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Abstract: Remote sensing is a useful tool for monitoring spatio-temporal variations of crop
morphological and physiological status and supporting practices in precision farming. In comparison
with multispectral imaging, hyperspectral imaging is a more advanced technique that is capable
of acquiring a detailed spectral response of target features. Due to limited accessibility outside of
the scientific community, hyperspectral images have not been widely used in precision agriculture.
In recent years, different mini-sized and low-cost airborne hyperspectral sensors (e.g., Headwall
Micro-Hyperspec, Cubert UHD 185-Firefly) have been developed, and advanced spaceborne
hyperspectral sensors have also been or will be launched (e.g., PRISMA, DESIS, EnMAP, HyspIRI).
Hyperspectral imaging is becoming more widely available to agricultural applications. Meanwhile,
the acquisition, processing, and analysis of hyperspectral imagery still remain a challenging research
topic (e.g., large data volume, high data dimensionality, and complex information analysis). It is
hence beneficial to conduct a thorough and in-depth review of the hyperspectral imaging technology
(e.g., different platforms and sensors), methods available for processing and analyzing hyperspectral
information, and recent advances of hyperspectral imaging in agricultural applications. Publications
over the past 30 years in hyperspectral imaging technology and applications in agriculture were
thus reviewed. The imaging platforms and sensors, together with analytic methods used in
the literature, were discussed. Performances of hyperspectral imaging for different applications
(e.g., crop biophysical and biochemical properties’ mapping, soil characteristics, and crop classification)
were also evaluated. This review is intended to assist agricultural researchers and practitioners to
better understand the strengths and limitations of hyperspectral imaging to agricultural applications
and promote the adoption of this valuable technology. Recommendations for future hyperspectral
imaging research for precision agriculture are also presented.

Keywords: precision agriculture; remote sensing; hyperspectral imaging; platforms and sensors;
analytical methods; crop properties; soil characteristics; classification of agricultural features

1. Introduction

The global agricultural sector is facing increasing challenges posed by a range of stressors,
including a rapidly growing population, the depletion of natural resources, environmental pollution,
crop diseases, and climate change. Precision agriculture is a promising approach to address these
challenges through improving farming practices, e.g., adaptive inputs (e.g., water and fertilizer),
ensured outputs (e.g., crop yield and biomass), and reduced environmental impacts. Remote sensing
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is capable of identifying within-field variability of soils and crops and providing useful information for
site-specific management practices [1,2]. There are two types of remote sensing technologies given the
source of energy, passive (e.g., optical) and active remote sensing (e.g., LiDAR and Radar). Passive
optical remote sensing is usually further divided into two groups based on the spectral resolutions
of sensors, multispectral and hyperspectral remote sensing [3]. Multispectral imaging is facilitated
by collecting spectral signals in a few discrete bands, each spanning a broad spectral range from tens
to hundreds of nanometers. In contrast, hyperspectral imaging detects spectral signals in a series of
continuous channels with a narrow spectral bandwidth (e.g., typically below 10 nm); therefore, it can
capture fine-scale spectral features of targets that otherwise could be compromised [4].

Multispectral images (e.g., Landsat, Sentinel 2, and SPOT images) have been widely used in
agricultural studies to retrieve various crop and soil attributes, such as crop chlorophyll content,
biomass, yield, and soil degradation [5–10]. However, due to the limitations in spectral resolution,
the accuracy of the retrieved variables is often limited, and early signals of crop stresses (e.g., nutrient
deficiency, crop disease) cannot be effectively detected in a timely manner [11]. Hyperspectral
images (e.g., Hyperion, CASI, and Headwall Micro-Hyperspec) with hundreds of bands can capture
more detailed spectral responses; hence, it is more capable of detecting subtle variations of ground
covers and their changes over time. Therefore, hyperspectral imagery can be used to address the
aforementioned challenges and facilitate more accurate and timely detection of crop physiological
status [12,13]. Previous studies have also demonstrated the superior performance of hyperspectral
over multispectral images in monitoring vegetation properties, such as estimating the leaf area
index (LAI) [14], discriminating crop types [15], retrieving crop biomass [16], and assessing leaf
nitrogen content [17]. Despite its outstanding performance, hyperspectral imaging has been utilized
comparatively less in operational agricultural applications in the past few decades due to the high cost
of the sensors and imaging missions, and various technical challenges (e.g., low signal-to-noise ratio
and large data volume) [18–21]. Although ground-based hyperspectral reflectance data can be quickly
measured using a spectroradiometer (e.g., ASD Field Spec, Analytical Spectral Devices Inc., Boulder,
CO, USA) and have been widely used for observing canopy- and leaf-level spectral features [22–24],
such ground-based measurements are limited to a few numbers of field sites, and they cannot capture
spatial variability across large areas. In contrast, hyperspectral imaging sensors are more convenient to
acquire spatial variability of spectral information across a region.

In recent years, a wide range of mini-sized and low-cost hyperspectral sensors have been developed
and are available for commercial use, such as Micro- and Nano-Hyperspec (Headwall Photonics Inc.,
Boston, MA, USA), HySpex VNIR (HySpex, Skedsmo, Skjetten, Norway), and FireflEYE (Cubert GmbH,
Ulm, Germany) [11,25]. These sensors can be mounted on manned or unmanned airborne platforms
(e.g., airplanes, helicopters, and unmanned aerial vehicles (UAVs)) for acquiring hyperspectral images
and supporting various monitoring missions [13,26,27]. In addition, new spaceborne hyperspectral
sensors have been launched recently, such as the DESIS—launched in 2018 [28]—and PRISMA—
launched in 2019 [29]—or will be launched in the next few years, such as EnMAP, with scheduled
launching in 2020 [30,31]. Overall, increasingly more airborne or spaceborne hyperspectral images
have become available, bringing unprecedented opportunities for better monitoring of ground targets,
especially for better investigation of crop and soil variabilities and supporting precision agriculture.
Therefore, a literature search was performed to examine if more research in using hyperspectral
imaging for agricultural purposes had been published in recent years. Both Web of Science and
Google Scholar were used for conducting the literature search with topics or keywords, including
hyperspectral, imaging, agriculture, or farming, and publication over a 30-year time span (1990 to 2020).
The searched results were further verified to ensure that each publication falls within the scope of
hyperspectral imaging for agriculture applications. It was found that there was an increasing number
of publications in recent years that used hyperspectral imaging for agricultural applications (Figure 1).
Substantially more studies have been published in the recent decade (e.g., 245 articles published in
2011–2020) than that in the previous one (e.g., 97 published in 2001–2010).
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reduction) can be performed to further improve the usability of the hyperspectral image. Techniques 
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This review is designed to focus on the acquisition, processing, and analysis of hyperspectral
imagery for different agricultural applications. The review is organized in the following main aspects:
(1) Hyperspectral imaging platforms and sensors, (2) methods for processing and analyzing
hyperspectral images, and (3) hyperspectral applications in agriculture (Table 1). Regarding imaging
platforms, different types, including satellites, airplanes, helicopters, fixed-wing UAVs, multi-rotor
UAVs, and close-range platforms (e.g., ground or lab based), have been used. These platforms
acquire images with different spatial coverage, spatial resolution, temporal resolution, operational
complexity, and mission cost. It will be beneficial to summarize various platforms in terms of these
features to support the selection of the appropriate one(s) for different monitoring purposes. After raw
hyperspectral imagery is acquired, pre-processing is the step for obtaining accurate spectral information.
Several procedures need to be carried out during pre-processing (usually implemented in a specialized
remote sensing software), including radiometric calibration, spectral correction, atmospheric correction,
and geometric correction. Although these are standard processing steps for most satellite imagery,
it still can be challenging to perform on many airborne hyperspectral images due to different technical
issues (e.g., the requirement of high-accuracy Global Positioning System (GPS) signals for proper
geometric correction, the measurement of real-time solar radiance for accurate spectral correction).
There are no standardized protocols for all sensors due to the limited availability of hyperspectral
imaging in the past and the fact that the new mini-sized and low-cost hyperspectral sensors in the
market are from different manufacturers with varying sensor configurations. Various approaches have
been used in previous studies to address these challenges [12,19,32,33]. Therefore, it is essential to
review these approaches to support other researchers for more accurate and efficient hyperspectral
image processing. After pre-preprocessing, such as calibration and correction, spectral information
extraction (e.g., band selection and dimension reduction) can be performed to further improve the
usability of the hyperspectral image. Techniques for these procedures are reviewed in this study.
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Table 1. Topics reviewed in this article.

Procedures of Applying
Hyperspectral Imagery Image Acquisition Image Processing and Analysis Image Applications

Review Focuses

Platforms:

- Satellites
- Airplanes
- UAVs
- Close-range platforms

Sensors:

- EO-1 Hyperion
- AVIRIS
- CASI
- Headwall Hyperspec etc.

Pre-processing:

- Geometric and radiometric
correction etc.

- Dimension reduction
- Band selection

Analytical Methods:

- Empirical regression
- Radiative transfer modelling
- Machine learning and

deep learning

Specific Applications:

- Estimating crop biochemical and biophysical properties
- Evaluating crop nutrient status
- Classifying imagery to identify crop types, growing stages,

weeds/invasive species, stress/disease
- Retrieving soil moisture, fertility, and other physical or

chemical properties
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With pre-processed hyperspectral images, a robust and efficient analytical method is required
for analyzing the tremendous amount of information contained in the images (e.g., spectral, spatial,
and textural features) and extracting target properties (e.g., crop and soil characteristics). Previous
studies have used a suite of analytical methods, including empirical regression (e.g., linear regression,
partial least square regression (PLSR), and multi-variable regression (MLR)), radiative transfer
modelling (RTM, e.g., PROSPECT and PROSAIL), machine learning (e.g., random forest (RF)),
and deep learning (e.g., convolutional neural network (CNN)) [34–37]. These methods have been
developed based on different theories and have different operational complexity, computation efficiency,
and performance accuracy. Therefore, it is essential to review the strengths and limitations of these
methods and help to choose the appropriate one(s) for specific research purposes. Using hyperspectral
information, researchers have investigated a wide range of agricultural features. Some popular ones
include crop water content, LAI, chlorophyll and nitrogen contents, pests and disease, plant height,
phenological information, soil moisture, and soil organic matter content [11,38]. It will also be valuable
to review the performances of hyperspectral imaging in these studies and further explore the potential
of this technology for monitoring other agricultural features. Lastly, challenges of using hyperspectral
imaging for precision agriculture, together with future research directions, are discussed. A few
previous review articles have discussed some of these topics to some extent [11,38,39]. More details
and contributions of this review will be discussed in each specific section. Overall, this review aims to
examine the main procedures in collecting and utilizing hyperspectral images for different agricultural
applications, to further understand the strengths and limitations of hyperspectral technology, and to
promote the faster adoption of this valuable technology in precision farming.

