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Abstract: Sea surface temperature (SST) in the China Seas has shown an enhanced response in the
accelerated global warming period and the hiatus period, causing local climate changes and affecting
the health of coastal marine ecological systems. Therefore, SST distribution prediction in this area,
especially seasonal and yearly predictions, could provide information to help understand and assess
the future consequences of SST changes. The past few years have witnessed the applications and
achievements of neural network technology in SST prediction. Due to the diversity of SST features in
the China Seas, long-term and high-spatial-resolution prediction remains a crucial challenge. In this
study, we adopted long short-term memory (LSTM)-based deep neural networks for 12-month lead
time SST prediction from 2015 to 2018 at a 0.05◦ spatial resolution. Considering the sub-regional
differences in the SST features of the study area, we applied self-organizing feature maps (SOM)
to classify the SST data first, and then used the classification results as additional inputs for model
training and validation. We selected nine models differing in structure and initial parameters for
ensemble to overcome the high variance in the output. The statistics of four years’ SST difference
between the predicted SST and Operational SST and Ice Analysis (OSTIA) data shows the average
root mean square error (RMSE) is 0.5 ◦C for a one-month lead time and is 0.66 ◦C for a 12-month lead
time. The southeast of the study area shows the highest predictable accuracy, with an RMSE less
than 0.4 ◦C for a 12-month prediction lead time. The results indicate that our model is feasible and
provides accurate long-term and high-spatial-resolution SST prediction. The experiments prove that
introducing appropriate class labels as auxiliary information can improve the prediction accuracy,
and integrating models with different structures and parameters can increase the stability of the
prediction results.
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1. Introduction

Changes in sea surface temperature (SST) vary regionally. Most of the global oceans have
experienced a trend of warming SST, while a small portion experienced cooling, e.g., the Atlantic to
the south of Greenland and some areas in the equatorial Pacific [1]. SST profoundly affects the local
climate and is a significant contributor to regional marine ecological system health [2]. Recent studies
showed that the SST over the China Seas showed certain trends during the accelerated global warming
period and the hiatus period, like a faster rising rate or a more significant downward trend than
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the global mean SST, indicating it is a sensitive area to global climate change [3–5]. These rapid
warming trends can cause latitudinal shifts in species distributions, impact coral reefs and marine
fisheries, and affect rainfalls over the middle and lower reaches of the Yangtze River [6,7]. Besides,
a high SST (>26.5 ◦C) is generally accepted to be one of the necessary ingredients for tropical cyclone
development [8]. Therefore, seasonal and yearly predictions of SST in the China Seas are important for
climate monitoring, supporting a series of approaches to achieve sustainable ecological management.
These predictions can assist with the assessment of flood and drought risks [9,10]. As a part of the
western Pacific Ocean, the study area spans from tropical to temperate zones. The ocean circulations
in this area are dominated by two main current systems, Kuroshio and the coastal currents, so the
area contains various SST characteristics [11]. The rapid flow as well as seasonal variations of these
warm and cold currents create challenges for long-term and high-spatial-resolution SST prediction in
this area.

