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Abstract: Tourism is a primary socio-economic factor on many coastal islands. Tourism contributes
to the livelihoods of the residents, but also influences natural resources and energy consumption
and can become a significant driver of land conversion and environmental change. Understanding
the influence of tourist-related activities is vital for sustainable tourism development. We chose
Hainan Island in South China as a research area to study the influence of tourist-driven activities
on environmental variables (as Land Surface Temperatures (LST) and related ecosystem variables)
during the period of 2000 to 2019. In Hainan, the local economy relies heavily on tourism, with an
ever-growing influx of tourists each year. We categorised location-based points of interest (POIs)
into two classes, non-tourism sites and tourism-related sites, and utilised satellite data from the
cloud-based platform Google Earth Engine (GEE) to extract LST and Normalized Difference Vegetation
Index (NDVI) data. We analysed the LST variations, NDVI changes and the land use/land cover
(LULC) changes and compared the relative difference in LST and NDVI between the tourism-related
sites and non-tourism-related sites. The main findings of this study were: (1) The median LST in
the tourism-related sites was relatively higher (1.3) than the LST in the non-tourism-related sites
for the 20 years. Moreover, every annual mean LST of tourism-related sites was higher than the
LST values in non-tourism-related sites, with an average difference of 1.2 ◦C for the 20 years and
a maximum difference of 1.7 ◦C. We found higher annual LST anomalies for tourist-related sites
compared to non-tourism sites after 2010, which indicated the likely positive differences in LST above
the average LST during 20 years for tourism-related sites when compared against the non-tourism
related sites, thus highlighting the potential influence of tourism activities on LST. (2) The annual
mean NDVI value for tourism-related sites was significantly lower than for non-tourism places every
year, with an average NDVI difference of 0.26 between the two sites. (3) The land cover changed
significantly: croplands and forests reduced by 3.5% and 2.8% respectively, while the areas covered
by orchards and urban areas increased by 2% and 72.3% respectively. These results indicate the
influence of the tourism-driven activities includes the relatively high LST, vegetation degradation
and land-use conversion particular to urban cover type. The outcome of this work provides a method
that combines cloud-based satellite-derived data with location-based POIs data for quantifying the
long-term influence of tourism-related activities on sensitive coastal ecosystems. It contributes to
designing evidence-driven management plans and policies for the sustainable tourism development
in coastal areas.
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1. Introduction

Globally, coastal ecosystems are recognised for their rich biodiversity, abundant natural resources
and ambient atmosphere, which makes them attractive for tourism, education and leisure activities.
Human activities in these areas focus on the exploitation of natural resources, development of marine
transport and food production. Unfortunately, these activities contribute to the degradation of
aquatic and terrestrial ecosystems. Human activities are a significant cause of the irreversible loss
of biodiversity, vegetation degradation, changes in land surface temperature and water and soil
pollution [1–3]. Tourism-related activities might include the expansion of accommodation facilities,
growth of farmlands and other food production industries, development of transport and energy
infrastructure to support trade, and tourism and leisure activities. It is universally acknowledged
that tourism positively impacts economic development by providing employment opportunities,
promoting the development of other supporting industries, and fostering the transformation of
socio-economic structures [4–6]. The tourism industry is, therefore, a major source of revenue,
employment, and a foreign exchange earner for the local economy in many countries [7,8]. However,
the tourism-based development is a double-edged sword as it both positively influences the livelihoods
of local communities while also adversely affecting the local ecosystem and environment [9–12].

Research on the influence of tourism on the environment has predominantly focused on integrated
tourism management [13,14], the influence of tourism on forest reserves [15,16], the link between
tourism and urbanisation [5], wild habitats preservation [17–19] and land use and land cover
(LULC) transformation [20]. Tourism development could also affect air quality and increase climate
variabilities [21–24]. The current Coronavirus disease (Covid-19) pandemic continues to threaten global
tourism development by limiting the flow of tourist into traditional attractions [25,26]. Interestingly,
the Covid-19 related restrictions have provided an opportunity for the restoration of environment,
for instance, preliminary studies have associated improved air quality, reduced water pollution,
reduction in land surface temperature (LST) and noise level in many countries [25–28]. Theoretical
frameworks have been developed to assess the environmental impact of human tourism activities,
e.g., carbon emission, heavy-metal concentrations and Urban Heat Island (UHI) effects [29]. However,
there is seldom research that compares the specific influence of tourism-related activities on multiple
onsite environmental and ecological effects.

In studying the influence of human activities on LST changes and related ecological effects,
commonly, the general influence of human activities is considered rather than attributing the changes
to specific anthropogenic activity. There are a few examples that have attempted to link LST to LULC,
human settlement construction, urban sprawl and UHI, and to connect land cover changes and Surface
Urban Heat Island (SUHI) [30–40]. Similarly, the correlation between the urbanization-driven land
cover change and LST patterns was analysed in a case study in an inner-city area of Hanoi [30].
In addition, Xiao and Weng found out that changes in LST were mainly associated with the changes in
the construction material [31]. The research on urban heat island and LST continues to be of global
interest [32–34]. The mutual relationships between the LST, vegetation and human settlements were
assessed in a rapidly urbanising city: Phoenix city in the USA [35]. In addition, the relationship
between LST, UHI, urbanisation and socio-economic and socio-ecological variables has also been
studied [36–38]. Furthermore, it has been shown that there is a positive link between LST rising and the
general human modification activities defined in the Human Modification datasets [39]. By adopting
Google Earth Engine (GEE) to process the huge and increasing Earth Observation (EO) Big Data,
the long-term and large-scale spatio-temporal SUHI changes were monitored and their connection
with land cover change was studied in the six metropolitan areas in the U.S., which also pave a way for
a global service on SUHI monitoring [40].

