural status of vegetation. Low VCI values indicate relatively low vegetation biomass [40].
Unlike structural vegetation indices, obtaining the biochemical and physiological vegetation indices
for many years is difficult. The bands onboard the satellite or UAV are limited, and the time series data
on a cultivation period should be obtained once per year. Optical observation should be conducted
in order to get hyper-spectrometer data of crop responses to different meteorological environment
conditions in various regions. In addition, spectrum information under extreme weather events and
stress conditions is needed to understand the performance of vegetation indices.

The purpose of this study is to assess the most suitable vegetation index for paddy rice that
sensitively responds to various meteorological environments and stress conditions: (1) Elevated air
temperature, (2) heat stress, (3) herbicide damage. In addition, this study aims to identify whether a
plant is under stress conditions or not by using vegetation indices and meteorological variables in the
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vegetative and reproductive phases. The data for this study were obtained from the cultivation of paddy
in a temperature gradient field chamber (TGFC) for three years; the purpose of this experiment was to
study the crop response to various air temperatures in order to prepare for global warming. The growth
parameters such as plant height, LAI, biomass, and grain yield were investigated, and spectral
reflectance of paddy rice was measured using the spectrometer.

2. Data and Methodology

2.1. Study Area and Cultivation

The TGFCs for this study were located in Chonnam National University, Gwangju, Republic of
Korea (35◦10’26” N, 126◦53’56” E) to simulate warming conditions (Figure 1a). The six TGFCs were
originally established (Figure 1b), and the four TGFCs were operated from 2016 to 2018. The height
and width of TGFC were about 2.0 and 1.8 m, and the length was approximately 24 m. Four instrument
shelters to measure air temperature were installed in each TGFC (Figure 1c). The air temperature
measured by the first instrument shelter from the entrance was defined as ambient air temperature
(AT, ◦C) and was 0.65 ◦C higher on average than the air temperature outside during the crop growing
period owing to the TGFC film. A heater and three exhaust fans in each TGFC were continually
controlled to maintain a temperature of AT + 3 ◦C at the fourth instrument shelter from the entrance.
The heater supplies hot air in the TGFC, and the exhaust fans take out the air from the TGFC to lower
air temperature and to circulate the air. In addition, the transmittance of the film, which is made
of ethylene tetra fluoro ethylene (ETFE), is above 92% at visible and NIR wavelengths [41]. Thus,
the advantage of these facilities is that they utilize natural sunlight, so it is possible to evaluate the
impact of higher air temperature on the crop instead of artificial light.

The paddy rice was cultivated from 2016 to 2018; it was transplanted on June 3 2016; June 15 2017;
and June 1 2018 in the TGFCs. Cultivars, which had characteristics of medium-late maturity, were used
for three years. Ilmi variety was cultivated in 2016 and 2018, and the Saenuri cultivar was cultivated in
2017. Ilmi and Saenuri are included in japonica rice cultivars. The planting was done by hand, with a
density of three plants per hill and planting distance of 15 × 30 cm. In 2017, lysimeters were installed
in two TGFCs located in the AT and AT + 3 ◦C positions. Additional lysimeters were installed in one
TGFC in 2018. The transplanting of paddy rice in the lysimeter chamber was carried out following the
same procedure as for the non-lysimeter chamber. The paddy rice was harvested on October 13 2016;
October 10 2017; and September 27 2018.

The amount of fertilizers was given as follows: N = 9; P = 4.5; K = 5.7 kg/10 a. By transplanting
day, about 50%, 100%, and 70% of the total fertilizer (nitrogen (N), phosphorus (P), and potassium (K))
for the cultivation period had been applied. About 20% of N was added 14 days after transplanting
day. Finally, about 30% and 30% of N and K were treated in the panicle initiation stage. In 2017,
the herbicide was used to eliminate weeds in paddy fields in the non-lysimeter chambers. Unfortunately,
the herbicide component remained in the TGFC, which is a closure field, and affected the growth
and development of the paddy rice. The plant height, LAI, NDVI values, and tillering number in the
early stage of crop growth were lower in the damaged paddy rice as compared to the non-damaged
paddy rice. In addition, the poor growth and development of the paddy rice in the damaged area were
confirmed throughout the field survey. In this study, herbicide-induced damages were defined as
abnormal growth.

In this study, the cultivated paddy rice in the TGFC was classified as the normal growth and
development (hereafter normal growth) and herbicide-induced abnormal growth and development
(hereafter abnormal growth) in Category 1 (Figure 2) based on growth parameters and field survey
in the vegetative phase. The normal growth was sub-divided as common condition and heat stress
states in Category 2 because the grain yield was different depending on the exposure degree of heat
stress although the growth and development of paddy rice were normal under the extremely high
temperature. The heat stress samples were defined by a ripening ratio below 75%.
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2.2. Measurement Data

2.2.1. Meteorological Data

Four instrument shelters hanging in the middle of the TGFC measured the air temperature (◦C)
in each TGFC. A temperature probe (107, Campbell Scientific Inc., Logan, UT, USA), which is a type
of thermistor with a tolerance of approximately ±0.2 ◦C, was used to measure the air temperature in
the TGFC. The four temperature probes and instrument shelters were installed, and the position of
the four shelters denoted as AT, AT + 1, AT + 2, and AT + 3 ◦C. TGFC systems are automatically an
effort to maintain these conditions using the heater and three exhaust fans. In this study, the positions
were divided into 16 equal intervals in each TGFC, and they were labeled from position 1 (P1) up to
position 16 (P16). The four positions located in instrument shelters were position 1 (P1), position 6
(P6), position 11 (P11), and position 16 (P16). All meteorological data were recorded by the CR10X
data logger (Campbell Scientific Inc., Logan, UT, USA) every 5 min and averaged based on 4 s interval
scan data. Solar radiation information such as solar insolation and photosynthetically active radiation
(PAR) was measured by a pyranometer (LI-200R, LI-COR Inc., Lincoln, Nebraska, USA) and a quantum
sensor (LI-190R, LI-COR Inc., Lincoln, Nebraska, USA). These radiation sensors were installed inside
and outside of TGFC to consider TGFC transmittance.