2. Hyperspectral Imaging Platforms and Sensors

Hyperspectral sensors can be mounted on different platforms, such as satellites, airplanes,
UAVs, and close-range platforms, to acquire images with different spatial and temporal resolutions.
Platforms used in the literature were identified and summarized over the publication years, aiming to
find, if any, the platforms that had been used more frequently in a specific time period, and the results
are shown in Figure 2. Airplanes have been the most widely used platforms for hyperspectral imaging
in agriculture (Figure 2). Approximately 30 articles that used airplanes were published every five years
starting from 2001 (e.g., 27 publications in 2001–2005 and 38 in 2006–2010). In comparison, satellite-based
hyperspectral imaging has been used less frequently; approximately 20 or fewer articles were published
in all five-year periods. UAVs are popular platforms for remote sensing and have been widely used in
the last decade for hyperspectral imaging in agriculture (e.g., more than 20 publications in 2011–2015 and
2016–2020). Close-range platforms have been the most widely used in the last five years (i.e., 2016–2020),
with 49 publications (Figure 2). The review in this section is structured based on different platforms,
including satellites, airplanes, UAVs, and close-range platforms. In contrast to previous articles reviewing
hyperspectral platforms [20,38,39], the review in this section focuses more on recent advancements of
imaging platforms (e.g., UAVs, helicopters, and close range) and their applications to precision farming
(e.g., weed classification, fine-scale evaluation of crop health, pests, and disease).

2.1. Satellite-Based Hyperspectral Imaging

Compared with a large number of satellite-based multispectral sensors (e.g., Landsat,
SPOT, WorldView, QuickBird, Sentinel-2), there are significantly fewer hyperspectral sensors.
EO-1 Hyperion, PROBA-CHRIS, and TianGong-1 [40] are a few examples of the available satellite
hyperspectral sensors [20]. EO-1 Hyperion is the most widely used satellite-based hyperspectral
sensor for agriculture (e.g., more than 40 publications). It collects data in the visible, near-infrared,
and shortwave infrared ranges with a spectral resolution of 10 nm and a spatial resolution of 30 m.
More sensor specifications of EO-1 Hyperion are given in Table 2. The sensor was in operation
from 2000 to 2017, which corresponds to the period having more publications using satellite-based
hyperspectral imaging (e.g., 2006 to 2020 in Figure 2). The use of Hyperion data has been reported in a



Remote Sens. 2020, 12, 2659 6 of 44

variety of agricultural studies for monitoring different crop and soil properties, including detecting
crop disease [41,42], estimating crop properties (e.g., chlorophyll, LAI, biomass) [43–45], assessing crop
residues [46,47], classifying crop types [48], and investigating soil features [49,50]. A few featured ones
include Wu et al. [45], who estimated vegetation chlorophyll content and LAI in a mixed agricultural
field using Hyperion data and evaluated spectral bands that are sensitive to these vegetation properties.
Camacho Velasco et al. [48] used Hyperion hyperspectral imagery and different classification algorithms
(e.g., spectral angle mapper and adaptive coherence estimator) for identifying five types of crops
(e.g., oil palm, rubber, grass for grazing, citrus, and sugar cane) in Colombia. Gomez et al. [49] predicted
soil organic carbon (SOC) using both spectroradiometer data and a Hyperion hyperspectral image,
and they found that using Hyperion data resulted in a lower accuracy compared with results derived
from spectroradiometer data.Remote Sens. 2020, 12, x FOR PEER REVIEW 6 of 43 
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Studies have also been conducted to compare the performances of Hyperion hyperspectral imagery
with multispectral imagery for estimating crop properties or classifying crop types. For instance,
Mariotto et al. [15] compared Hyperion hyperspectral imagery with Landsat multispectral imagery for
the estimation of crop productivity and the classification of crop types. The authors reported better
performances of using hyperspectral imagery than using Landsat imagery for both research purposes.
Similarly, Bostan et al. [51] compared Hyperion hyperspectral imagery with Landsat multispectral
imagery for crop classification and also found that higher classification accuracy can be achieved by
using hyperspectral imagery.
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Table 2. Specifications of commonly used hyperspectral sensors [11,20,52–56].

Satellite-Based Airplane-Based UAV-Based *

Sensor Hyperion PROBA-CHRIS AVIRIS CASI AISA HyMap Headwall
Hyperspec

UHD
185-Firefly

Spectral range (nm) 357–2576 415–1050 400–2500 380–1050
(CASI-1500)

400–970
(Eagle) 440–2500 400–1000

(VNIR) 450–950

Number of spectral bands 220 19 63 224 288 244 128 270 (Nano)
324 (Micro) 138

Spectral Resolution (nm) 10 34 17 10 <3.5 3.3 15 6 (Nano) 2.5
(Micro) 4

Operational altitudes (km) 705 (swath 7.7 km) 830 (swath 14 km) 1–20 <0.15

Spatial resolution (m) 30 17 36 1–20 0.01–0.5

Temporal resolution (days) 16–30 8 Depends on flight operations (hours to days)

Organization NASA, USA ESA, UK
Jet Propulsion

Laboratory,
USA

Itres,
Canada

Specim,
Finland

Integrated
Spectronics,
Australia

Headwall
Photonics,

USA

Cubert GmbH,
Germany

Number of publications 41 9 18 22 20 12 9 6

* UAV-based sensors typically can also be mounted on airplanes for imaging.
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PROBA-CHRIS is another commonly used satellite-based hyperspectral sensor that was launched
in 2001. Specific studies, such as Verger et al. [57], utilized PROBA-CHRIS data for retrieving
LAI, the fraction of vegetation cover (fCover), and the fraction of absorbed photosynthetically
active radiation (FAPAR) in an agricultural field. Antony et al. [58] identified three growth stages
of wheat using multi-angle PROBA-CHRIS images and found the optimal view angles for the
identification. Casa et al. [59] evaluated the performance of airborne Multispectral Infrared Visible
Imaging Spectrometer (MIVIS) data and spaceborne PROBA-CHRIS data for investigating soil texture,
and they found that these two data have similar performances, although the PROBA-CHRIS data have
a lower spatial resolution.

There are a few other satellite-based hyperspectral sensors that have not been commonly used
in an agricultural environment. For instance, Hyperspectral Imager (HySI) is a hyperspectral sensor
equipped on the Indian Microsatellite-1 (IMS-1) launched in 2008 [60]. It collects spectral signals in the
range of 400–950 nm with a spatial resolution of 550 m at nadir [61]. HySI imagery has been used to
map different agricultural features, such as soil moisture and soil salinity [62]. It has also been used for
crop classification [63]. However, this data has not been widely used in precision farming, which is
probably due to the low spatial resolution and limited data availability. The Hyperspectral Imager
for the Coastal Ocean (HICO) is another spaceborne hyperspectral sensor that takes images with a
spectral range from 380 to 960 nm at a spatial resolution of 90 m [64]. This sensor was mainly designed
to sample the coastal ocean and operated from 2009 to 2015.

In recent years, several spaceborne hyperspectral sensors have been launched or scheduled for
launching in the next few years. For instance, the German Aerospace Center (DLR) Earth Sensing
Imaging Spectrometer (DESIS), a hyperspectral sensor mounted on the International Space Station,
was launched in 2018 [65]. This sensor acquires images in the range from 400 to 1000 nm with a spectral
resolution of 2.5 nm and a spatial resolution of 30 m. The Hyperspectral Imager Suite (HISUI) is a
Japanese hyperspectral sensor that is also onboard the International Space Station [66]. It was launched
in 2019 and collects data in the range from 400 to 2500 nm with a spatial resolution of 20 m and a
temporal resolution of 2 to 60 days [20]. Hyperspectral Precursor and Application Mission (PRISMA)
is an Italian hyperspectral mission with the sensor launched in March 2019. Its spectral resolution is
12 nm in the range of 400-2500 nm (~250 bands in visible to shortwave infrared). Its hyperspectral
imagery has a spatial resolution of 30 and 5 m for the panchromatic band [67]. The Environmental
Mapping and Analysis Program (EnMAP) is a German hyperspectral satellite mission that is still in
the development and production phase [68]. The EnMAP sensor will collect data from the visible to
the shortwave infrared range with a spatial resolution of 30 m. It is planned to be launched in 2020.
The Spaceborne Hyperspectral Applicative Land and Ocean Mission (SHALOM) is a joint mission by
Israeli and Italian space agencies, and the satellite is scheduled to be launched in 2022 [69]. This sensor
will collect hyperspectral images with a spatial resolution of 10 m in the spectral range of 400–2500 nm
and panchromatic images with a spatial resolution of 2.5 m [70]. HyspIRI is another hyperspectral
mission that is also at the study stage [71]. This sensor will collect data in the 380 to 2500 nm range
with an interval of 10 nm and a spatial resolution of 60 m.

Although the actual PRISMA, EnMAP, and HyspIRI data are not yet available, researchers
have simulated the images using other data and tested the performance of the simulated images for
investigating different vegetation and soil features. For instance, Malec et al. [72], Siegmann et al. [73],
and Locherer et al. [74] simulated EnMAP imagery using different airborne or spaceborne images and
applied the simulated images for investigating different crop and soil properties. Bachmann et al. [75]
produced an image using the EnMAP’s end-to-end simulation tool and examined the uncertainties
associated with spectral and radiometric calibration. Castaldi et al. [76] simulated data of four
current (EO-1 ALI and Hyperion, Landsat 8 Operational Land Imager (OLI), Sentinel-2 MultiSpectral
Instrument (MSI)) and three forthcoming (EnMAP, PRISMA, and HyspIRI) sensors using a soil spectral
library and compared their performance for estimating soil properties. Castaldi et al. [77] used PRISMA
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data that were simulated with lab-measured spectral data for estimating clay content and attempted to
reduce the influence of soil moisture on the estimation of clay.

Previous studies have confirmed the good performance of satellite-based hyperspectral sensors for
studying agricultural features; however, several factors could potentially affect the broad applications
of these data in precision farming, including the spatial resolution, temporal resolution, and data quality.
The detection and monitoring of many agricultural features, such as crop disease, pest infestation,
and nutrient status, require high spatial and temporal resolution. Most of the satellite-based
hyperspectral sensors have medium spatial resolutions, such as 17 or 36 m for PROBA-CHRIS;
30 m for Hyperion, PRISMA, and EnMAP, DESIS; and 60 m for HyspIRI. Previous studies have
indicated that such spatial resolutions are not sufficient for precision farming applications [20,49].
To overcome such limitations, researchers have attempted to pansharpen hyperspectral images, aiming
to improve spatial resolution [73,78–80]. Loncan et al. [81] also reviewed different pansharpening
methods for generating high-spatial resolution hyperspectral images.

Temporal resolution is another factor that could potentially limit the applications of satellite-based
hyperspectral images to precision agriculture. Most of the satellite-based sensors have a long revisit
cycle (e.g., typically around two weeks), and thus early signals of crop stress (e.g., disease and
pest) may be missed. This limitation can be further aggravated by unfavorable weather conditions
(e.g., cloud contamination). Lastly, low data quality is also an issue that can affect the performance of
satellite-based hyperspectral imaging for investigating agricultural features. A low signal-to-noise ratio
is a well-known issue of Hyperion data (e.g., in the shortwave infrared (SWIR) range), which has affected
the accuracy of retrieving different agricultural features [20]. For instance, Asner and Heidebrecht [82],
Gomez et al. [49], and Weng et al. [83] found that the low signal-to-noise ratio influenced the accuracies
of estimating non-photosynthetic vegetation and soil cover, soil organic matter, and soil salinity,
respectively. Future satellite-based hyperspectral missions are expected to solve the data quality issue.