In SST prediction, artificial neural network (ANN)-based approaches are an alternative to
physical-based model-driven schemes [12]. The application benefits from a tremendous number of
datasets, which are available for several combinations of spatial and temporal resolutions and at
multiple processing levels [13]. Along with the ANN structure and training algorithm evolution,
many researchers have investigated its application in SST prediction over different oceans and seas.
In 1997 and 1998, Tangang et al. adopted the typical feed-forward neural networks and explored
different predictors (e.g., wind stress and sea level pressure) separately to predict the average sea
surface temperature anomalies in the Niño region. The results suggested the neural network models
provide advantages over linear statistical models for longer lead time prediction and perform better
in capturing nonlinear relationships [14–16]. This conclusion was further proved by the studies of
Wu et al. [17]. The ANN-based applications to SST prediction were then conducted in the Arabian
Sea, the Australian margin, the western Mediterranean Sea, the Indian Ocean, and the South China
Sea [18–25], and researchers tried to predict SST distribution rather than regional mean value in these
studies. With the development of deep neural networks through scientific and economic interests, the
need has emerged for SST prediction on spatiotemporal sequence scales. The common method used to
predict SST distribution on spatio-temporal scales is building a model for each point and obtaining the
predicted maps by reconstructing outputs. For example, Zang et al. used daily, weekly, and monthly
SST data to construct one-day, three-day, one-week, and one-month lead time prediction in the Bohai
Sea at a 0.25◦ spatial resolution [26]. This study proved the long short-term memory (LSTM)-based deep
neural network performs better than the traditional multi-layer feed forward network in capturing time
series information. Subsequently, Yang et al. improved the fully connected LSTM model and produced
1-, 7-, and 30-day lead time predictions in the Bohai and the East China Seas [27]. The prediction results
showed the prediction accuracy decreases for longer prediction lead times and larger prediction areas.
In 2018, Patil and Deo used 20 million feed-forward neural network models to provide nine-month
lead time SST predictions at a 1◦ spatial resolution in the basin of the tropical Indian Ocean [28], which
indicated that the prediction skill of developed models is generally good with a four-month lead time
and the prediction accuracy varies in different sub-basins. The method of constructing and training
models for each point requires huge computations, especially in a large study area with high spatial
resolution. In addition, the method assumes that the SST time series data of each point are independent
in space, which is not applicable to monthly scale SST prediction with short sequence data.

In this study, we selected the entire China Sea and its adjacent waters as the study area and
completed a 12-month lead time prediction with a spatial resolution of 0.05◦. The LSTM, proven
to capture the temporal relationship well, was adopted as a neural network model. We used the
method mentioned in Wei et al. [25] to divide SST into SST anomalies and SST means for separate
training. The SST anomaly sequence at each point is correlated with adjacent positions; thus, they
were placed in the same model for training and prediction. As the SST features and correlations are
different in different sub-regions, we classified the study area using a self-organizing feature map
(SOM) neural network first. Then, we used the classification results as auxiliary information to improve
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the prediction accuracy. The final prediction results integrated different models with different initial
conditions and structures to reduce the prediction variance and instability. Our LSTM-based ensemble
model approach was efficient and accurate for spatio-temporal SST prediction.

2. Materials and Methods

2.1. Study Area

The study area includes the marginal seas of China, the Bohai Sea, the Yellow Sea, the East China
Sea, the South China Sea, and its adjacent waters. It borders the North Pacific Ocean in the west,
spanning from tropical to temperate zones, and the SST gradually decreases from south to north [29].
The Bohai Sea and the northern Japan Sea are also covered by sea ice in winter [30,31]. The ocean
circulation in the study area (the area within the blue dotted rectangle) is shown in Figure 1, which
is dominated by both the offshore and coastal currents. The main steam of Kuroshio (KS) has no
regular seasonal changes, but its branches, the Taiwan Warm Current (TWC), the Tsushima Warm
Current (TSWC), and the Yellow Sea Warm Current (YSWC), experience significant seasonal variation.
The coastal current systems consist of the Yellow Sea coastal current, the East China Sea, South China
Sea coastal currents, and the Korea Coastal Current, which also exhibit distinct seasonal variation [11].
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processed at the Met Office, using the Operational SST and Sea Ice Analysis (OSTIA) system. The SST 
is the foundation temperature, which is free of diurnal variability. The reference depth was 5–10 m. 
The products contained SST daily data from 1 January 1985 to 31 December 2007, and 1 January 2006 
to the present, respectively, on a global regular grid at a 0.05° resolution. Global evaluation of these 
two products using independent near-surface Argo data indicated that the reprocessed analysis had 
a –0.1 K bias, with a standard deviation of 0.55 K, and –0.06 K bias, with a standard deviation of 0.46 
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Figure 1. The major currents in the study area (the area within the blue dotted rectangle) [11].