Figure 3 is an example of a time series for a daily mean air temperature and solar radiation for
the three-year period in one TGFC. A solid blue line indicates the AT. Green dash-dot line, orange
dot line, and red dash line show AT + 1, AT + 2, and AT + 3 ◦C, respectively. The difference in
air temperature between two adjacent stations was not always 1 ◦C because these facilities were
automatically controlled based on the AT and AT + 3 ◦C positions. Thus, analyses were conducted
using cumulative air temperature in each position. The growing degree days (GDD) were calculated
as follows: GDD = daily mean air temperature – base air temperature. Here, the daily mean air
temperature was calculated based on data recorded in the data logger every 5 min. The base air
temperature of the paddy rice is 10 ◦C [42]. GDD was accumulated for GDDs > 0 to evaluate the effect
of air temperature under the same solar radiation condition in each position.

A heatwave occurred in this study area during the booting and heading stages in 2016, but this
meteorological situation did not occur in 2017. According to the Korea Meteorological Administration
(KMA), the worst heatwave in meteorological history happened in 2018. The heatwave lasted for one
month from mid-July to mid-August in 2018. The highest solar radiation and air temperature were
recorded during this period (Figure 3c). Therefore, the response of crop due to high air temperature
was analyzed during this heatwave period. Although the optimum daily mean air temperature of
paddy rice for the growth and development changes depending on the cultivars and the growth
stage [43], it is generally 25~32 ◦C [44].
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Figure 3. Time series of air temperature and insolation in the temperature gradient field chamber
(TGFC) for three years (a) 2016 year, (b) 2017 year, (c) 2018 year, and (d) 2016~2018 years. The daily
mean air temperature was controlled to maintain values of ambient air temperature (AT), AT + 1, AT + 2,
AT + 3 ◦C in the four positions, which were named as position 1 (P1), position 6 (P6), position 11 (P11),
position 16 (P16) in this study.
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2.2.2. Ground Measurements of Growth Parameters

Growth parameters such as plant height, LAI, above-ground dry matter (AGDM), and grain yield
were measured to evaluate their responses to elevated air temperature, heat stress, and herbicide
damage. Plant height was measured at all chambers every week. For three years, the number of
chambers used for plant height was 8, and measurement positions were 22. Finally, the 227 observations
of plant height were used in this study. LAI was measured by LAI-2000 (LI-190R, LI-COR Inc., Lincoln,
Nebraska, USA) at all chambers every week. The number of chambers used for observing LAI
observation was nine for the three year period. The number of positions and data on LAI was 26
and 279, respectively. The AGDM was measured to accurately comprehend the growth of paddy rice.
In the first year (2016), AGDM was only measured at mature stage to analyze yield components of rice.
In 2017 and 2018, it was measured at seven growing stages and fifteen times: Tillering stage (Jun. 18 2018),
stem elongation (Jul. 14 2017; Jul. 4 2018), panicle initiation stage (Jul. 26 2017; Jul. 18 2018), booting
stage (Aug. 9 2017; Aug. 6 2018), heading stage (Aug. 28 2017; Aug. 14 2018), milk-and-dough stage
(Sep. 14 2017; Aug. 22 2018; Sep. 5 2018; Sep. 21 2018), and mature stage (Oct. 17 2017; Sep. 27 2018).
The number of AGDM positions and data, during the three years, was 38 and 113, respectively.
To measure AGDM, the root of paddy rice was removed, and the AGDM was dried at 70 ◦C in the
dryer for four days to maintain a constant humidity. The yield components such as grain yield (g/m2),
AGDM (g), harvest index, number of panicles per area, number of spikelets per panicle, ripening ratio
(%), and 1000 grain weight (g) were measured in 9 chambers and 38 positions during the harvesting
period. Grain yield and ripening ratio among the yield components were analyzed with vegetation
indices. The number of ground measurements for growth parameters in 2017 and 2018 was adjusted
based on the 2016 results. Information on ground measurements is summarized in Table 1.

Table 1. Information of ground measurements on growth parameters for three years.

Variables
(units)

Number of Chambers
(2016, 2017, 2018 years)

Number of Positions
(2016, 2017, 2018 years)

Number of Measurement Data
(2016, 2017, 2018 years)

Plant height (cm) 8 (2, 2, 4) 22 (4, 6, 12) 227 (27, 40, 160)
LAI (m2/m2) 9 (2, 3, 4) 26 (6, 8, 12) 279 (39, 64, 176)

AGDM (g/m2) 8 (1, 3, 4) 38 (3, 15, 20) 120 (3, 64, 53)
Yield components 8 (1, 3, 4) 38 (3, 15, 20) 38 (3, 15, 20)

LAI: Leaf area index; AGDM: Above-ground dry matter.