2.2. Airplane-Based Hyperspectral Imaging

Airborne hyperspectral imaging has been widely used to collect hyperspectral imagery for
different monitoring purposes (e.g., for agriculture or forestry). The first hyperspectral sensor was an
airborne visible/infrared imaging spectrometer (AVIRIS) that was developed and utilized in 1987 [84].
It collects spectral signals in 224 bands in the visible to SWIR range (Table 2). Researchers have applied
AVIRIS data to help understand a wide range of agricultural features, such as investigating vegetation
properties (e.g., yield, LAI, chlorophyll, and water content) [85–88], analyzing soil properties [89],
evaluating crop health or identifying pest infestation [90–92], and mapping crop area or agricultural
tillage practices [93,94].

Besides AVIRIS, the Compact Airborne Spectrographic Imager (CASI), Hyperspectral Mapper
(HyMap), and AISA Eagle are also widely used airborne hyperspectral sensors (Table 2). For instance,
CASI images have been used for estimating crop chlorophyll content [95], investigating crop cover
fraction [96], classifying weeds [97], and delineating management zones [2]. The HyMap imagery
has been applied to examining crop biophysical and biochemical variables (e.g., LAI, chlorophyll and
water content) [98–100], detecting plant stress signals [101], and investigating the spatial patterns of
SOC [102]. Regarding AISA Eagle imagery, Ryu et al. [35] and Cilia et al. [103] used this data for
estimating crop nitrogen content, and Ambrus et al. [104] used it for estimating biomass.

Several other airborne hyperspectral sensors have also been used in previous studies. For instance,
AVIS images were used for investigating a range of vegetation characteristics (e.g., biomass and
chlorophyll) [105], Probe-1 hyperspectral images were used for investigating crop residues [106],
RDACS-H4 hyperspectral images were used for detecting crop disease [34], AHS-160 hyperspectral
sensor was used for mapping SOC [107], the SWIR Hyper Spectral Imaging (HSI) sensor was used for
estimating soil moisture [108], the Pushbroom Hyperspectral Imager (PHI) was used for estimating
winter wheat LAI [109], and airborne prism experiment (APEX) data were used for studying the
relationship between SOC in croplands and the spectral signals [110].
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Most of the aforementioned airborne hyperspectral images have been acquired by airplanes at
medium to high altitude (e.g., 1–4 km altitude for CASI, 20 km for AVIRIS), and the acquired images
generally having high to medium spatial resolution, such as 4 m for CASI imagery, 5 m for HyMap,
and 20 m for AVIRIS [111–113]. Such spatial resolutions are appropriate for mapping many crop and
soil features. However, image acquisition usually needs to be scheduled months or even years in
advance, and flight missions are expensive [19]. Furthermore, for some specific applications, such as
investigating species-level or community-level features (e.g., identification of weeds or early signal
of crop disease), images with very high spatial resolutions (e.g., sub-meter) are preferred [114,115].
In addition, due to the unstable nature of airplanes as imaging platforms, a gimbal or high-accuracy
inertial measurement unit (IMU) will be required to compensate for the orientation change of the
airplanes or recording the orientation information for subsequent image correction, respectively.
These factors limited the full application of airborne hyperspectral imaging in precision agriculture.
Manned helicopters have also been used as platforms for hyperspectral imaging and investigation
of vegetation features [27,116]. Helicopters have more flexible flight heights (e.g., 100 m–2 km) than
airplanes and are capable of acquiring high-spatial-resolution images (e.g., sub-meter) over large
areas. An aviation company with a manned helicopter is generally needed for the imaging task,
which requires extra funding support and far advanced pre-scheduling.

2.3. UAV-Based Hyperspectral Imaging

UAV has become a popular platform in recent years for remote sensing data acquisition,
especially for multispectral imaging using digital cameras or multispectral sensors. With the increased
availability of lightweight hyperspectral sensors, researchers have experimented on mounting these
sensors on UAVs to acquire high-spatial-resolution hyperspectral imagery [19,117]. Different types
of UAVs, including multi-rotors, helicopters, and fixed wings, have been utilized in previous studies
(Figure 3). Compared with manned airplanes and helicopters, UAVs are capable of acquiring high-
spatial-resolution images with a much lower cost and have high flexibility in terms of scheduling a
flight mission [118]. Several specific agricultural applications of UAV-based hyperspectral imaging are
summarized in Table 3.
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Table 3. Example applications of UAV-based hyperspectral imaging in agriculture.

Applications Previous Studies Research Focuses

Estimating LAI and
chlorophyll Yu et al. [37]

Estimated a range of vegetation phenotyping variables
(e.g., LAI and leaf chlorophyll) using UAV-based

hyperspectral imagery and radiative transfer modelling.

Estimating biomass
Honkavaara et al. [123]

Mounted a hyperspectral sensor and a consumer-level
camera on a UAV for estimating biomass in a wheat and

a barley field.

Yue et al. [124] Utilized UAV-based hyperspectral images for estimating
winter wheat above-ground biomass.

Estimating nitrogen
content

Pölönen et al. [125] Used lightweight UAVs for collecting hyperspectral
images and estimated crop biomass and nitrogen content.

Kaivosoja et al. [126] Applied UAV-based hyperspectral imagery to investigate
biomass and nitrogen contents in a wheat field.

Akhtman et al. [127]
Utilized UAV-based hyperspectral images for estimating
nitrogen content and phytomass in corn and wheat fields
and monitored temporal variations of these properties.

Estimating water
content Izzo et al. [128]

Evaluated water content in the commercial vineyard
using UAV-based hyperspectral images and determined

wavelengths sensitive to canopy water content.

Classifying weeds Scherrer et al. [129]
Classified herbicide-resistant weeds in different crop

fields (e.g., barley, corn, and dry pea) using both ground-
and UAV-based hyperspectral imagery.

Detecting disease Bohnenkamp et al. [119] Used both ground- and UAV-based hyperspectral images
for detecting yellow rust in wheat.

Various lightweight hyperspectral sensors have been developed in recent years and can be
mounted on UAVs. Examples of sensors include the widely-used Headwall Micro- and Nano-Hyperspec
VNIR [12,13,26,128], UHD 185-Firefly [53,130], the PIKA II sensor [19,32], and the HySpex VNIR [25,131].
These hyperspectral sensors contain more than 100 bands in the visible-near infrared spectral range
(Table 2). These sensors are small and compact (1–2 kg), thus they can be deployed quickly on various
manned or unmanned remote sensing platforms. Previous studies conducted by Adão et al. [11] and
Lodhi et al. [52] also compared and summarized various lightweight hyperspectral sensors.

A large number of factors need to be considered in the application of UAV-based hyperspectral
imaging, ranging from sensor setup and data collection, to image processing. Saari et al. [122] tested
the feasibility of a UAV-based hyperspectral imaging system for agricultural and forest applications
and discussed several challenges regarding the imaging technology (e.g., hardware requirements
and system settings). Aasen et al. [132] focused on the calibration of images collected with a
frame-based sensor and discussed several challenges related to the use of UAV-based hyperspectral
imaging for vegetation and crop investigation (e.g., the payload of UAV, signal-to-noise ratio, and
spectral calibration). Habib et al. [120] attempted to perform orthorectification of UAV-acquired
pushbroom-based hyperspectral imagery with frame-based RGB images over an agricultural field.
Adão et al. [11] reviewed applications of UAV-based hyperspectral imaging in agriculture and forestry
and listed several hyperspectral sensors that can be mounted on UAVs. The authors also discussed
several challenges in collecting and analyzing UAV-based hyperspectral imagery, such as radiometric
noise, the low quality of UAV georeferencing, and a low signal-to-noise ratio.

UAV-based hyperspectral imaging has become more popular in recent years; therefore, it is critical to
review its strengths and limitations. To explore more features of this technology, this section of the review
is not limited to agricultural applications alone. Different types of UAVs have been used as hyperspectral
imaging platforms, with the two most widely used as multi-rotors [130,133,134] and fixed-wing
planes [33,120,135]. Slow flights at low altitudes are preferred to achieve high-spatial-resolution
hyperspectral imagery with a high signal-to-noise ratio. Thus, a multi-rotor is more competitive than
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fixed-wing planes for hyperspectral imaging in terms of flight operation. Specifically, the multi-rotor
allows for a low flight altitude, flexible flight speed, and vertical takeoff and landing, while the
fixed wing requires a minimum flight altitude, speed, and, sometimes, accessories for takeoff and
landing (e.g., runway, launcher, and parachute). A hyperspectral imaging system, which consists
of a hyperspectral sensor, a data processing unit, a GPS, and an IMU, has a considerable weight
(e.g., 1–3 kg), thus bringing challenges to the payload capacity of the UAV system and its battery
endurance. The multi-rotors are generally powered by high-performance batteries (e.g., LiPo), and most
have a short endurance (e.g., less than 20 min). The endurance can be as short as 3 min [12]. In contrast,
many fixed-wing UAVs are powered by fuel, thus having a much longer endurance (e.g., 1–10 h) [19,135].
However, these fixed-wing planes are mostly large and heavy (e.g., a 5 m wingspan and 14 kg take-off

weight) [135], and thus bring challenges to the flight operation. Using UAV, researchers need to consider
the UAV SWaP (size, weight, and power), geographical coverage, time aloft, altitude, and other variables.
In addition to the challenges in building a UAV system and performing flight operations, researchers
likely need to apply for flight permission from an aviation authority (e.g., Special Flight Operations
Certificate (SFOC) from Transport Canada), and purchase suitable UAV flight insurance [136]. UAV size
and weight are essential parameters to consider in these processes. Furthermore, the UAVs are required
to be visible during flight missions, so that the pilot can maintain constant visual contact with the
aircraft. This could create a major challenge when flying over a large area, a hilly area, or an area
with forests.

2.4. Close-Range (Ground- or Lab-Based) Hyperspectral Imaging

Close-range hyperspectral imaging, including ground (Figure 4a–c) or lab based (Figure 4d,e),
is an emerging technology in recent years, and it is capable of acquiring super-high-spatial-resolution
(e.g., cm or sub-cm level) hyperspectral imagery [137–139]. Therefore, this imaging technology can
be used for investigating fine-scale (e.g., leaf and canopy level) vegetation features and thus greatly
support the investigation of crop growing status and detection of early signs of crop stress (e.g., disease,
weeds, or nutrition deficiency). Sensors are mounted on moving or static platforms (e.g., linear
stages, scaffolds, or trucks) that can be deployed indoors or outdoors for collecting images. Lamps
(e.g., halogen lamp) or the sun are used as light sources in these platforms, respectively.

Researchers have utilized different types of platforms and hyperspectral sensors for collecting
super-high-spatial-resolution hyperspectral imagery to study different agricultural features, as shown
in Table 4.

Table 4. Example applications of close-range hyperspectral imaging in previous studies.

Applications Previous Studies Research Focuses

Investigating
biochemical
components

Feng et al. [140]

Designed a hyperspectral imaging system that consists of a
Headwall hyperspectral camera, a halogen lamp, a computer,

and a translation stage and used this system for taking images of
rice leaves to study leaf chlorophyll distribution.

Mohd Asaari et al. [141]

Mounted a visible and near-infrared HIS camera in a
high-throughput plant phenotyping platform for evaluating

plant water status and detecting early stage signs of plant
drought stress.

Zhu et al. [142]
Installed a hyperspectral camera and halogen lamp on a moving

stage and used this imaging system for estimating sugar and
nitrogen contents in tomato leaves.