2.2. Data

The data used in this study were derived from two SST reanalysis L4 products,
SST_GLO_SST_L4_REP_OBSERVATIONS_010_011 and SST_GLO_SST_L4_NRT_OBSERVA
TIONS_010_001, which are available at the Copernicus Marine Environment Monitoring Service
(CMEMS) website (http://marine.copernicus.eu/services-portfolio/access-toproducts/). They were
processed at the Met Office, using the Operational SST and Sea Ice Analysis (OSTIA) system. The SST
is the foundation temperature, which is free of diurnal variability. The reference depth was 5–10 m.
The products contained SST daily data from 1 January 1985 to 31 December 2007, and 1 January 2006
to the present, respectively, on a global regular grid at a 0.05◦ resolution. Global evaluation of these
two products using independent near-surface Argo data indicated that the reprocessed analysis had a
–0.1 K bias, with a standard deviation of 0.55 K, and –0.06 K bias, with a standard deviation of 0.46 K,
respectively [32,33]. Using the subset from the above data, with the spatial range of 0–45◦ N and
105–135◦ E (601 × 901 grid), the data from January 1985 to December 2014 were used as the training set
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and the data from January 2015 to December 2018 as the test set. The data pre-processing is shown in
Figure 2. The first step was generating the monthly average SST from the daily SST data. Then the SST
inter-annual mean (SSTM) from 1985 to 2014 was calculated, which can be formulated in Equation (1).
The SST inter-annual standard deviation (SSTD) was calculated in the same way. To obtain the SST
anomaly (SSTA), the monthly SST data was subtracted by the SSTM.

SSTMi =
1

30 (SST1985.i + SST1986.i+, . . . ,+SST2014.i) i = Jan., Feb., . . .Dec. (1)
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2.3. Proposed Method

The main processes of the proposed method include classification by SOM, deep neural network
models training, iterative multi-step (IMS) in predicting, and ensemble predicting results. The following
sections detail these processes.

2.3.1. Classification

In this process, we aimed to classify the study area into different zones, which have similar SST
features. We adopted the widely used SOM for classification, which is a kind of unsupervised neural
network introduced by Kohonen in 1981 [34]. Figure 3 shows the Kohonen SOM model represented as
a two-dimensional sheet, depicting a topology of the network in the form of a lattice of neurons, which
defines a discrete output space. Kohonen’s SOM algorithm is based on competitive learning, which
can cluster high-dimensional data vectors according to a similarity measure.
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Another two essential aspects of the algorithm are the time-varying neighborhood function
h j,i(x)(n) and the learning-rate parameter η(n) [35,36]. The neighbor function h j,i(x)(n) is shown in
Equation (2):

h j,i(x)(n) = exp

− d2
j,i

2σ2(n)

 n = 0, 1, 2, . . . , (2)
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where,
d2

j,i = ‖r j − ri‖
2, (3)

where r j defines the position of excited neuron j and ri defines the position of winning neuron i, d j,i is
the absolute distance between the excited neuron j and winning neuron i.

σ(n) = σ0exp
(
−

n
τ1

)
n = 0, 1, 2, . . . (4)

where σ(n) is the neighborhood radius at discrete time n (i.e., the number of iterations in model
training), σ0 is the value of the neighbor radius at the initiation of the SOM algorithm, and τ1 is a time
constant chosen by the designer. The learning-rate parameter η(n) is shown in Equation (5):

η(n) = η0exp
(
−

n
τ2

)
, (5)

where η0 is the initial learning rate and τ2 is another time constant of the SOM algorithm. The basic
steps involved in the application of the SOM algorithm are as follows:

1. Choose small random values for the initial weight vectors w j(0), j = 1, 2, . . . , l, where l is the
number of neurons, which is the classified number chosen by the designer, and w j(0) is different
in l.