2.2.3. Optical Measurements for Vegetation Indices

Optical measurements were carried out to monitor the conditions of paddy rice. In this study,
two types of devices were used to calculate vegetation indices. First, a field-spectrometer was used to
measure spectral reflectance-based vegetation indices. Analytical spectral devices (ASD) Fieldspec
3 spectrometers (hereafter Fieldspec; Malvern Panalytical Ltd., Malvern, UK) were used in 2016.
The wavelength range on Fieldspec spectrometer is 350~2500 nm. Spectral resolution and sampling
interval in wavelength for calculating vegetation indices are 3 at 700 nm and 1.4 at 350~1050 nm.
In 2017 and 2018, Avantes AvaSpec-UL2048L spectrometers (hereafter Avantes; Avantes BV, Apeldoorn,
Netherlands) were used. The wavelength range of the Avantes spectrometer is 300 to 1100 nm,
and this device observes visible and NIR wavelengths. The sampling interval is about 0.576 at 700 nm.
Field of view (FOV) of the spectrometers is 23◦. In this study, two spectrometers were used to measure
solar irradiance and radiance at solar noon time that has the minimum solar zenith angle during the
day. The radiance was the value reflected from paddy rice, and the observation radius and areas of
the radiance were about 0.41 m and 0.52 m2 at a 1-m height from the target. Solar irradiance was the
value reflected from a white reference panel (RS50 White Reflectance Standard, StellarNet Inc., Florida,
USA; >97% reflectance between 300 and 1700 nm). Measurements were carried out inside the TGFC to
determine the influence of the film as the micro-climate conditions inside the TGFC were different
from the conditions outside [45]. After conducting an inter-calibration between two spectrometers,
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the reflectance at each wavelength was calculated from a ratio between radiance and solar irradiance.
Vegetation indices were then computed.

Three vegetation indices were selected among various others based on three biophysical types,
i.e., structural, biochemical, and physiological types (Figure 4, Table 2). The NDVI represents the
structure of vegetation; it usually uses red and NIR wavelengths. It has been thoroughly studied
compared to other structural vegetation indices such as SAVI and OSAVI and measured using a satellite
and drone. The EVI was excluded to avoid the influence of the weak transmittance of blue wavelength
on the ETFE film of the TGFC. The MTCI was chosen as a structural–biochemical index. It is produced
using the Sentinel-2 satellite and the data obtained can be utilized in precision agriculture [46,47].
Last, the PRI was selected as a biochemical–physiological vegetation index. We hypothesized that the
PRI can detect the crop stress caused by heatwave because it is highly related to the photosynthetic
performance [48,49].
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Figure 4. Development of spectral reflectance-based vegetation indices. RVI: Ratio vegetation index;
NDVI: Normalized difference vegetation index; NGRDI: Normalized red-green difference index;
NDII: Normalized difference infrared index; SAVI: Soil-adjusted vegetation index; PRI: Photochemical
reflectance index; CARI: Chlorophyll absorption ratio index; NDWI: Normalized difference water index;
OSAVI: Optimized soil-adjusted vegetation index; TVI: Triangular vegetation index; MCARI: Modified
chlorophyll absorption ratio index; CAI: Cellulose absorption index; EVI: Enhanced vegetation index;
CRI: Carotenoid reflectance index; MTCI: MERIS terrestrial chlorophyll index.

Table 2. Spectral reflectance-based vegetation indices.

Index Name
(Abbreviation)

Biophysical
Types Formulations Optical

Instruments References

Normalized difference
vegetation index (NDVI) Structure (RNIR-RRed)

/(RNIR+RRed)
Field spectrometer

& SRS [25]

MERIS terrestrial chlorophyll
index (MTCI)

Structure
& Biochemical

(R750-R710)
/(R710-R680) Field spectrometer [29]

Photochemical reflectance
index (PRI)

Biochemical
& Physiology

(R531-R570)
/(R531+R570)

Field spectrometer
& SRS [32]

SRS: Spectral reflectance sensor.

Second, a photodiode-based spectral reflectance sensor (hereafter SRS; METER group Inc., Pullman,
WA, USA) was used to continually monitor paddy rice at AT and AT+3 ◦C positions in 2017 and 2018.
The NDVI and PRI were measured using SRS, and they were processed as daily mean values. In this
process, data measured from 11 to 14 o’clock were used to utilize the seasonal signal of PRI that reflects
the diurnal and seasonal changes [50]. The processed PRI was used to evaluate the response of paddy
rice under the heatwave. SRS was installed in the TGFC (Figure 5), and the distance between the
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sensor and plants was maintained consistently. SRS data used in this study was saved in the EM50
data logger (METER group Inc., Pullman, WA, USA) every one minute.
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3. Results and Discussion