Detecting crop
disease

Morel et al. [143]
Used a HySpex hyperspectral camera installed in a close-range

imaging system for investigating black leaf streak disease in
banana leaves.

Nagasubramanian et al. [144]
Integrated a Pika XC hyperspectral line imaging scanner and

halogen illumination lamps for taking images of soybeans and
monitoring fungal disease.
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Table 4. Cont.

Applications Previous Studies Research Focuses

Identifying
vegetation
species or

weeds

Eddy et al. [139]

Mounted a hyperspectral sensor on a boom arm that was
installed on a truck for acquiring images at 1 m above the

ground and applied the hyperspectral images to classifying
weeds in different crop fields.

Lopatin et al. [145]
Installed an AISA Eagle imaging spectrometer on a scaffold at

the height of 2.5 m above ground, aiming to collect hyperspectral
imagery in a grassland area for classifying grassland species.

Phenotyping Behmann et al. [146]

Utilized hyperspectral cameras and a close-range 3D laser
scanner that were mounted on a linear stage for collecting

hyperspectral images and 3D point models, respectively, and
used these two datasets for generating hyperspectral 3D plant

models for better monitoring plant phenotyping features.

Monitoring soil
properties

Antonucci et al. [147]
Attempted to estimate copper concentration in contaminated
soils using hyperspectral images that were acquired from a

lab-based spectral scanner.

Malmir et al. [137]

Collected close-range soil images using Pika XC2 hyperspectral
camera that was mounted on a linear stage and used the
hyperspectral imagery for investigating soil macro- and

micro-elements.

Overall, the close-range hyperspectral imaging platform is capable of acquiring super-high-
spatial-resolution hyperspectral imagery that is critical for investigating fine-scale crop or soil features.
These features provide detailed information about the plant’s biophysical and biochemical processes
and how plants respond to environmental stresses and diseases. However, the image collection and
processing also suffer from different issues, such as uninformative variability caused by the interaction
of light with the plant structure (i.e., illumination effects), influences of shadows, and expanding
applications of the platform to a large scale [141,146]. Further research in these areas is warranted.
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In summary, different hyperspectral imaging platforms, including satellites, airplanes, helicopters,
UAVs, and close-range, have different advantages and disadvantages for applications in precision
agriculture. Detailed comparisons of these platforms for agricultural applications are shown in
Table 5. In brief, satellite-based systems provide images covering large areas but suffer from medium
spatial resolution and limited data availability (e.g., a limited number of operating sensors and long
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revisit time). Airplane- and helicopter-based imaging platforms acquire data with suitable spatial
coverage and resolution for most of the agricultural applications. However, they are limited by
a high mission cost and scheduling challenges and thus are not suitable for repeated monitoring.
UAV-based systems are capable of acquiring high-spatial resolution images repeatedly and have high
flexibility. However, they can only cover a small area due to the limited battery endurance and aviation
regulations. The close-range imaging systems are capable of obtaining super-high-spatial-resolution
images, but they can only be used at leaf or canopy levels. Therefore, the following factors should be
taken into consideration when selecting a platform for a specific research project: spatial resolution
needed for the study, flight area and flight endurance, weight of the imaging system, platform payload
capacity, flight safety and regulations, operation flexibility, and cost.

Table 5. Comparison of hyperspectral imaging platforms.

Satellites Airplanes Helicopters Fixed-Wing
UAVs

Multi-Rotor
UAVs

Close-Range
Platforms

Example
Photos
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Operational
Altitudes 400–700 km 1–20 km 100 m–2 km <150 m <10 m

Spatial
Coverage

Very large Medium—large Medium Small—medium Small Very small
e.g., one

Hyperion scene
covers 42 km ×

7.7 km

A 10-min flight/operation covers

~100 km2 ~10 km2 ~5 km2 ~0.5 km2 ~0.005 km2

Spatial
Resolution 20–60 m 1–20 m 0.1–1 m 0.01–0.5 m 0.0001–0.01 m

Temporal
Resolution Days to weeks Depends on flight operations (hours to days)

Flexibility Low (e.g., fixed
repeating cycles)

Medium (e.g., limited by the
availability of aviation

company)
High

Operational
Complexity

Low (Final data
provided to

users)

Medium (Depends on who
operates the sensor, users or

data vendors)
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Applicable
Scales

Regional—
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design and
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Image
Acquisition

Cost
Low to medium High (typically requires hiring

an aviation company to fly) High (If need to cover a large area)

Number of
publications * 59 133 3 4 38 79

* The number of publications was counted based on which specific platform was used in each of the
literature reviewed.

3. Methods for Processing and Analyzing Hyperspectral Images

Hyperspectral images acquired by different platforms and sensors are typically provided in a
raw format (e.g., digital numbers) that needs to be pre-processed (e.g., atmospheric, radiometric,
and spectral corrections) to retrieve accurate spectral information. Afterward, different approaches can
be used for analyzing the hyperspectral information and investigating various agricultural features
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(e.g., crop and soil properties). A few commonly used methods include linear regression, advanced
regression (e.g., PLSR), machine learning and deep learning (e.g., RF, CNN), and radiative transfer
modelling (e.g., PROSPECT and PROSAIL). Researchers have used one or more of these methods for
investigations of different agricultural features. In this section, the review is arranged based on the
different methods used in the studies.

3.1. Pre-Processing of Hyperspectral Images

Typical processing of hyperspectral imagery includes geometric correction, orthorectification,
radiometric correction, and atmospheric correction. For satellite- and airplane-based hyperspectral
images, the geometric and orthorectification correction are generally performed by data providers,
and the radiometric and atmospheric corrections can be done following standard image processing steps
available in remote sensing software. For UAV-based images, in contrast, the users need to conduct
these processing steps and decide on appropriate processing methods and associated parameters.
For instance, a digital elevation model (DEM) and ground control points (GCPs) are usually needed
for performing the orthorectification and geometric correction [12]. If the sensor mounted on UAV
is pushbroom based, accurate sensor orientation information recorded by an IMU will be needed
for these corrections, and the IMU needs to be integrated into the UAV and well-calibrated [12,27].
Software packages commonly used in previous studies for performing these corrections on UAV-based
hyperspectral images include ENVI (Exelis Visual Information Solutions, Boulder, CO, USA) and
PARGE (ReSe Applications Schläpfer, Wil, Switzerland) [12,26,117].

Radiometric correction is conducted to convert image digital numbers to radiance using calibration
coefficients that are provided by the sensor manufacturer [11]. These coefficients may need to be updated
over time due to the degradation of spectral materials used to construct the hyperspectral sensors.
Regarding atmospheric correction, although the UAVs are flown at low altitudes, the signals acquired
are still subjective to the influence of various atmospheric absorptions and scatterings, such as oxygen
absorption at 760nm; water absorption near 820, 940, 1140, 1380, and 1880 nm; and carbon dioxide
absorption at 2010 and 2060 nm [12,13,26,150]. Therefore, atmospheric correction is critical for obtaining
good-quality spectral information. However, Adão et al. [11] suggest that this process might be skipped
if the UAVs are operated close to the ground. Therefore, the application of atmospheric correction will
depend on specific flight missions and research purposes (e.g., flight altitudes, if atmosphere-influenced
spectral bands are needed). Software or methods commonly used in previous studies for performing
atmospheric correction on UAV-based hyperspectral images include the MODTRAN model (Spectral
Sciences Inc.), ENVI FLAASH (L3Harris Geospatial), PCI Geomatica (PCI Geomatics Corporate),
SMARTS model (Solar Consulting Services), and empirical line correction [12,19,27,32,33,116].

Hyperspectral images typically have hundreds of bands, and many of them are highly correlated.
Therefore, dimension reduction is also an essential procedure to consider in the pre-processing of
hyperspectral imagery. Many previous studies using hyperspectral imagery have discussed the
challenges of data redundancy and have used different methods for dimension reduction. For instance,
Miglani et al. [151] performed principal component analysis (PCA) on hyperspectral images and
indicated that 99% of the information could be explained in the first 10 principal components.
Amato et al. [152] discussed a few previous methods of dimension reduction, such as PCA, minimum
noise fraction (MNF), and singular value decomposition (SVD), and proposed a dimension reduction
algorithm based on discriminant analysis for supervised classification. Teke et al. [38] reviewed
several dimension reduction methods and summarized them based on transformation techniques.
Thenkabail et al. [153] discussed the problems of high dimensionality and listed a number of spectral
bands that are more important for investigating crop features. Sahoo et al. [4] reviewed different
methods for dimension reduction, such as PCA, uniform feature design (UMD), wavelet transforms,
and artificial neural networks (ANNs), and discussed their features of operation. Wang et al. [154]
proposed an auto-encoder-based dimensionality reduction method that is a deep learning-based
approach. Of these different methods, the wavelet transform is one of the most widely used ones for
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dimension reduction. This technique decomposes a signal into a series of scaled versions of the mother
wavelet function and allows the variation of the wavelet based on the frequency information to extract
localized features (e.g., local spectral variation) [155,156]. It has also been successfully used for image
fusion, feature extraction, and image classification [156–158].

In addition to dimensionality reduction, band sensitivity analysis and band selection have also
been widely used in hyperspectral remote sensing to reduce the data size by selecting only the bands
that are sensitive to the object of interest. Different algorithms have been proposed in previous studies
for band selection, such as a fast volume-gradient-based method that is an unsupervised method and
removes the most redundant band successively based on the gradient of volume [159], a column subset
selection-based method that maximizes the volume of the selected subset of columns (i.e., bands)
and is robust to noisy bands [160], and a manifold ranking-based salient band selection method that
puts band vectors in manifold space and selects a band-based ranking that can tackle the problem of
inappropriate measurement of the band difference [161]. With the sensitivity analysis, previous studies
have identified spectral bands that are sensitive to different crop properties, for instance, ~515, ~550,
~570, ~670, 700–740, ~800, and ~855 nm for investigating chlorophyll content; ~405, ~515, ~570, ~705,
and ~720 nm for evaluating nitrogen status; ~970, ~1180, ~1245, ~1450, and ~1950 nm for assessing
water content; ~682, ~855, ~910, ~970, ~1075, ~1245, ~1518, ~1725, and ~2260 nm for estimating
biomass; and ~550, ~682, ~855, ~1075, ~1180, ~1450, and ~1725 nm for crop classification [36,44,153,162].
Overall, pre-processing is an essential step for improving the quality of hyperspectral images and
preparing for further data analysis. After the pre-processing, the analytical methods to be discussed
below can be used for analyzing the hyperspectral information and investigating various agricultural
features on the ground.

3.2. Empirical Relationships

Linear regression is a widely used method for analyzing hyperspectral imagery and retrieving
target information (e.g., crop and soil properties). Both spectral reflectance and vegetation indices can
be used as predictor variables in establishing a linear relationship. For instance, using spectral bands,
Finn et al. [108] built linear regressions between field-measured soil moisture data and the spectral
reflectance of collected hyperspectral imagery and identified bands that have stronger correlations with
soil moisture. More studies have used vegetation indices in the regression for a better performance as
some indices can enhance the signal of targeted features and minimize the background noise. Some of
the previous studies are shown in Table 6.

Table 6. Selected previous studies utilized linear regression and hyperspectral vegetation indices for
investigating agricultural features.