2. Select an input vector x randomly in the training data set.
3. Find the best-matching (winning) neuron i(x) at time-step n using the minimum-distance criterion:

i(x) = arg min
j
‖x(n) −w j‖, j = 1, 2, . . . , l. (6)

4. Adjust the synaptic weight vectors of all excited neurons using the update formula:

w j(n + 1) = w j(n) + ηnh j,i(x)(n)(x(n) −w j(n)). (7)

At the SOM training stage, the SSTM and SSTD from 1985 to 2014 (30 years) were used.
The sequences of input and output vectors are shown in the flowchart in Figure 4, where the left
part shows the input data construction. For each grid (total 601 × 901) in the study area, there are
24 values as input vectors. When setting up the different number of neurons, that is, the number of
classes, we found that under the input conditions, the maximum number of classes of the model for the
study area was 130. Thus, the number of classes were set from 5 to 130, with a step size of 5. Finally,
we produced 26 different class maps for the study area. The right part of Figure 4 shows different class
maps generated by the SOM model. Different colors represent different class labels in the class map.
At this step, each grid got a class label in each class map. The class label of each grid was used as
auxiliary information in the following LSTM training stage.
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Figure 5 shows the class maps of this area generated under 5, 30, 60, 90, 110 and 115 classes.
When the number of classes was 5, the study area was basically divided based on the temperature
zone. As the number of classes increased, the model tended to divide the area according to the SST
features. Some regions with strong upwelling in the China Seas, as shown in [37], were well divided
by the SOM model with the class number of 115.
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2.3.2. Deep Neural Networks Models

To predict the SSTs for the time steps, we chose deep neural networks based on LSTMs. Because
of its powerful learning capacity, the LSTM has become the focus of deep learning. The LSTM is a kind
of recurrent neural network (RNN) architecture that was proposed by Hochreiter and Schmidhuber
in 1997 [38]. Compared with standard RNNs, it solves decaying error back flow problems, has
default behaviors to capture long-term dependencies, and avoids loss of short time lags in practice.
The proposer proved that LSTMs can learn to bridge time intervals in excess of 1000 time steps without
of loss of short-term information. The key to achieving the above capabilities is the cell state (ct) in
LSTMs, which is the horizontal line running through the middle of the flow chart (Figure 6). It only
has simple linear interactions in the data flow to preserve constant information, and the three gate
units in the memory cell can add and remove information to the cell state: forget gate unit ( ft), input
gate unit (it), and output gate unit (ot).
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Figure 6. Structure of long short-term memory (LSTM) memory cell [39,40].

From time step t, the input vector xt and output vector of the previous step ht−1 pass through
the memory cells. After adjusting the three gates, the LSTM outputs ht and updates the cell state
ct [39,40]. W f , Wc, Wi, Wo are weight matrices in the following equations.
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1. In the first step, the LSTM determines what information is removed from the previous cell state
ct−1. The input vector xt, the outputs ht−1 of the memory cells in the previous step, and the forget
gate bias b f are calculated in the forget gate unit:

ft = sigmoid
(
W f ·[xt , ht−1] + b f

)
(8)

The range of ft is scaled by the sigmoid function σ, which is between 0 (completely remove) and 1
(completely keep).

2. In the next step, the LSTM determines what new information is stored in the cell state ct.
This includes adding a new candidate value c̃t to the cell state and updating information through
the input gate. The computation is as follows:

c̃t = tanh(Wc·[xt , ht−1] + bc) (9)

it = σ(Wi·[xt , ht−1] + bi) (10)

3. The third step updates the cell state based on the above output values.

ct = ft·ct−1 + it ·̃ct (11)

4. Finally, the LSTM determines output ht:

ot = σ(Wo·[xt , ht−1] + bo) (12)

ht = ot·tanh(ct) (13)