3.1. Time Series of NDVI, MTCI, and PRI Under Elevated Air Temperature

Time series of the vegetation indices, which reflect the elevated air temperature and measured
using spectrometers, were evaluated during the whole cultivation period. The NDVI, MTCI, and PRI
were selected as representative structural, structural–biochemical, and biochemical–physiological
vegetation indices, respectively. These vegetation indices included the fraction of vegetation and
each characteristic of vegetation indices. In 2018, NDVI increased after the transplanting stage until
the heading stage (Figure 6a), and the gradient of NDVI was sharp at a high air temperature before
the heading stage. The NDVIs at the eight positions were saturated in the heading stage, although
they were exposed to different air temperatures. This saturation effect was known to occur in the
vegetation index using a red wavelength such as NDVI [51,52]. After the heading stage, the NDVI
decreased at the P1 (AT) position, but it had consistent value at P15 (AT + 2.37 ◦C). The time series
of MTCI sensitively expressed the growth of paddy rice (Figure 6b). The value of MTCI at P15
(AT + 2.37 ◦C) was higher than that at P1 (AT). Unlike NDVI, the MTCIs exposed to various air
temperatures were largely different among each temperature gradient condition in the heading stage
because the red-edge band, which was used to calculate MTCI, tended to reduce saturation [53].
After the heading stage, the MTCI decreased at all positions. The PRI showed variability in the first
optical measurement due to background effects, such as soil and water (Figure 6c), and it rapidly
increased after that. The PRI decreased after the heading stage at the AT position due to senescence
of the leaf [37]. However, decreasing trends in PRI occurred under high air temperatures before the
heading stage, unlike NDVI and MTCI. According to Cao et al. [53], PRI was the most sensitive to
heat stress among 17 published vegetation indices; this sensitivity is due to the relation between PRI
and photosynthesis activity. In addition, given that seasonal change of PRI is associated with the ratio
of chlorophyll and carotenoid [49,54], PRI can accurately detect the stress. Chou et al. [55] showed
that the PRI had a relatively low value under the water stress and it was related to the change in the
chlorophyll-to-carotenoid ratio. However, the chlorophyll content at the leaf scale did not significantly
change. Given that the MTCI, which is related to chlorophyll, did not decrease under the extremely
high air temperature in this study (Figure 6b), the PRI decrease is assumed to be due to the carotenoid



Remote Sens. 2020, 12, 2654 10 of 25

change rather than chlorophyll. Carotenoid levels can increase to protect plants from heat stress [56].
The PRI had a positive correlation with the chlorophyll/carotenoid ratio, which decreased under
heat shock [55,57].
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Figure 6. Time series of NDVI, MTCI, and PRI according to different air temperature. (a)–(c) Time series
of vegetation indices during the whole cultivation period in 2018. (d)–(f) Time series of vegetation
indices during the heatwave period in 2018. Positions were divided into 16 at equal intervals in
each temperature gradient field chamber (TGFC) and they were named as position 1 (P1) ~ position
16 (P16). P1 indicates the time series of vegetation indices exposed to ambient temperature (AT), and
P15 indicates the time series of vegetation indices exposed to high air temperature (about AT+2.37 ◦C).
P5 and P11 were averagely higher temperatures as +0.91 and +1.71 ◦C than AT.

In this study, vegetation indices in the four positions, P1 (AT), P5 (AT + 0.91), P11 (AT + 1.71),
and P13 (AT + 2.00 ◦C), were analyzed during the heatwave period using detailed air temperature
data (Figure 6d,e,f). The four positions were selected to consider the change of spectral reflectance.
The spectral reflectance in visible wavelength decreased during the period from July 17 2018 to August
12 2018 in all positions. However, the spectral reflectance in the NIR wavelength was different. The NIR
increased in P1 and P5 from July 17 2018 to August 12 2018 due to the growth of paddy rice. However,
NIR wavelength had a consistent value for about one month in P11; this value decreased in P13 when
exposed to the extremely high air temperatures. As a result, NDVI in P1 and P5 increased, and the
value in P11 remained constant during the heatwave period. Although the NIR decreased in P13,
NDVI was similar to NDVIs in the other positions during the heatwave period due to a low reflectance
of the red band. In addition, MTCI showed a similar trend to the NDVI. Conversely, PRI exposed
to high air temperatures decreased faster than that in AT position (Figure 6f). The first PRI decrease
during the heatwave period (from July 10 2018 to August 17 2018) occurred in P13, with a daily mean
and maximum air temperature of 33.35 and 35.69 ◦C, respectively. In P1 and P5, the PRI decreased
after the heading stage, and the daily mean air temperature was below 32.0 ◦C.

3.2. Performance of PRI Under the Heat Stress

PRI and NDVI were continually observed using SRS at AT and AT + 3 ◦C in 2017 and 2018.
These two vegetation indices were processed based on 1 day. SRS-based PRI (hereafter PRISRS) in 2018
was analyzed because no heatwave occurred in 2017. SRS-based NDVI did not analyze because it did
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not respond to the heatwave like the results of spectrometers. Figure 7 shows the time series of PRISRS

at two positions in 2018. PRISRS increased after the transplanting stage as PRI was measured by the
spectrometer. PRISRS at AT + 3 ◦C was higher than that at AT before the heading stage. The decreasing
time of PRISRS at AT appeared in the heading stage, but at AT + 3 ◦C, the decrease occurred early on
the heatwave before the heading stage. This pattern of PRISRS was most noticeable in the AT + 3 ◦C
position of chamber A; PRISRS did not increase in the AT + 3 ◦C position of chamber B. In other words,
the decreasing characteristics of PRI in plot spatial scales showed the same behavior under heat stress
as the previous study PRI characteristics at leaf spatial scale [53].
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Figure 7. Time series of PRI measured continually by a spectral reflectance sensor (SRS) in different
positions for ambient temperature (AT) and AT + 3 ◦C.

PRI normally decreases after the heading stage due to the leaf senescence [37,58]. Thus, this study
assumes that the difference (hereafter, delta date; unit: Days) between the decline date in PRI and the
heading stage date was related to heat stress. The delta date includes the error because the optical
measurement using the spectrometer was averagely conducted once per week. Figure 8 shows the
relationship between cumulative hours when the air temperature is above 35 ◦C and delta date. Here,
35 ◦C is the threshold air temperature of paddy rice for heat stress [59]. The data collected from
spectrometer-based PRI and PRISRS from 2016 to 2018 were used in this relationship with cumulative
hours. The correlation value in this relationship was −0.75 (p-value < 0.0001). The decline in PRI
started early when the heat stress was maintained for a long time. This means that PRI responded to
heat stress.
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Figure 8. Relationship between cumulative hours when the air temperature is above 35 ◦C and delta
date (decline date in PRI – heading stage date). Red line indicates the trend line of scatter plots
measured for three years.