Applications Previous Studies Research Focuses

Estimating leaf
chlorophyll and
nitrogen content

Oppelt and Mauser [105]

Utilized the Chlorophyll Absorption Integral (CAI), Optimized
Soil-Adjusted Vegetation Index (OSAVI), and hyperspectral

Normalized Difference Vegetation Index (h NDVI) for estimating
leaf chlorophyll and nitrogen content from hyperspectral

imagery and evaluated the performance of each of the indices.

Wu et al. [45]

Tested a range of vegetation indices (e.g., NDVI, Simple Ratio
(SR), and Triangular Vegetation Index (TVI)) for retrieving

vegetation chlorophyll content and LAI from Hyperion images
and determined the indices that produced high accuracies.

Cilia et al. [103]

Utilized the Double-peak Canopy Nitrogen Index (DCNI) and
Modified Chlorophyll Absorption Ratio Index/Modified

Triangular Vegetation Index 2 (MCARI/MTVI2) for estimating
nitrogen content, as well as the Transformed Chlorophyll

Absorption in Reflectance Index (TCARI), MERIS Terrestrial
Chlorophyll Index (MTCI) and Triangular Chlorophyll Index

(TCI) for estimating leaf pigments.



Remote Sens. 2020, 12, 2659 17 of 44

Table 6. Cont.

Applications Previous Studies Research Focuses

Estimating LAI and
biomass

Xie et al. [109]

Evaluated a range of vegetation indices, such as the modified
simple ratio index (MSR), NDVI, a newly proposed index
NDVI-like (which resembles NDVI), modified triangular

vegetation index (MTVI2), and modified soil adjusted vegetation
index (MSAVI) for estimating winter wheat LAI from

hyperspectral images.

Ambrus et al. [104] Tested the NDVI and Red Edge Position (REP) for estimating
field-scale winter wheat biomass.

Richter et al. [98]

Examined a range of techniques (e.g., index-based empirical
regression, radiative transfer modelling, and artificial neural

network) for estimating crop biophysical variables (e.g., LAI and
water content) in terms of operational agricultural applications
with airborne Hymap data and discussed the unique features of

each technique.

Estimating nitrogen
content Nevalainen et al. [163]

Utilized 28 published vegetation indices (e.g., Chlorophyll
Absorption Ratio Index (CARI) and Normalized Difference Red

Edge (NDRE)) for estimating oat nitrogen and identified the
best-performing one.

Detecting crop
disease

Huang et al. [164]

Examined the performance of the photochemical reflectance
index (PRI) for estimating the disease index of wheat yellow rust
using canopy reflectance data and then applied the regression

on an airborne hyperspectral imagery for mapping the
disease-affected areas.

Copenhaver et al. [34]
Calculated a range of vegetation indices (e.g., NDVI and red

edge position index) for detecting crop disease and compared
the effectiveness of these indices.

Estimating crop
residue cover Galloza and Crawford [47]

Utilized the Normalized Difference Tillage Index (NDTI) and
Cellulose Absorption Index (CAI), together with ALI, Hyperion,
and airborne hyperspectral (SpecTIR) data, for estimating crop

residue cover for conservation tillage application.

Crop classification Thenkabail et al. [44]

Utilized both spectral bands and vegetation indices for
classifying different crop types and estimating vegetation

properties and evaluated the performance difference of using
various bands or indices.

Overall, linear regression has been commonly used for estimating a wide range of crop or soil
properties. It is easy to establish, and most of the index-based regressions generated satisfactory
accuracies. However, there are several potential issues associated with this approach, such as the large
number of indices available and it is unknown which performs better, regression may be very sensitive
to data size and quality, and the saturation problem of indices [36,165]. It is thus critical to consider
these potential issues and adopt appropriate solutions when establishing linear regressions with
hyperspectral data. For instance, selecting appropriate vegetation indices with targeted crop or soil
variables is recommended. Researchers have evaluated a wide range of hyperspectral vegetation indices
for different research purposes. Haboudane et al. [166] examined 11 hyperspectral vegetation indices for
estimating crop chlorophyll content. Main et al. [167] investigated 73 vegetation indices for estimating
chlorophyll content in crop and savanna tree species. Peng and Gitelson [168] tested 10 multispectral
indices and 4 hyperspectral indices for quantifying crop gross primary productivity. Croft et al. [169]
analyzed 47 hyperspectral indices for estimating the leaf chlorophyll content of different tree species.
Zhou et al. [170] evaluated eight hyperspectral indices for estimating the canopy-level wheat nitrogen
content. Tong and He [165] evaluated 21 multispectral and 123 hyperspectral vegetation indices for
calculating the grass chlorophyll content at both the leaf and canopy scales. Yue et al. [171] examined
54 hyperspectral vegetation indices for estimating winter wheat biomass. Indices performed differently
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in these studies; thus, it is suggested to evaluate the top-performed ones in these studies and select the
one that generates the highest accuracy.

To deal with issues of linear regression, advanced regression, such as MLR and PLSR, has also
been commonly used in previous research for estimating crop and soil properties [172,173]. Compared
with linear regression, the advanced regression models mostly use multiple predictor variables in the
model to achieve a higher accuracy. PLSR is one of the most widely used models for investigating
crop properties using hyperspectral images, such as Ryu et al. [35], Jarmer [99], Siegmann et al. [73],
and Yue et al. [124] used PLSR and hyperspectral images for estimating different crop biophysical and
biochemical variables (e.g., LAI, biomass, chlorophyll, content, fresh matter, and nitrogen contents).
Thomas et al. [100] examined PLSR for retrieving the biogas potential from hyperspectral images and
evaluated the influence of imaging time on retrieval accuracy. Regarding soil features, Gomez et al. [49],
Van Wesemael et al. [107], Hbirkou et al. [102], and Castaldi et al. [110] built a PLSR model for estimating
the SOC content using hyperspectral images. Zhang et al. [50] used PLSR for estimating a wide range
of soil properties (e.g., soil moisture, soil organic matter, clay, total carbon, phosphorus, and nitrogen
content) from hyperspectral imagery and identified factors that may affect the model accuracy
(e.g., low signal-to-noise ratio, spectral overlap of different soil features). Casa et al. [59] used the
PLSR model and different hyperspectral imagery for investigating soil textural features and evaluated
various factors (e.g., spectral range and resolution, soil moisture, geolocation error) influencing the
model performance.

The PLSR model is implemented in Python and R [174,175] and is widely used in many research
areas, including forests [176], grasslands [177], and waters [178]. This model performed well in different
studies owning to its strengths in dealing with a large number of inter-correlated predictor variables
(i.e., by converting them to a few non-correlated latent variables), addressing the data noise challenge,
and tackling the over-fitting problem [171,179]. Different techniques have also been confirmed to
be efficient for improving the accuracy of the PLSR model, such as incorporating different types of
predictor variables in the model (e.g., spectral bands, indices, textural variables), utilizing predicted
residual error sum of squares (PRESS) statistics for determining the optimal number of latent variables,
and feature evaluation for selecting more important predictor variables in the model [36]. It is thus
critical to carefully examine these techniques for achieving the optimal model accuracy.

3.3. Radiative Transfer Modelling

Radiative transfer modelling is a physically based approach that uses physical laws to
simulate the interaction of electromagnetic radiation with vegetation (e.g., reflection, transmission,
and absorption) [180]. The RTMs simulate vegetation spectra (e.g., leaf reflectance and transmittance)
using vegetation biophysical and biochemical properties (e.g., chlorophyll and water contents) in
the forward mode, and for inversion of these variables from spectral measurements in the inverse
mode [181]. PROSAIL is one of the most widely used RTMs. This model is an integration of the
leaf-level PROSPECT model and canopy-level SAIL model and is capable of simulating canopy
reflectance using leaf properties (e.g., chlorophyll and water contents), canopy structural parameters
(e.g., LAI and leaf angle), and soil reflectance [18].

PROSAIL has also been used in agricultural environments for investigating crop and soil
properties. For instance, Casa and Jones [182] inverted PROSAIL and a ray-tracing canopy model
with spectroradiometer-measured hyperspectral reflectance data and imaging spectrometer-acquired
hyperspectral image data, respectively, for estimating canopy LAI and evaluated factors influencing
the estimation accuracy (e.g., the non-homogeneous surface caused by the crop row structure).
Richter et al. [98] utilized PROSAIL for estimating LAI, fCover, canopy chlorophyll, and water content
from hyperspectral images and compared its performance to other methods (e.g., artificial neural
network). Richter et al. [183] applied PROSAIL to investigate similar vegetation variables and analyzed
the accuracy and efficiency of this method. Wu et al. [184] examined the sensitivity of vegetation indices
to vegetation chlorophyll content using simulated results from the PROSPECT model and suggested
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a few well-performed indices. Locherer et al. [74] attempted to estimate vegetation LAI using the
PROSAIL model and multi-source hyperspectral images and tested several techniques (e.g., different
cost functions and types of averaging methods) used for the inversion process. Yu et al. [37] estimated
a range of vegetation phenotyping variables (e.g., LAI and leaf chlorophyll) using hyperspectral
imagery and PROSAIL and examined the sensitivity of different spectral ranges to the parameters in
the PROSAIL model.

Compared with the regression models discussed in previous sections, the RTMs have been less
used in the literature for investigating agricultural features due mainly to their high model complexity
and computational intensity. For instance, a wide range of parameters need to be considered in
RTM (e.g., chlorophyll, carotenoids, water contents, leaf area index, leaf angles, solar angles, and soil
reflectance, along with other parameters, in the PROSAIL model) and the users need to use different
techniques (e.g., merit function, look-up table) to facilitate the forward and inversion operations of
the model. In addition, it costs much more computing time than the regression models to achieve the
predictions of target vegetation variables. However, it is also well known that the regression models
tend to be site and time specific and are not readily transferable to other geographical regions or
different times over the site [166]. In contrast, RTM is a more transferable approach owning to the
fact that it is established based on physical laws and does not require training data for rebuilding
the model. In addition, RTM is capable of estimating a range of vegetation properties in one model,
while regression models typically can only estimate one variable [36,185].

3.4. Machine Learning and Deep Learning

Machine learning algorithms, including support vector machine regression (SVM) and RF,
are powerful tools for analyzing hyperspectral information since they can process a large number of
variables (e.g., spectral reflectance and vegetation indices) efficiently [186]. Machine learning has been
widely used in the remote sensing field for estimating properties of ground features or classifying
different ground covers [36,114,187]. Researchers have also used different machine learning algorithms
and hyperspectral images for agricultural applications. SVM has been a commonly used algorithm
in previous research for prediction or classification purposes. For instance, Honkavaara et al. [123]
estimated crop biomass using SVM and UAV-acquired hyperspectral imagery. Bostan et al. [51] utilized
SVM for classifying different crop types and achieved high classification accuracy. Ran et al. [93]
used KNN and SVM classifiers for investigating tillage practices in agricultural fields and compared
their performances. RF is another commonly used algorithm for investigating agricultural features
with hyperspectral imagery. For instance, Gao et al. [188] successfully classified weed and maize
using RF and lab-based hyperspectral images. Using ground-based hyperspectral reflectance data
acquired by an ASD spectroradiometer, Siegmann and Jarmer [189] evaluated the performance of
RF, SVM, and PLSR for estimating crop LAI and confirmed the good performance of RF. Similarly,
using hyperspectral reflectance, Adam et al. [190] attempted to detect maize disease with the RF model.
Overall, machine learning models generally have robust performances for investigating agricultural
features using hyperspectral imagery.