In addition to LSTM, leaky rectified linear units (leaky ReLUs) were used as the activation function,
and dropout regularization was added to prevent overfitting. The adaptive moment estimation was
chosen as an optimization function. The learning process related to deep neural networks involves many
hyper-parameters, for example, the initial learning rate, the learning rate schedule, the momentum,
the number of hidden neurons, layers and training iterations, the leaky ReLUs, dropout ratio, etc.
Determining how to find the optimal hyper-parameters configuration is critical to achieving a good
performance before training the models. During the configuration in this study, we first selected
500 sample grids in the study area. The SSTA data of each sample from 1985 to 2013 were used for
training the random models under different configurations, and the 2014 data were used to evaluate
the performance of the corresponding model. We initialized the models’ weights using small random
values from a uniform distribution; then, the procedure previously reported [41] was followed to find
the range of initial values that can make the model converge. The random search process, which was
shown to be more efficient than grid search in high-dimensional spaces [42], was repeated 300 times to
assign different values for the parameters. We calculated the root mean square errors (RMSEs) of the
prediction results for each random model to ensure good prediction accuracy. Instead of selecting the
best model and discarding the rest, we retained the first 9 hyper-parameter configurations with the
smallest RMSEs.

Figure 7a shows the LSTM trained with class labels. The SSTA sequence data of each grid and
its corresponding class label were input to the model in this case. The x in the time series of SSTA
data denotes the input length. Figure 7b shows the LSTM trained without class labels, which means
the SOM steps were missed out entirely in this case. For predicting the SSTA of 2015, the data from
January 1985 to December 2014 were used as the training set. Then, the data for 2015 were added to the
training set to update the model when predicting SSTA for 2016. The same update was also applied to
2017 and 2018.



Remote Sens. 2020, 12, 2697 8 of 20

Remote Sens. 2020, 12, x FOR PEER REVIEW 8 of 21 

 

𝑺𝑺𝑻𝑨𝒕 𝑺𝑺𝑻𝑨𝒕−𝟏 𝑺𝑺𝑻𝑨𝒕−𝒙+𝟏 𝑺𝑺𝑻𝑨𝒕+𝟏 

𝑺𝑺𝑻𝑨𝒕 𝑺𝑺𝑻𝑨𝒕−𝟏 𝑺𝑺𝑻𝑨𝒕−𝒙+𝟏 𝑺𝑺𝑻𝑨𝒕+𝟏 

 
Figure 7. Construction of the input and target vectors of the LSTM model: (a) The model trained with 
class labels and (b) the model trained without class labels. 

At the prediction stage, we used IMS methods. IMS estimation is one of the approaches for multi-
step prediction in deep neural networks. The IMS method first involves a one-step prediction, and 
then the generated prediction samples are iteratively fed to the single-step predictor to obtain the 
next-step prediction. This kind of multi-step prediction is relatively easy to operate and can be 
recursive for obtaining predictions of any length. In this study, we varied the lead time from 1 to 12 
months with this strategy. The lead time was defined as the time elapsed between when the model 
was run and the forecast month. 

2.3.3. Ensemble Predicting Results 

One of the advantages of ensemble learning is that it can prevent the possibility of the network 
with the best performance on the validation set not being the one with the best performance on new 
test data [43]. Training and combining the networks from the ensemble instead of a single network 
can overcome the high output variance [43]. As mentioned in Section 2.3.1, there were a total of 26 
class maps generated by the SOM. Therefore, during model training, the input SSTA field sequences 
could select 26 different class maps. In addition, there were 9 different model parameter 
configurations differing in input length, initial learning rate, layers, etc., for a total of 234 (26 × 9) 
models in each year’s prediction. The aim of testing all the class maps was to find more appropriate 
ones for the study area. We also tested models trained without class labels for comparison. 

Figure 8 shows the change in the RMSEs of the 12-step prediction with input different class maps 
when the ensemble members ranged from 1 to 9. The years from 2015 to 2018 are denoted by different 
colored bars, and the label 𝑁 appearing in the abscissa represents the results of the model trained 
without class labels. The RMSE in all classes gradually decreased and stabilized as the ensemble 
members increased from 1 to 9. The average RMSE of the class at 90, 110, and 115 were below 0.7 °C 
in these four years, which were the smallest. This suggests these three classes are more appropriate 
for the study area. Therefore, the SSTA results predicted by the models trained with these three 
classes were composed together. Finally, the SSTA prediction value was added to the respective 
SSTM to produce the SST prediction map. 