3.3. Performance of Vegetation Indices Under the Abnormal Growth

3.3.1. Relationship between Cumulative Growing Degree Days and Plant Height

The paddy rice in 2017 suffered due to the herbicide treatment; the abnormal growth and
development on paddy rice were evaluated using cumulative GDD. Cumulative GDD is known
to relate to LAI, dry matter, and grain yield, and it has been used to simulate crop growth in crop
models [13,14,60]. Plant height (number of samples = 167) remains constant after the heading
stage, so the relationship between cumulative GDD and plant height has a sigmoid trend (Figure 9).
The coefficient of determination (hereafter R-square) was 0.958 (p-value < 0.0001), and the root mean
square error (RMSE) was 5.82 cm under the normal growth states. These results were similar to the
ones from previous studies, where the R-square between cumulative GDD and plant height was
0.88–0.91 for Sesamum indicum [61] and 0.99 for sweet corn [62]; these relationships follow a Sigmoid
growth curve like the one obtained in this study. In general, the growth and development of paddy
rice were fast under high air temperatures [63], and the relationship between cumulative GDD and
plant height was stable.

The LAI has been estimated using GDD that is one of the variables in the rice growth and
productivity model. The R-square (RMSE) was 0.97 (0.47) [64]. Williams and Lindquist [62] reported
an R-square (RMSE) of 0.92–0.98 (0.0224-0.2138) for two years. In this study, R-square between
cumulative GDD and LAI before the heading stage was 0.861 (p-value < 0.0001). These results mean
that cumulative GDD has a high correlation with growth parameters of plant height and LAI under
normal growth conditions. However, the relationship between cumulative GDD and LAI under
the abnormal growth conditions had different trends with that under the normal growth condition.
The growth and development of paddy rice were late due to herbicide influence. Thus, the relationship
between cumulative GDD and growth parameters can effectively express the low and late growth and
development of paddy rice due to herbicide damage.
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Figure 9. Relationship between cumulative growing degree days (GDD) and plant height. The color
indicates leaf area index (LAI). Circle scatters indicate normal growth samples (number of samples = 167),
and gray empty square plots indicate abnormal growth samples (number of samples = 86).

This concept can be applied to other abnormal growth conditions as well as the effect of herbicide.
For example, the damages of growth and development caused by disease and harmful insects can be
detected using cumulative GDD and growth parameters. Conversely, rapid growth and development
of crops due to the bountiful fertilizer can be detected because of the relatively high values of growth
parameters compared to the normal relationship between cumulative GDD and growth parameter.
Although the relationship between cumulative GDD and growth parameters was useful to detect plant
stress on the crop growth and development, this method for detecting crop stress conditions needs
micro-meteorological data, as well as crop growth information, and its application is limited to small
areas. Thus, the relationships between growth parameters and vegetation indices under normal and
abnormal growth states were evaluated in order to replace growth parameters with vegetation indices
before the heading stage.

3.3.2. Relationship Between Plant Height and Vegetation Indices

Plant height increases after the transplanting stage, and then reaches its maximum at the heading
stage. Conversely, vegetation indices increase until the heading stage, and then they start to decrease.
For this reason, the relationship between plant height and vegetation indices was analyzed using
data before the heading stage (number of samples = 121). The highest value of the R-square among
the three vegetation indices was 0.938 in NDVI (Figure 10a), and the lowest value as 0.832 in PRI
(Figure 10c). The relationship between plant height and MTCI was linear (Figure 10b). All vegetation
indices accurately explained the plant height until the heading stage. Structural vegetation index such
as NDVI was saturated in high values of plant height, but MTCI could sensitively express high plant
height values. In the literature, the plant height of durum wheat had R-square values of 0.518~0.828
and root mean squared error values of 0.083~0.105 in the NDVI. In the OSAVI the same values were
0.519~0.817 and 0.102~0.127, respectively [65]. This result was lower than ours because it included the
data measured after heading. In the ripening phase, the plant height has a constant value, but the value
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of vegetation index decreases. Thus, the estimation of the plant height of paddy rice using vegetation
indices before the heading stage was recommended.
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(d)–(f); (3) above-ground dry matter (AGDM) (g)–(i); (4) cumulative growing degree days (GDD) (j)–(l).

The influence of data related to the abnormal growth was evaluated in the relationship between
plant height and vegetation indices. When data on abnormal growth (number of samples = 38) were
included with the normal growth data, the R-square decreased approximately 0.003~0.015 in three
vegetation indices (Table 3). Unlike PRI, the R-square values in NDVI and MTCI decreased by just 0.008
and 0.003, and they were similar regardless of stress, which means that vegetation indices, especially
related to the structure of the crop, include the abnormal growth response of paddy rice.
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Table 3. The relationship between vegetation indices and cumulative growing degree days (GDD), plant
height, leaf area index (LAI) or above-ground dry matter (AGDM) before the heading stage. Difference
indicates the difference of R-square between “normal growth samples” and “normal growth + abnormal
growth samples”. Li, Lo, S, and E are abbreviations for linear, logarithm, Sigmoid, and exponential
function (p-value < 0.0001).