Deep learning is a subset of machine learning and extends machine learning by adding more
“depth” (i.e., hierarchical representation of the dataset) in the model [191,192]. It is a popular approach
in recent years for recognizing patterns in remote sensing images and thus for investigating various
ground features. Deep learning has been commonly used in the remote sensing field for image
classification, such as land cover classification [193–195] and the identification of ground features
(e.g., buildings) [196]. Deep learning has also been applied to precision farming to solve complicated
issues. Existing studies are, for example, investigating the estimation of crop yield using CNN
and multispectral images together with climate data [197], plant disease detection using CNN and
smartphone-acquired images [198], crop classification using 3-D CNN and multi-temporal multispectral
images [199], and classification of agricultural land cover using deep recurrent neural network and
multi-temporal SAR images [200]. Kamilaris and Prenafeta-Boldú [191] reviewed applications of deep
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learning in agriculture and food production, although not all studies used remote sensing images.
Singh et al. [201] reviewed a range of deep learning methods and their applications, specifically in plant
phenotyping. Up to now, deep learning has not been well explored for processing and analyzing remote
sensing images, especially hyperspectral images, for agricultural applications. Considering the capacity
of deep learning for studying feature patterns in images and the rich information in hyperspectral
imagery, the integration of the two has a wide range of agricultural applications (e.g., crop classification,
weed monitoring, crop disease detection, and plant stress evaluation). Further research in these areas
is warranted.

Machine learning or deep learning is capable of processing multi-source and multi-type data [202].
For instance, besides multi-type remote sensing images (e.g., optical, thermal, LiDAR, and Radar), other
sources of data, such as weather, irrigation, and historical yield information, can also be incorporated in
the modelling process for a possibly better evaluation of targeted agricultural features [203]. Although
machine learning and deep learning models are powerful, it is also critical to keep in mind that these
models require large-quantity and high-quality training samples to achieve robust performances [202].
Insufficient training datasets or data with issues (e.g., data incompleteness, noise, and biases) may
cause undesired model performances.

In summary, different analytical methods (e.g., linear regression, advanced regression,
machine learning and deep learning, and RTM) have different levels of complexity, performance,
and transferability. More detailed comparisons on these methods are listed in Table 7. Overall, linear
regression is the easiest method to use, and its performance is generally acceptable, although this
method can be highly influenced by the choice of predictor variables and quality of the sample data.
The advanced regression (e.g., PLSR) mostly performs better than the linear regression since it involves
multiple variables in the model and is less sensitive to data noise. RTM (e.g., PROSAIL) is capable of
producing multiple data products (e.g., chlorophyll, water, and LAI) with reasonably high accuracies.
One essential advantage of this method is its high transferability. However, this method has the highest
complexity as it requires a wide range of parameters and extensive programming. In terms of machine
learning, many algorithms, such as RF and SVM, are well established and mostly performed well in
previous studies. Some programming and model adjustments are needed for this method to achieve
optimal performance. Deep learning is a relatively new method and is increasingly popular in recent
years. Appropriate model design and programming are critical for this approach. It also requires a
substantial amount of training data and computing resources to achieve a good model performance.
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Table 7. Comparison of different analytical methods.

Methods Linear Regression Advanced Regression Radiative Transfer
Modelling Machine Learning Deep Learning

Parameters typically used
in the model

- One predictor
variable (e.g.,
reflectance or
vegetation index)

- Response variable
(e.g., chlorophyll)

- Multiple
predictor variables

- Response variable
- Parameters in the model

(e.g., the number of
latent variables in PLSR)

- A wide range of
predictor variables (e.g.,
leaf biophysical and
biochemical properties)

- Parameters in the model
(e.g., absorption
coefficients, the
refractive index of leaf
material in PROSAIL)

- Multiple
predictor variables

- Response variable
- Parameters in the

model (e.g., number
of trees in the
RF model)

- Predictor variables
as input layers

- Sizes and weights
of layers

- Number of layers
for calculating

Model complexity Low Medium High Medium High

Model performance
Low—high

(depend on predictor
variable used)

Medium—high Medium—high Medium—high Medium—high

Transferability in time and
geographical location Low Low High Low High

Typical agricultural
applications Prediction of agricultural variables (e.g., yield, LAI) Prediction of agricultural variables

Classification of agricultural features

Application
recommendations

- Test a range of
predictor variables
and identify the best
performed one

- Check data noise in
the training samples

- Involve different types
of variables (e.g.,
spectral and textural)

- Check contributions of
variables to the model

- Tuning model
parameters to achieve
optimal performance

- Collect a set of
vegetation biophysical
and
biochemical parameters

- Adjust the model to
improve
calculating efficiency

- Involve different
types of variables
(e.g., spectral
and textural)

- Tuning model
parameters to
achieve
optimal performance

- Optimize
model configurations

- Large size of
training samples
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4. Hyperspectral Applications in Agriculture

Hyperspectral imaging has been used in agriculture for a wide range of purposes, including
estimating crop biochemical properties (e.g., chlorophyll, carotenoids, and water contents) and
biophysical properties (e.g., LAI, biomass) for understanding vegetation physiological status and
predicting yield, evaluating crop nutrient status (e.g., nitrogen deficiency), monitoring crop disease,
and investigating soil properties (e.g., soil moisture, soil organic matter, and soil carbon). Previous
studies have also summarized some of the above-mentioned applications of hyperspectral remote
sensing in precision agriculture [4,84]. In this section, we will thus focus more on recent hyperspectral
studies and summarize these studies according to specific applications.

4.1. Estimation of Crop Biochemical and Biophysical Properties

One important hyperspectral application in agriculture is monitoring crop conditions through
the retrieval of crop biochemical and biophysical properties [8,99]. For instance, the leaf chlorophyll
content is an essential biochemical property influencing the vegetation photosynthetic capacity and
controlling crop productivity [99]. In previous studies, Oppelt and Mauser [105] collected AVIS data
to retrieve the chlorophyll and nitrogen contents in a winter wheat field. Similarly, Moharana and
Dutta [43] used Hyperion data to estimate the contents of these two biochemical components in a rice
field. LAI, on the other hand, is a fundamental vegetation biophysical parameter and is highly related
to crop biomass and yield [98]. Previous studies have used hyperspectral remote sensing to estimate
the LAI of different crops, and some of the example studies are shown in Table 8.

Table 8. Selected previous studies estimating LAI for different crop types using hyperspectral images.

Crops Previous Studies Research Focuses

Winter wheat

Xie et al. [109]
Estimated canopy LAI in a winter wheat field using airborne

hyperspectral imagery and proposed a new vegetation index for
improved estimation accuracy.

Siegmann et al. [73]
Retrieved LAI of two wheat fields using EnMAP images and

attempted to pan-sharp the images aiming to improve the
spatial resolution of LAI products.

Barley Jarmer [99]

Retrieved a range of canopy variables from barley, including
LAI, chlorophyll, water, and fresh matter content using HyMap
data and established an efficient approach for monitoring the

spatial patterns of crop variables.

Rice Yu et al. [37]
Investigated LAI, leaf chlorophyll content, canopy water

content, and dry matter content using UAV-based hyperspectral
imagery, aiming to understand the growing status of rice.

Mixed
agricultural

fields

Richter et al. [98]

Estimated crop LAI and water content with airborne HyMap
data aiming to support operational agricultural practices (e.g.,

irrigation management and crop stress detection) in the context
of the EnMap hyperspectral mission.

Wu et al. [45]

Estimated chlorophyll content and LAI in a mixed agricultural
field (e.g., corns, chestnuts trees, and tea plants) using Hyperion
data and identified spectral bands and vegetation indices that

generated the highest accuracy.

Verger et al. [57] Estimated LAI, fCover, and FAPAR in an agricultural site with
different crops using PROBA-CHRIS data.

Locherer et al. [74]
Estimated LAI in mixed crop fields using EnMAP data and
compared the result accuracy to that of LAI estimation with

airborne data.
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In addition to the above-mentioned vegetation biochemical and biophysical properties, crop water
content is a critical parameter for revealing water stress. Richter et al. [98] attempted to estimate the
water content in maize, sugar beet, and winter wheat using airborne HyMap data. Moharana and
Dutta [204] investigated the water stress in a rice field and its variations using Hyperion images and
indicated that the remote sensing-estimated water content matched well with field-observed data.
Izzo et al. [128] evaluated the water status in a commercial vineyard using UAV-based hyperspectral
data and determined wavelengths sensitive to the canopy water content. Sahoo et al. [4] discussed the
applications of hyperspectral remote sensing data for evaluating water features in crops and listed
several vegetation indices for calculating the water content.

It can be found from the literature review that many previous studies have focused on estimating
the crop chlorophyll content, LAI, and water content using hyperspectral imagery, while other
important crop properties, such as carotenoids, that are sensitive to plant stress are less explored.
In addition, crop production is influenced by all of these vegetation properties (e.g., chlorophyll,
water, and LAI). Besides investigating the spatial and temporal variations of each property, it is also
critical to evaluate the relationships between these properties and further understand how they affect
crop growth and crop production.

Estimating crop biomass and forecasting yield are also important applications of remote sensing,
as they will contribute to the understanding of crop productivity and implementing suitable
management measures [126]. Yue et al. [124] utilized UAV-based hyperspectral images for estimating the
above-ground biomass of winter wheat. Yang [205] and Mariotto et al. [15] utilized both multispectral
and hyperspectral data to estimate crop yield and found that the hyperspectral imagery-based model
performed better. In addition, crop residues left in the field are critical materials protecting soil
from water and wind erosion and influencing soil biochemical processes. Previous studies, such as
Bannari et al. [106], Galloza and Crawford [47], Bannari et al. [46], have used different hyperspectral
images for the estimation of crop residues on farmlands

Beyond the estimation of crop biomass and residue, one further research topic is investigating
bioenergy (e.g., biogas), which can be generated from the crop biomass. Thomas et al. [100] attempted
to estimate the amount of biogas that can be generated per unit of biomass using airborne HyMap
data and achieved satisfactory results. Overall, hyperspectral imagery has contributed greatly to the
estimation of crop biomass, yield, and other related features (e.g., bioenergy, crop residues). Since crop
biomass and yield are highly affected by agricultural practices (e.g., watering and nutrition treatment),
involving these practice data, together with hyperspectral imagery, in the model can potentially
generate better results. More research in this area is warranted.

4.2. Evaluating Crop Nutrient Status

Precision farming involves evaluating the crop nutrient status and providing recommendations
on site-specific resource management according to crop needs [206]. Such an approach is critical for
improving the resource use efficiency and reducing environmental impacts [4,103]. Previous studies
have used hyperspectral images for estimating the nitrogen content of different crop types, as shown
in Table 9.

Table 9. Selected previous studies estimating the nitrogen content for different crop types using
hyperspectral images.

Crop types Previous Studies Research Focuses

Corn

Akhtman et al. [127]
Used UAV-based hyperspectral images for estimating nitrogen

content and phytomass in corn and wheat fields and monitored the
temporal variation of these properties.

Goel et al. [207]

Collected hyperspectral images in a cornfield with different nitrogen
treatments and weed controls aiming to evaluate to what extent the

spectral signals can identify different nitrogen treatments, weed
controls, or their interactions.
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Table 9. Cont.