Figure 7. Construction of the input and target vectors of the LSTM model: (a) The model trained with
class labels and (b) the model trained without class labels.

At the prediction stage, we used IMS methods. IMS estimation is one of the approaches for
multi-step prediction in deep neural networks. The IMS method first involves a one-step prediction,
and then the generated prediction samples are iteratively fed to the single-step predictor to obtain
the next-step prediction. This kind of multi-step prediction is relatively easy to operate and can be
recursive for obtaining predictions of any length. In this study, we varied the lead time from 1 to
12 months with this strategy. The lead time was defined as the time elapsed between when the model
was run and the forecast month.

2.3.3. Ensemble Predicting Results

One of the advantages of ensemble learning is that it can prevent the possibility of the network
with the best performance on the validation set not being the one with the best performance on new
test data [43]. Training and combining the networks from the ensemble instead of a single network
can overcome the high output variance [43]. As mentioned in Section 2.3.1, there were a total of 26
class maps generated by the SOM. Therefore, during model training, the input SSTA field sequences
could select 26 different class maps. In addition, there were 9 different model parameter configurations
differing in input length, initial learning rate, layers, etc., for a total of 234 (26 × 9) models in each
year’s prediction. The aim of testing all the class maps was to find more appropriate ones for the study
area. We also tested models trained without class labels for comparison.

Figure 8 shows the change in the RMSEs of the 12-step prediction with input different class maps
when the ensemble members ranged from 1 to 9. The years from 2015 to 2018 are denoted by different
colored bars, and the label N appearing in the abscissa represents the results of the model trained
without class labels. The RMSE in all classes gradually decreased and stabilized as the ensemble
members increased from 1 to 9. The average RMSE of the class at 90, 110, and 115 were below 0.7 ◦C in
these four years, which were the smallest. This suggests these three classes are more appropriate for
the study area. Therefore, the SSTA results predicted by the models trained with these three classes
were composed together. Finally, the SSTA prediction value was added to the respective SSTM to
produce the SST prediction map.
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Figure 8. The root mean square errors (RMSEs) with 12 steps prediction with different class label sets
inputted under different ensemble members from 2015 to 2018.

3. Results

Both the model trained with class labels and without class labels were used separately to predict
the SSTs during the period 2015 to 2018. The bias, standard deviation (SD), RMSE and structural
similarity index (SSIM) values were calculated between the predicted monthly SST and corresponding
OSTIA monthly SST. To better evaluate the spatial pattern of the prediction results, we selected 2016
and 2018 as examples.
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3.1. Comparison between the Model Trained with and without Class Labels

Figure 9 displays the histograms of the SST difference obtained from the model trained with class
labels (blue bars and text) and without class labels (red bars and text) from 2015 to 2018. Compared
with the model trained without class labels, the statistics show that the model trained with class labels
has a lower bias and a higher proportion of SST difference within ±0.5 ◦C. In different prediction lead
times, the errors of the model trained with class labels are always lower than the model without class
labels. Especially when the lead-time is seven months, the statistical differences are the largest. The bias
from the model trained with class labels is –0.17 ◦C, whereas that for the model trained without labels
is –0.33 ◦C.
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To further explore the differences in the spatial distribution of the errors between these two models
with a seven-month prediction lead time, we chose 2016 (a year with the strong El Niño) to display the
SST prediction results for the four seasons. Figure 10a depicts the results obtained from the model
trained with class labels, whereas Figure 10b is the model trained without class labels. Compared with
Figure 10b, the proportion of the errors exceeding ±1 ◦C in Figure 10a is significantly lower.
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3.2. SST Prediction with Different Lead Times from 2015 to 2018