Vegetation Index Data

Plant Height
(cm)

LAI
(m2/m2)

AGDM
(g/m2)

Cumulative
GDD (>10 ◦C)

R-Square
(Function)

R-Square
(Function)

R-Square
(Function)

R-Square
(Function)

Normalized difference
vegetation index

(NDVI)

Normal growth samples 0.938 (E) 0.903 (E) 0.914 (E) 0.937 (S)

Normal growth
+ Abnormal growth samples 0.930 (E) 0.901 (E) 0.910 (E) 0.892 (S)

Difference −0.008 −0.002 −0.004 −0.045

MERIS terrestrial
chlorophyll index

(MTCI)

Normal growth samples 0.912 (Li) 0.886 (Li) 0.863 (E) 0.851 (Lo)

Normal growth
+ Abnormal growth samples 0.915 (Li) 0.882 (Li) 0.816 (E) 0.807 (Lo)

Difference 0.003 −0.004 −0.047 −0.044

Photochemical
reflectance index

(PRI)

Normal growth samples 0.832 (E) 0.795 (E) 0.784 (E) 0.827 (S)

Normal growth
+ Abnormal growth samples 0.817 (E) 0.812 (E) 0.732 (E) 0.738 (S)

Difference −0.015 0.017 −0.052 −0.089

3.3.3. Relationship between Leaf Area Index and Vegetation Indices

LAI that indicates 3-dimension crop growth information had a high correlation with plant height
that indicates 2-dimensional crop growth information. The correlation coefficient for this relationship
between plant height and LAI was 0.946 (p-value < 0.0001), and the equation on linear trend was
“plant height (cm) = 19.802 × LAI (m2/m2) + 28.566” (number of samples = 158). This paddy rice result
was similar to the garlic result with an R-square of 0.96 [66]. Unlike the plant height, LAI increased
after transplanting and then decreased after the heading stage [67].

The relationship between LAI and vegetation indices was evaluated (number of samples = 155),
excluding the abnormal growth. In this study, NDVI and PRI maintained an exponential relationship
with LAI (Figure 10d,f). MTCI, which include biochemical characteristics, had a linear relationship
with LAI (Figure 10e). The NDVI relationship showed the highest R-square (0.903; p-value < 0.0001),
similar to its relationship with plant height. The relationship between LAI and MTCI was a linear
relationship like with plant height, and it was effective for estimation of high LAI values [68]. Structural
vegetation indices had a non-linear relationship with LAI, but they had a higher R-square than the
ones in previous studies. The obtained R-square for the LAI were (1) 0.87, 0.91, and 0.87 for the SR,
NDVI, and PRI correlations [69]; (2) 0.98, 0.99, and 0.99 for the SR, NDVI, and OSAVI correlations [67];
(3) 0.94 and 0.92 for the NDVI and OSAVI correlations [70]. Most previous studies have used NDVI
to estimate LAI; NDVI was also found to be the best variable to predict the LAI in this study. Given
that NDVI was saturated when the canopy was closed (LAI > about 2 m2/m2), vegetation index using
the red-edge band (e.g., MTCI) can be used to diagnose the crop growth, because it does not saturate
under high LAI values [68,71].

Data on abnormal growth (number of samples = 23) did not affect the relationship between
LAI and vegetation indices that include structural characteristics such as the NDVI and the MTCI.
The R-square in the NDVI and the MTCI decreased from 0.002 to 0.004. However, the values of LAI
and vegetation indices under the abnormal growth were lower than those under normal growth
because of the slow growth and development of paddy rice. Conversely, the R-square increased by
0.017 for PRI. These results mean that the relationship between LAI and vegetation indices remained
similar independent of the stress conditions; this was the same as the plant height correlations
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behavior. Vegetation indices indicated which of the growth conditions were affected by stress and
environmental factors. Accordingly, structural variables such as plant height and LAI can be replaced
with vegetation indices.

3.3.4. Relationship between Above-Ground Dry Matter and Vegetation Indices

AGDM indicates biomass information of paddy rice, and it increased continually until the
harvesting stage. The characteristics of stem, leaf, and panicle in the AGDM were separated into
before and after the heading stage. AGDM on stem and leaf increased before the heading stage.
After the heading stage, AGDM of leaf decreased, and the panicle AGDM increased. In addition,
the stem’s weight decreased due to assimilating translocation from stem to panicle. The ratio of panicle
weight and all AGDM was called the harvest index. Given that the AGDM and harvest index are
directly related to yield, the estimation of AGDM is critical. According to previous studies, SR and
NDVI have an exponential relationship with the paddy rice AGDM, with an R-square of 0.68 and 0.64
(p-value < 0.0001) for SR and NDVI [72]. The relationship (p-value < 0.0001) between dry biomass
and NDVI or OSAVI in barley shows an exponential regression with an R-square of 0.61 (NDVI) and
0.68 (OSAVI) [73]. Zheng et al. [74] reported the statistical results on the relationship between AGDM
and structural vegetation indices such as the NDVI, green NDVI, and OSAVI before the heading stage.
R-square values were 0.62 (NDVI), 0.66 (green NDVI), and 0.62 (OSAVI).