Crop types Previous Studies Research Focuses

Cilia et al. [103]

Estimated nitrogen concentration and dry mass in an experimental
maize field using airborne hyperspectral imagery, aiming to

quantify the nitrogen deficit and provide a variable rate fertilization
map. The authors also suggested a way to evaluate the minimum

amount of nitrogen to apply without reducing crop yield and avoid
excessive fertilization.

Quemada et al. [208]
Evaluated plant nitrogen status in a maize field using airborne

hyperspectral images and developed nitrogen fertilizer
recommendations.

Wheat

Koppe et al. [209]
Attempted to investigate wheat nitrogen status and aboveground

biomass using hyperspectral and radar images and to evaluate
spectral signatures of wheats under different nitrogen treatments.

Kaivosoja et al. [126]

Used UAV-based hyperspectral imagery to investigate nitrogen
content and absolute biomass in a wheat field and evaluated the

degree of nitrogen shortage on the date of image acquisition. In this
research, historical farming data, including a yield map and a spring
fertilization map, were used for estimating the optimal amount of

fertilizer to be applied in different areas of the field.

Castaldi et al. [210]

Estimated nitrogen content in wheat using multi-temporal
satellite-based multispectral and hyperspectral images and found

that the band selection affected estimation accuracy at different
phenological stages.

Rice

Moharana and Dutta [43]
Collected Hyperion images for monitoring nitrogen and chlorophyll

contents in rice and investigated the performance of different
spectral indices.

Ryu et al. [35] Used airborne hyperspectral images and multivariable analysis to
estimate nitrogen content in rice at the heading stage.

Zheng et al. [211]
Tried to monitor rice nitrogen status using UAV-based hyperspectral
images and tested the performance of different vegetation indices

for estimating the nitrogen content.

Zhou et al. [212]
Estimated leaf nitrogen concentration of rice using close-range
hyperspectral images and tested if the variations of the spatial

resolution of the imagery affect the estimation accuracy.

Other crops
(i.e., barley,

potato,
cabbage,
tomato,

sugarcane,
and cacao)

Nasi et al. [213]

Evaluated the performance of using airborne hyperspectral images
and photogrammetric features for estimating crop nitrogen content
and biomass in a barley field and a grassland site, and examined if
the integration of spectral and plant height information can improve

the estimation results.

Nigon et al. [214]
Examined nitrogen stress in potato fields using airborne

hyperspectral imagery and identified spectral indices that are
sensitive to nitrogen content.

Chen et al. [215]
Estimated nitrogen content in cabbage seedlings using close-range
hyperspectral images and identified sensitive wavelengths for the

estimation.

Zhu et al. [142]
Investigated soluble sugar, total nitrogen, and their ratio in tomato

leaves using close-range hyperspectral images and tested data
fusion analysis techniques for improving the investigation accuracy.

Miphokasap and
Wannasiri [216]

Collected Hyperion images for investigating spatial variations of
sugarcane canopy nitrogen concentration and attempted to identify

the nutrient deficient areas for corresponding treatments.

Malmir et al. [217]

Attempted to evaluate nutrient status (e.g., nitrogen, phosphorus,
and potassium) of cacao leaves using close-range hyperspectral

images and examined influences of band selection on the evaluation
accuracy.
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Overall, owing to the large amount of spectral information in hyperspectral imagery, crop nutrient
status can be evaluated with high accuracies, and a corresponding fertilizer treatment plan can be
proposed to achieve optimal crop productions. However, it is also essential to keep in mind that there is
a wide range of factors, such as soil moisture, soil type, and topographic conditions, that can impact crop
growth and production. A more comprehensive treatment plan that takes into consideration both the
crop nutrient status and other influencing factors can make a greater contribution to crop production.

4.3. Classifying Imagery to Identify Crop Types, Growing Stages, Weeds/Invasive Species, and Stress/Disease

Besides quantifying crop properties, hyperspectral images have also been used for classification
purposes, such as differentiating crop types, identifying crop growing stages, classifying weeds or invasive
species, and detecting disease [218]. Examples of previous studies are shown in Table 10. Different
agricultural land covers or crop types have different spectral characteristics; hence, hyperspectral
images can contribute greatly to the classification of these agricultural features.

Table 10. Selected previous studies for the classification of agricultural features using hyperspectral images.

Applications Previous Studies Research Focuses

Classification of
crop types

Camacho Velasco et al. [48]

Utilized Hyperion data and different classification algorithms
(e.g., spectral angle mapper and adaptive coherence estimator)
for identifying five types of crops (e.g., oil palm, rubber, grass

for grazing, citrus, and sugar cane) in Colombia.

Bostan et al. [51]

Classified different crop and land cover types (e.g., maize,
cotton, urban, water, barren rock, and other crop types) using

Landsat 8 multispectral and EO-1 Hyperion hyperspectral
images and indicated that hyperspectral imagery performed

better than the multispectral imagery.

Amato et al. [152]

Assessed the potential of PRISMA data for classifying different
agricultural land uses (e.g., soybean, corn, and sugar beet) and

evaluated the contribution of spectral bands to image
segmentation and classification.

Nigam et al. [91]
Performed crop classification over homogeneous and

heterogeneous agriculture and horticulture areas with airborne
AVIRIS images and assessed crop health at the field scale.

Sahoo et al. [4]

Reviewed a few previous studies that used hyperspectral
images for classification purposes and indicated the robustness
of hyperspectral imagery for classifying different crop types and

different crop phonological stages.

Other
classifications

(e.g., growth stages
and agricultural
tillage practices)

Antony et al. [58] Applied multi-angle PROBA-CHRIS data for classifying
different growth stages of wheat.

Ran et al. [93]
Attempted to detect agricultural tillage practices using

hyperspectral imagery with different classification models and
identified the best performing one.

Teke et al. [38]

Discussed the application of spectral libraries for classification
purposes and listed several spectral libraries available

worldwide. The authors also indicated the limitations of using a
spectral library, such as the spectral varieties within the same

species or land cover, and highlighted the importance of having
geographically specific libraries

Weed infestation is a severe issue in agricultural fields and could substantially affect crop growth
and yield. Identifying and mapping weeds in agricultural fields using remote sensing will contribute
greatly to variable rate treatment in the fields [219]. Researchers have utilized different remote sensing
data and methods for weed mapping, as shown in Table 11. Overall, the identification of weeds
typically requires a high spatial resolution since many weeds are small in size and mixed with crops.
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UAV-based and close-range hyperspectral imaging is capable of acquiring high-spatial-resolution
images, and thus has high potential to contribute to weed detection.

Table 11. Selected previous studies for detecting weeds using different hyperspectral imaging platforms.

Platforms Previous Studies Research Focuses

Airborne

Goel et al. [97]

Attempted to detect weed infestation in a cornfield that
had different nitrogen treatments using airborne

hyperspectral imagery and found the different nitrogen
treatments affected the classification accuracy of weed.

Karimi et al. [220]

Performed combinations of different nitrogen treatment
rates and weed management practices in a cornfield and

tried to classify these combinations with airborne
hyperspectral images.

Close range

Zhang et al. [221]
Developed a close-range weed sensing system using

hyperspectral images for classifying tomato and weeds
and tested its performance in different environments.

Eddy et al. [139]

Used a ground-based hyperspectral imaging system for
classifying weeds in canola, pea, and wheat crops and

evaluated the applicability of this approach for real-time
detection of weeds in the field.

Eddy et al. [222]
Used hyperspectral image data as well as secondary
products with reduced bands to classify weeds and

achieved good accuracy.

Liu et al. [223]

Classified carrot and weeds using a ground-based
hyperspectral imaging system and evaluated the number
of spectral bands needed to achieve a good classification

accuracy.

Multiple platforms Scherrer et al. [129]

Attempted to classify herbicide-resistant weeds in
different crop fields (e.g., barley, corn, and dry pea) using
both ground- and UAV-based hyperspectral imagery and
discussed factors influencing classification accuracy (e.g.,

crop type, plant age, and illumination condition).

Review studies LÓPEZ-Granados [224]

Discussed the high potential of hyperspectral remote
sensing images for mapping weeds but also indicated

the limitations of this technology due to the high cost of
data collection.

Monitoring crop disease is highly important to growers trying to reduce economic and yield
losses [38]. Hyperspectral imaging collects signals at fine spectral resolutions (e.g., less than 10-nm
intervals), and thus can possibly detect early symptoms of crop disease and support timely
interventions [225]. Previous studies have used hyperspectral images for detecting diseases in
different types of groups (Table 12). Overall, hyperspectral signals are sensitive to the variations of
crop growth status (e.g., caused by disease or stress) and thus can indicate the occurrence of crop
disease or stress. However, considering that crop status can be affected by other factors (e.g., nutrient
deficiency), repeat imaging and analysis together with robust modelling would be critical for accurate
and timely detection of crop disease or stress.
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Table 12. Selected previous studies for detecting disease in different crops using hyperspectral images.

Crops Previous Studies Research Focuses

Wheat

Bohnenkamp et al. [119]

Used both ground- and UAV-based hyperspectral imaging
platforms for detecting yellow rust in wheat and evaluated

factors influencing the detection (e.g., measurement distance,
spectral features to use).

Bauriegel et al. [226]

Targeted the infestation of wheat by Fusarium and attempted to
detect this disease using hyperspectral remote sensing data, and
consequently suggested that farmers need to deal with infected

crops separately from healthy crops.

Zhang et al. [227]

Attempted to detect the Fusarium head blight in winter wheat
similarly using close-range hyperspectral imaging and

suggested that this is a stable and feasible way to monitor this
disease using low-altitude remote sensing.

Corn Copenhaver et al. [34]

Used airborne hyperspectral images to detect the signal of
Ostrinia nubilalis in a cornfield (e.g., via monitoring rate of plant

senescence) and tested the performance of this approach
throughout the growing season.

Soybean Nagasubramanian et al. [144]
Tried to detect charcoal rot in soybeans using close-range

hyperspectral imaging and identified wavelength ranges that
are sensitive to this disease.

Sugarcane Apan et al. [41]
Detected sugarcane areas affected by orange rust disease using
Hyperion data and developed specific vegetation indices that

are sensitive to the disease.

Mustard Dutta et al. [42] Delineated mustard areas influenced by diseases using Hyperion
images and evaluated the performance of different indices.

Review
studies

Lowe et al. [218] Focused on hyperspectral imaging and reviewed some of its
applications in detecting and classifying crop disease and stress.

Thomas et al. [225]
Reviewed the contributions of hyperspectral imaging to the

detection of plant disease and discussed different factors (e.g.,
light and wind) that may limit its wide applications.

Mahlein et al. [228] Reviewed previous studies using remote sensing for detecting
plant disease, but not limited to hyperspectral imaging.

4.4. Retrieving Soil Moisture, Fertility, and Other Physical or Chemical Properties

Agricultural soil properties, including soil moisture, soil organic matter, soil salinity, and roughness,
are important factors influencing crop growth and final production [7]. Hyperspectral remote sensing
can contribute greatly to the investigation of these factors. For instance, estimating soil moisture is
one of the most popular research topics. Finn et al. [108] estimated soil moisture at three different
depths using airborne hyperspectral images and linear regression and discussed the contributions and
limitations of hyperspectral remote sensing for soil moisture studies. Casa et al. [229] investigated
soil water, clay, and sand contents using a fusion of CHRIS-PROBA images and soil geophysical data.
Shoshany et al. [7] summarized four main approaches for estimating soil moisture content: (1) Radar
techniques; (2) radiation balance and surface temperature calculations; (3) reflectance in the visible,
NIR, and SWIR ranges; and (4) integrative methods using multiple spectral ranges. Although soil
moisture can be estimated using optical remote sensing data, it is often affected by the plant ground
cover. Integrating multi-type remote sensing data, e.g., SAR and thermal data, can possibly generate
more accurate estimates.