The monthly statistics including the biases and standard deviations as well as the average RMSE for
the four years with different lead times using the proposed model are shown in Figure 11. The monthly
biases and standard deviations obtained by the model are denoted by blue points and error bars. At a
one-month lead time, the prediction accuracy is the highest, with the RMSE around 0.5 ◦C. When the
lead time increases to two months, the RMSE increases to 0.59 ◦C and then slowly rises. It reaches a
maximum when the lead time is 11 months, with an RMSE around 0.66 ◦C. Compared with the biases
of each year, the standard deviations are more stable as the lead-time increases. Overall, the prediction
error shows a fluctuating rising and falling tendency along with the prediction time series. Generally,
a relatively large bias is likely to occur in summer, such as in August 2016. Compared with other months
in 2016, the standard deviation of the prediction results for August suddenly increased. We checked
the prediction results and found that the model underestimated the SST in the East China Sea more
seriously. In the prediction period, the bias in 2015 is lower, which is –0.06 ◦C with a one-month lead
time and –0.05 ◦C for a 12-month lead time.

Figure 12 shows the distribution of the RMSE from 2015 to 2018 with different prediction lead
times in the study area. When the predicted lead time is gradually increased to 12 months, the RMSE
near 0–10◦ N, 120–130◦ E is less than 0.4 ◦C; the RMSE near the eastern and southwestern Philippines,
and near the Kuroshio is less than 0.6 ◦C; the RMSE near the coastal areas is around 1 ◦C. The prediction
accuracy near the northeast of the Korean Peninsula is the lowest. Overall, from the southwest to the
northeast of the study area, as the lead time increases, the prediction accuracy gradually decreases.
The distribution patterns of prediction accuracy have a strong relationship with the ocean currents.
The main current systems in the southeastern Taiwan area are the equatorial north flow and the
Kuroshio mainstream. They are relatively stable in speed and temperature, generally with no regular
seasonal changes. The prediction accuracy remains high under a long prediction lead time in this
kind of area. The waters near the mainland are dominated by coastal currents. The direction of
these currents changes seasonally. In some areas, e.g., the Yangtze River estuary and the northeast
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of the Korean Peninsula, the cold coastal currents join the warm currents, which means the water is
characterized by large annual variations in temperature. The prediction accuracy noticeably decreases
as the lead-time increases in the areas with large annual variations in temperature.

3.3. Predicted SST Distribution in Space

The 12-month distribution of predicted SSTs at 12 different lead times is shown in Figure 13.
The SST features, like the Kuroshio, the Yellow Sea warm currents and the cold coastal China currents
in winter are clearly shown in the prediction maps, and they show obvious seasonal variability.
We adopted the SSIM [44] to evaluate the quality of the prediction maps relative to the validation
maps. The local SSIM maps and global mean SSIM values are shown in Figure 14. Brighter pixels are
associated with higher SSIM values, which means the SST patterns are more similar to the observed SST.
This set of images shows that the predicted SST maps are overall consistent with those of the OSTIA
SST maps. The global SSIM values are all above 0.97, and large pattern deviations mainly appear in
the northern part of the Japan Sea, which means that the local SSIM is near 0.5. This suggests the
classification of the study area does not affect the continuity of the SST pattern in this region. Figure 15
shows the differences in the SST distributions between the predicted results and the observation data.
Most pixels’ values are within ±1 ◦C, and the percentages range from 85.17% to 98.19%, with the mean
being 90.64% based on the statistics in Table 1. The predicted anomalies often occurred near the coastal
area and the northern Japan Sea, which are beyond ±1 ◦C. In July and October, the area near 22◦ N, 130◦

E also has large biases. The possible reason may be related to the SST anomaly. As shown in Figure 16,
the SST anomaly pattern obtained from OSTIA is similar to Figure 15. Generally, the areas with a
large anomaly have a relatively low prediction accuracy. The biases, standard deviations, and RMSEs
between the predicted and original OSTIA SST in 2018 were also calculated and are presented in
Table 1. The biases range from −0.29 to 0.35 ◦C, with a mean of 0.12 ◦C; the standard deviations range
from 0.39 to 0.72◦C, with a mean of 0.56 ◦C.Remote Sens. 2020, 12, x FOR PEER REVIEW 12 of 21 
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Table 1. Monthly statistics of SST differences in 2018.