In this study, the number of samples on AGDM (number of samples = 22) was lower than that of
other growth parameters because AGDM values can only be obtained using a destructive method.
In addition, the number of samples matched with vegetation indices on the same day is lower than
the number of AGDM measurements. In this study, NDVI was the best vegetation index to estimate
AGDM before the heading stage (Figure 10g). The R-squares (p-value < 0.0001) for data on normal
growth and data including abnormal growth samples were 0.914 and 0.910 in NDVI. MTCI had the
second-best result with AGDM (Figure 10h); the R-square was 0.863 (p-value < 0.0001), and it decreased
to 0.816 (p-value < 0.0001) when the abnormal growth data (number of samples = 15) were included.
PRI showed an exponential and linear relationship with AGDM (Figure 10i). The statistic results
of these vegetation indices were lower than the others. In addition, when abnormal growth data
were added, degrees of change were relatively large, like MTCI. The relationship between AGDM
and vegetation indices before the heading stage reflected the fraction effect of the crop before canopy
closure [72].

3.3.5. Relationship Between Cumulative Growing Degree Days and Vegetation Indices

The relationships between the growth parameters of plant height, LAI, and AGDM and the
vegetation indices were evaluated. The relationship between the two factors was divided into normal
growth and abnormal growth conditions in vegetative and reproductive period. According to previous
results, the growth parameters can be estimated using the structural vegetation index and MTCI,
regardless of stress before the heading stage. Thus, the growth parameters were replaced with the
vegetation index to detect abnormal growth of the paddy rice.

NDVI, MTCI, and PRI had a Sigmoid, logarithm, and Sigmoid trend with cumulative GDD
(Figure 10j,k,l). The R-square (p-value < 0.0001) is 0.937 in the relationship between cumulative GDD
and NDVI under the normal growth conditions (number of samples = 151), and it is the highest
among the three indices. However, statistical results decreased when the abnormal growth data
(number of samples = 41) was included. The trend in the abnormal growth data was different from
that in the normal growth data. NDVI and PRI were effective in detecting the abnormal growth of
paddy rice. The PRI statistics results were lower than those in NDVI because PRI includes physiological
and biochemical characteristics.

Kimball et al. [75] reported the curve between cumulative GDD and NDVI during the cultivation
period on wheat that was cultivated under the different air temperature conditions. The curves of
cumulative GDD-NDVI were stable regardless of the different air temperature, but they were different
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when the crop was damaged by frost. The curve of cumulative GDD-NDVI in the frost-damaged
samples was different with that in the heated samples. As a result, the grain yield of wheat damaged
from frost was close to zero. It meant that the curve of cumulative GDD and vegetation indices could
detect the abnormal status.

3.4. Estimation of Grain Yield Using Vegetation Indices

The grain yield of paddy rice has been estimated using vegetation indices. Vegetation indices are
directly utilized as input data for the crop model, or they are used to estimate specific variables to
use as input data for crop models, such as LAI [13]. In this study, vegetation indices were evaluated
using the maximum vegetation index value during the cultivation period to estimate grain yield [9–11],
because this study focuses on finding a suitable vegetation index instead of in the accurate estimation
of grain yield. In addition, the ripening ratio of paddy rice was considered. Finally, the relationship
between the maximum vegetation index value during the cultivation period multiplied by the ripening
ratio (hereafter maximum vegetation index × ripening ratio) and grain yield of paddy rice was
evaluated using three years of data (Figure 11). The samples on yield components were divided
into common condition, herbicide damage, and heat stress samples to confirm the effect of stress.
Additionally, the sPRI was used instead of PRI in order to remove the negative value, and it was
calculated as (PRI+1)/2.

The R-square between the vegetation index × ripening ratio and the grain yield of paddy rice on
all data ranged from 0.861 to 0.912 (p-value < 0.0001) (Table 4). MTCI had the best statistical results.
Additionally, grain yield could be estimated after excluding the heat stress samples. The R-square
values decreased in the three vegetation indices because the influence of ripening ratio on the estimation
of grain yield was larger than that of the vegetation indices. In particular, the maximum NDVI and
sPRI could not be used to estimate the grain yield. The maximum MTCI × ripening ratio had R-square
values of 0.481 (p-value = 0.0002). The RMSE in MTCI was 96.04 g/m2 when heat stress samples
were excluded.

Table 4. Statistical results on grain yield estimated from two values of vegetation index and the ripening
ratio. The maximum vegetation index refers to the maximum value of vegetation index during the
paddy rice growth period.

Variables
Grain Yield (g/m2)

Samples R-Square p-Value RMSE Equation

Maximum NDVI
× ripening ratio

All data 0.869 <0.0001 116.77 Y = 893.198X − 31.928

Ripening ratio
> 75% 0.002 0.8351 133.15 Y = − 158.816X + 817.234

Maximum MTCI
× ripening ratio

All data 0.912 <0.0001 95.69 Y = 177.296X − 32.928

Ripening ratio
> 75% 0.481 0.0002 96.04 Y = 142.371X + 126.796

Maximum sPRI
× ripening ratio

All data 0.861 <0.0001 120.08 Y = 1629.197X − 29.565

Ripening ratio
> 75% 0.029 0.4375 131.35 Y = − 978.367X + 1114.129

NDVI: Normalized difference vegetation index; MTCI: MERIS terrestrial chlorophyll index; PRI: Photochemical
reflectance index.



Remote Sens. 2020, 12, 2654 19 of 25

Remote Sens. 2020, 10, x FOR PEER REVIEW  19 of 26 

 

divided into common condition, herbicide damage, and heat stress samples to confirm the effect of 
stress. Additionally, the sPRI was used instead of PRI in order to remove the negative value, and it 
was calculated as (PRI+1)/2. 

 
Figure 11. Relationship between maximum vegetation index value during cultivation period × 
ripening ratio and grain yield. 