SOC is a critical component of soil fertility, which highly controls both the growth and yield of
crops. Hyperspectral data provide fine spectral details that are critical for the estimation of SOC content.
Previous studies have used hyperspectral images collected by different platforms for investigating
SOC (Table 13). Overall, hyperspectral imagery has a high potential for the estimation of soil organic
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matter and carbon. However, similar to the evaluation of soil moisture, the investigation of soil organic
matter and carbon can be highly influenced by vegetation cover. Therefore, collecting hyperspectral
images in non-growing seasons could be a solution.

Table 13. Selected previous studies for estimating soil organic carbon using hyperspectral images
acquired by different platforms.

Platforms Previous Studies Research Focuses

Satellites

Zhang et al. [50]

Utilized EO-1 Hyperion images for estimating several soil
properties, including soil moisture, soil organic matter, total

carbon, total phosphorus, total nitrogen, and clay content. The
authors also found the influence of spectral resolution on the

performance of retrieval models.

Casa et al. [230]
Assessed soil organic matter and soil texture at the field scale

using CHRIS-PROBA images and produced uniform soil zones
for supporting irrigation management.

Airplanes

Hbirkou et al. [102]

Attempted to estimate SOC in agricultural fields using airborne
HyMap images and tested the influences of soil surface

conditions on the estimation, aiming to support soil
management in precision farming.

Gedminas and Martin [231]

Tried to map soil organic matter using airborne hyperspectral
imagery in combination with topographic information extracted
from LiDAR image and evaluated the correlation between soil

organic matter and various spectral bands.

Castaldi et al. [110]

Investigated the relationship between SOC in croplands and
spectral signals using a soil database and then estimated SOC in
their study sites using airborne hyperspectral imagery. With this
approach, the authors attempted to reduce the amount of new

data collection in the field or lab.

Van Wesemael et al. [107]

Discussed the impacts of vegetation cover on soil and the
estimation of SOC from remote sensing data and attempted to

use spectral unmixing techniques to estimate the fraction of
vegetation cover and then estimate the soil carbon content using

the residue soil spectra.

Multiple
platforms Gomez et al. [49]

Estimated SOC using both lab-based hyperspectral reflectance
data and Hyperion image data and found that using the

lab-acquired reflectance data can generate more accurate results
than using the Hyperion data. At the same time, the Hyperion
data can generate a SOC map that matches field observations

and thus can also be used for prediction.

Hyperspectral remote sensing data have also been used for estimating other soil features, as shown
in Table 14. It can be found from these studies that hyperspectral images can be used for studying a
wide range of soil features. Different soil features influence the spectral signals in different bands and
with different magnitudes, while some of these influences may be spectrally overlapped. Therefore,
when investigating a specific soil feature, it is critical to collect a suitable number of soil samples with
other soil features generally controlled.
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Table 14. Selected previous studies for investigating different soil features using hyperspectral images.

Soil Features Previous Studies Research Focuses

Soil texture Casa et al. [59]
Investigated soil texture using airborne MIVIS and spaceborne

PROBA-CHRIS hyperspectral images and discussed their
performance and limitation (e.g., lack of SWIR band).

Soil nitrogen Song et al. [232]

Used airborne hyperspectral images for evaluating the impact of
soil nitrogen applications and variable-rate fertilization on winter
wheat growth. The authors also indicated that the variable-rate
fertilization in the field could reduce the growing difference of
winter wheat caused by the spatial variations of soil nitrogen.

Copper
concentration Antonucci et al. [147] Attempted to estimate in soil using lab-based hyperspectral

measurement and achieved good accuracy.

Potassium
content Wang et al. [233]

Evaluated potassium content in cinnamon soil using close-range
hyperspectral imaging aiming to better understand soil fertility and

indicated the good performance of this approach when the
potassium content is high (i.e., ≥ 100 mg/kg).

CO2 leaks McCann et al. [234] Detected CO2 leaks from the soil by monitoring vegetation stress
signals using multi-temporal hyperspectral images.

In summary, hyperspectral imaging has been successfully applied to a wide range of agricultural
applications, as reviewed above, and summarized in Table 15. Future research directions are
also suggested.
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Table 15. Hyperspectral applications in agriculture.

Previous Focuses Suggested Future Research Directions

Crop biochemical and biophysical properties

- Leaf area index
- Chlorophyll content
- Water content
- Fraction of vegetation cover
- Fresh/dry biomass, crop residue
- Yield

- Vegetation properties related to crop stress (e.g., carotenoids)
- Relationships between different properties and how they

affect crop growth

Crop nutrient status - Nitrogen content
- Other nutrients (e.g., phosphorus, magnesium, and boron

etc.) that may limit crop growth
- Optimized treatment plan targeting different limiting factors

Classification

Classification of:

- Crop types
- Soil types
- Growing stages (i.e., crop phenological features)

Classification and detection of stressors:

- Weeds or invasive species
- Disease/stress affected areas

- Improvement of classification methods (e.g., advanced
algorithms) for target features

- Fusion and application of multi-type and multi-temporal
remote sensing data

- Further exploration of UAV and close-range imaging for
better identification of fine-scale signals

Soil properties

- Soil moisture
- Soil organic matter
- Soil salinity
- Soil roughness

- Separation of spectral signals from soil and vegetation for
better assessing soil features

- Fusion and application of multi-type remote sensing data to
capture different soil information

- Further exploration of close-range sensing for investigating
soil properties.

Agro-ecosystem - Less explored using hyperspectral image
- Ecosystem services
- Biodiversity
- Adverse effects of agricultural practices on the environments
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5. Conclusions and Recommendations

Hyperspectral imaging has great potential for applications in agriculture, particularly precision
agriculture, owing to ample spectral information sensitive to different plant and soil biophysical and
biochemical properties. Multiple platforms, including satellites, airplanes, UAVs, and close-range
platforms, have become more widely available in recent years for collecting hyperspectral images with
different spatial, temporal, and spectral resolutions. These platforms also have different strengths and
limitations in terms of spatial coverage, flight endurance, flexibility, operational complexity, and cost.
These factors need to be considered when choosing imaging platform(s) for specific research purposes.
Further technological developments are also needed to overcome some of the limitations, such as the
short battery endurance in UAV operations and high cost of hyperspectral sensors.

Different analytical methods, such as linear regression, advanced regression, machine learning,
deep learning, and RTM, have been explored in previous studies for analyzing the tremendous amount
of information in hyperspectral images for investigating different agricultural features. Previous
studies have mainly used the regression approach, while more physically based methods, such as
RTM, have been less explored. Deep learning and effective big-data analytics are powerful tools for
recognizing patterns in remote sensing data. Together with hyperspectral imagery, deep learning
models have high potential to support the monitoring of a wide range of agricultural features. Different
analytical methods have different advantages and disadvantages, and thus it is critical to compare
these methods for specific research (e.g., requirements of accuracy and computing efficiency) and
choose an optimal approach. In addition, image spectral information has been commonly used as
variables for prediction or classification tasks, while other information, such as texture, has been less
explored. Further, some other sources of data, such as weather, irrigation records, and historical yield
information, can also be used in some of the analytical methods (e.g., machine learning and deep
learning) for better monitoring of crop features. More research in these fields is also warranted.

Hyperspectral imaging has been successfully applied in a wide range of agricultural applications,
including estimating crop biochemical and biophysical properties; evaluating crop nutrient and stress
status; classifying or detecting crop types, weeds, and diseases; and investigating soil characteristics.
Previous studies have focused on discussing one or two of the many factors impacting crop growth
performance and productivity, and thus cannot evaluate crop status and growth-limiting factors
comprehensively. It is important to integrate these factors to achieve a better understanding of their
inter-relationships for optimal crop production and environmental protection. Besides, previous studies
using hyperspectral imaging have mainly targeted investigating crop growth, aiming to improve
crop yield, while less research has focused on understanding the ecosystem side of crop production
(e.g., ecosystem services and biodiversity). Further research in these areas is warranted.
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ALI Advanced Land Imager
APEX Airborne Prism Experiment
AVIS Airborne Visible Near-Infrared Imaging Spectrometer
AVIS Airborne Visible Near-Infrared Imaging Spectrometer
AVIRIS Airborne Visible/Infrared Imaging Spectrometer
ANN Artificial Neural Networks
CAI Cellulose Absorption Index
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CAI Chlorophyll Absorption Integral
CARI Chlorophyll Absorption Ratio Index
CASI Compact Airborne Spectrographic Imager
CHRIS Compact High Resolution Imaging Spectrometer
CNN Convolutional Neural Network
DEM Digital Elevation Model
DESIS Dlr Earth Sensing Imaging Spectrometer
DCNI Double-Peak Canopy Nitrogen Index
EnMAP Environmental Mapping And Analysis Program
FAPAR Fraction Of Absorbed Photosynthetically Active Radiation
fCover Fraction Of Vegetation Cover
GCPs Ground Control Points
HSI Hyper Spectral Imaging
HySI Hyperspectral Imager
HICO Hyperspectral Imager For The Coastal Ocean
HISUI Hyperspectral Imager Suite
HyspIRI Hyperspectral Infrared Imager
HyMap Hyperspectral Mapper
h NDVI Hyperspectral Normalized Difference Vegetation Index
PRISMA Hyperspectral Precursor And Application Mission
IMU Inertial Measurement Unit
LAI Leaf Area Index
MTCI Meris Terrestrial Chlorophyll Index
MNF Minimum Noise Fraction
MCARI/MTVI2 Modified Chlorophyll Absorption Ratio Index/Modified Triangular Vegetation Index 2
MSR Modified Simple Ratio Index
MSAVI Modified Soil Adjusted Vegetation Index
MTVI2 Modified Triangular Vegetation Index
MIVIS Multispectral Infrared Visible Imaging Spectrometer
MSI Multispectral Instrument
MLR Multi-Variable Regression
NDRE Normalized Difference Red Edge
NDTI Normalized Difference Tillage Index
OLI Operational Land Imager
OSAVI Optimized Soil-Adjusted Vegetation Index
PLSR Partial Least Square Regression
PRI Photochemical Reflectance Index
PRESS Predicted Residual Error Sum Of Squares
PCA Principal Component Analysis
PHI Pushbroom Hyperspectral Imager
RTM Radiative Transfer Modelling
RF Random Forest
REP Red Edge Position
SWIR Shortwave Infrared
SR Simple Ratio
SVD Singular Value Decomposition
SOC Soil Organic Carbon
SHALOM Spaceborne Hyperspectral Applicative Land And Ocean Mission
SFOC Special Flight Operations Certificate
SVM Support Vector Machine Regression
TCARI Transformed Chlorophyll Absorption In Reflectance Index
TCI Triangular Chlorophyll Index
TVI Triangular Vegetation Index
UMD Uniform Feature Design
UAV Unmanned Aerial Vehicle
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