2018 Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Bias (◦C) 0.05 0.28 0.06 0.26 −0.17 0.04 0.3 0.21 0.35 0.28 0.11 −0.29
SD (◦C) 0.39 0.66 0.56 0.60 0.50 0.42 0.68 0.72 0.51 0.56 0.49 0.60
RMSE (◦C) 0.39 0.71 0.56 0.65 0.53 0.42 0.74 0.75 0.62 0.63 0.50 0.67
P (±0.5 ◦C) % 84.09 55.06 68.93 58.5 75.78 81.23 57.53 48.56 55.74 66.52 72.82 57.30
P (±1 ◦C) % 98.19 87.53 93.47 86.86 93.36 96.92 85.17 85.46 88.63 90.57 95.53 85.95
P (±1.5 ◦C) % 99.59 96.34 98.3 98.07 97.72 99.60 94.00 95.03 99.35 96.87 98.84 97.68Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 21 
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4. Discussion

In the present study, we applied SOMs to classify the SST data, and then used the class labels
obtained by the classification process as auxiliary inputs for LSTM-based model training and validation.
Compared with the model trained without class labels, the prediction accuracy of the model trained
with class labels was more stable and the bias was decreased. According to the China offshore ocean
climate monitoring bulletin released by the National Marine Environment Forecasting Center, China
offshore SST was generally higher than the same period of the previous year in July 2016 (a year with the
strong El Niño) [45]. The model trained without class labels produced a wide range of underestimations
in July, but the model trained with class labels reduced the bias considerably. The possible reason is
that after classifying the SSTs in the study area through the SOM, the SSTs with different features are
distinguished. These classification data containing regional information provide more characteristics
during the model training process, which fits the data better and lowers the output bias.

The monthly statistical results with different prediction lead times showed that the prediction
error had a fluctuating rising and falling tendency along with the prediction time series. The prediction
SST had a large standard deviation in August 2016 compared with other months. We checked the
error distribution and found that our model seriously underestimated the SST in the East China Sea.
Referring to Tan and Cai [46], in 2018, the East China Seas experienced its warmest monthly mean SST.
This extreme warming event was closely linked to the Indian Ocean Dipole (IOD). Since the SST of
the Indian Ocean was not included in the training data set, the model had less capability to capture
extreme warming. Another possible reason is that we used the IMS for multi-step prediction, which
propagated errors from earlier time steps into later time steps, but we found no trend of linear error
accumulation. Finally, the RMSE distribution in space suggested the prediction accuracy had a strong
relationship with seasonal ocean current variability. Where the current was obvious and stable, the
error was low; otherwise, the error obviously increased as the lead-time increased.

Overall, compared with the model trained without class labels, the prediction accuracy of the
model trained with class labels was more stable and the bias was decreased in the periods with
abnormally higher SST. The stable and accurate prediction may help to observe the SST trend and
provide an outlook of climate change. However, the model still lacked the capability to predict extreme
events. Therefore, in subsequent work, the IOD, monsoon, and current characteristics related to the
SST changes in the study area will also be considered in model training. The spatial data around the
sequence will also be added to improve the accuracy of long-term prediction.

5. Conclusions

In this study, we completed 12-month lead time SST predictions over the China Seas and their
adjacent waters. The results had a RMSE of 0.5 ◦C with a one-month lead time and 0.66 ◦C with a
12-month lead time. The prediction accuracy was highest in the southeast of the study area, with an
RMSE of less than 0.4 ◦C for a 12-month prediction lead time. This suggested it is feasible to place the
data into a single model for spatio-temporal SST prediction. Introducing the spatial feature information
through classification can improve prediction accuracy. Combining multiple models with different
parameters and structures can improve the stability of prediction results.
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