The R-square between the vegetation index × ripening ratio and the grain yield of paddy rice on 
all data ranged from 0.861 to 0.912 (p-value < 0.0001) (Table 4). MTCI had the best statistical results. 

Figure 11. Relationship between maximum vegetation index value during cultivation period× ripening
ratio and grain yield.

Actually, grain yield dependence on the degree of stress was significant for p-value < 0.1
(Figure 12a). The grain yield in samples with herbicide damage was lower than that in samples in
common conditions, and the yield in heat stress samples was notably low. The significant difference
was assessed in NDVI, MTCI, and sPRI considering the ripening ratio. The maximum NDVI and sPRI
× ripening ratio showed no significant difference between the normal growth and abnormal growth
data (Figure 12b,d). Heat stress-induced damage of grain yield was reflected by the NDVI and sPRI.
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Conversely, the maximum MTCI × ripening ratio had a significant difference depending on the degree
of stress for p-value < 0.1.
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These results corresponded with previous studies. Kanke et al. [51] showed that red-edge-based
vegetation indices were better than red-based vegetation indices to predict grain yield. Zhang and
Liu [76] discussed that MTCI measured at the heading stage was the best indicator to predict grain
yield (R-square = 0.652). In addition, MTCI is the best vegetation index to predict leaf nitrogen
concentration in rice [77]. Although red-edge-based vegetation indices were useful, the NDVI was
the selected representative vegetation index to estimate the crop grain yield of the crop in numerous
studies [78–80]. NDVI at the specific growth stage of crops was utilized to predict the grain yield
instead of maximum NDVI. Grain yield of rice was estimated using NDVI at the booting and heading
stages (R-square = 0.76) [78], and it had a significant correlation with NDVI measured at 91 days after
seeding (R-square = 0.605) [79]. In a corn crop, the relationship between grain yield and NDVI at the
V8 stage was high (R-square = 0.77) [80]. However, to use only vegetation index values is not suitable
for estimating the grain yield. Although biomass increases, grain yield can decrease due to external
factors such as disease infection, heat stress, and lodging [51]. In this study, the difference of grain yield
due to herbicide damage was detected by the vegetation indices; the decreased grain yield caused
by physiological stress was not detected by the vegetation indices. If the decreasing of the ripening
ratio, which happened due to heat stress, was not considered, none of the vegetation indices could
have estimated the grain yield of paddy rice. MTCI in AT+3 ◦C was higher than that in AT, but actual
grain yield was lower due to the low ripening ratio. Therefore, an additional study to estimate the
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ripening ratio of paddy rice using vegetation index is demanded, or meteorological variables should
be utilized to the ripening ratio or fertility percentage. The ripening ratio (fertility percentage) can be
estimated using mean air temperature (maximum air temperature) for 40 days after the heading stage
(during the flowering period) [81,82].

4. Conclusions

The phenology of paddy rice was monitored using structural, biochemical, and physiological
vegetation indices under the elevated air temperature conditions for three years. The extremely high
temperature-induced heat stress occurred in 2016 and 2018, and the herbicide damage occurred in
2017. The most suitable vegetation indices were selected based on their performance under the future
meteorological environment, physiological stress, and herbicide damage. The conclusions in the study
were summarized as follows:

(1) The cumulative GDD had a stable relationship with the plant height and LAI under normal
growth conditions;

(2) The relationship between vegetation indices and growth parameters such as plant height, LAI,
and AGDM was constant regardless of abnormal growth data until the heading stage. This means
that vegetation indices can replace growth parameters;

(3) The structural vegetation index, i.e., NDVI, can detect the slow growth and development of the
crop caused by stress using the relationship with cumulative GDD. This concept can explain the
abnormal condition of the crop, even if measurement data for several decades is not available;

(4) PRI is the most useful vegetation index under physiological stress caused by heat stress. Unlike
other vegetation indices, PRI decreased under the extremely high air temperatures even before
the heading stage. When PRI decreases before the heading stage, this phenomenon might be
the effect of the physiological stress and can then take the following actions: (1) Put silicate and
potassium fertilizer; (2) let heatwave-induced the heated water flow to outside, and supply new
water in order to lower the water temperature;

(5) MTCI, which uses a red-edge band, is one of the most useful indices to predict the grain yield.
MTCI showed higher sensitivity to the growth and development of paddy rice than structural
vegetation indices because it did not saturate at the heading stage. In addition, the MTCI did not
decrease under the extremely high air temperatures, indirectly indicating that the chlorophyll
levels of paddy rice did not decrease before the heading stage.

In other words, structural vegetation indices are useful to distinguish the normal and abnormal
growth and development states (Category 1). Although structural damage does not exist, the crop stress
under the extremely high air temperature is detected through biochemical–physiological vegetation
index (Category 2). Lastly, the structural–biochemical vegetation index is more effective to grasp the
crop growth and development than the vegetation index which has the only structural characteristic.
These results suggest that it is important to select a reasonable vegetation index in accordance with the
development intention of the index and the purpose of its application.

In this study, the relationship between growth parameters and vegetation indices was assessed
using many observation data under various environments of air temperature. These results can be
helpful to remote sensing researchers in the agricultural domain for efficient monitoring of crop growth
as well as indicating crop stress. However, although this study investigates not only the vegetative
phase but also the grain yield, it focused on the performance of vegetation indices before the heading
stage under the various environmental conditions. In further research, the temporal response of paddy
rice after the heading stage will be analyzed considering different states of rice panicle, particularly,
the ripening ratio.
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