Considering the ensuing studies, few studies have focused on the specific influence of
tourism-related activities on the LST and its related ecological effects. The purpose of the current
study is therefore to assess the influence of tourism-related activities on LST and related ecological
effects, by comparing the difference of the ecological variables in locations characterized by tourism
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and non-tourism related activities. The motivation of this work is in the fact that coastal islands,
despite being attractive tourist destinations due to their unique seaside views and warm temperatures,
are extremely vulnerable to degradation resulting from the impact of tourists [41–43]. Marginal
fluctuations in LST in the coastal islands can have far-reaching effects on the indigenous biodiversity of
the islands. In addition, tourism-related pollution and degradation of indigenous vegetation can affect
the carbon sequestration potential of the coastal forests and thus aggravate the influence of climate
change. Therefore, the research on identifying the ecological influence of tourism activities on coastal
islands is imperative to environment conservation and sustainable ecosystem development.

In this study, we focused on the specific influence of tourism-related activities on the LST and
their related ecological effects. We chose Hainan Island (Hainan province) as the research area as it
is one of the most popular tourist destinations in China. Apart from this work, related studies on
the island have looked at the influence of tourism-related activities on the urbanisation process and
the environment in Sanya, a tourist destination city on Hainan Island [20]. Another study looked at
the patterns of urban heat islands during peak tourism seasons in Sanya city [44]. Data constraints
have limited previous studies to single cities or small areas of the island. Cloud-based platforms like
GEE provide multi-source data catalogues for geospatial analysis and the extensive computational
capabilities to deal with a variety of societal and environmental issues at large scales [45]. We used
GEE and a desktop-based GIS tools for data processing and analysis in this research. Location-based
points of interest (POIs) data can be used for sensing human activities, land use management and other
location-based applications [46,47], and in particular, POI data was used to identify tourism related
sites in this study. Specifically, we used the spatio-temporal LST, Normalized Difference Vegetation
Index (NDVI), and land-use change data to assess the ecological effects resulting from tourism-related
activities on the entire Hainan Island. We adopted LST and NDVI data from Moderate Resolution
Imaging Spectroradiometer (MODIS) archives within GEE and combined these with land cover data
for further analysis. POIs from the Amap platform were classified into two classes to represent
tourism-related sites and non-tourism-related sites. For the tourism-related POIs, four sub-classes
were used to analyse the relative influence of various categories of tourism-related place types on LST.

2. Study Area and Data Source

2.1. Study Area

Hainan Island is the second-largest island in China and is the southernmost province of China
(Figure 1). Hainan Island, with an area of approximately 35,354 km2 and a population of about
9.34 million people (in 2018), lies within latitudes 18◦10′–20◦10′N and longitudes 108◦37′–111◦03′E.
Hainan’s development and rapid economic growth are dependent on the flourishing tourism sector [44].
In the past decade, the annual number of tourists visiting Hainan rose from 10 million in 2000 to 76 million
in 2018 [48]. Tourism earnings for the whole island in 2018 was 950.16 million CNY, which accounted
for nearly 20% of the Gross Domestic Products (4832.05 million CNY) [48]. The increase in domestic
and international tourists has led to an increase in tropical fruit planting, construction of residential
real estate and hotels, increasing numbers of restaurants, recreation facilities, the modernisation of
transport and energy production infrastructure to host the needs of eating, living, shopping, recreation
and travel of tourists, as well as new immigration.
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Figure 1. Map of Hainan Island together with the county boundary and relative elevation change.

2.2. Data Source

The primary datasets in this work are MODIS Terra LST products, MODIS Terra Vegetation
Indices (VI) products, Land use/land cover data, and POIs from the Amap platform (http://wap.amap.
com) [49–52]. The LST and VI products from MODIS data were pre-processed in GEE. A combination of
POIs and land-use data was used for sampling the tourist and non-tourism-related sites. Administration
data were used mainly to provide geographic referencing of the study area. The 19 years of population
distribution data in Hainan Island were collated from annual yearbooks of the National Bureau of
Statistics. The primary datasets in this study are outlined in Table 1.

Table 1. Overview of the primary datasets.

Theme Data Type/Images
Numbers Resolution/Scale Time Source

MOD11A2.006 Terra Land Surface
Temperature and Emissivity 8-Day

Global 1 km

Satellite imagery/
913 imageries 1000 m 2000–2019 U.S. Geological Survey (USGS) and

hosted in GEE archive

MOD13A2.006 Terra Vegetation
Indices 16-Day Global 1 Km

Satellite imagery/
457 imageries 1000 m 2000–2019 U.S. Geological Survey (USGS) and

hosted in GEE archive

Land use/land cover data in China Satellite Imagery 1000 m 2000 and
2018

Resource and Environment Data
Cloud Platform of the Chinese

Academy of Sciences

National boundary Towns and Cities Vector/Polygon /Point 1:1,000,000 2015
Resource and Environment Data
Cloud Platform of the Chinese

Academy of Sciences

POIs Vector/Point 2019 Amap Open Platform

Population statistics in Hainan Numbers 2000–2018
Annual Hainan Statistics Yearbook

from the National Bureau of
Statistics in Hainan (2000 to 2018)

The MODIS Terra Land Surface Temperature and Emissivity 8-Day archive in GEE was used to
calculate the long-term mean LST image and the annual mean LST images for the period of 2000 to
2019. The MODIS Terra Vegetation Indices 16-Day products from GEE were the primary data source
to calculate the annual mean NDVI images and the long-term mean NDVI image by pixel for the
research period. The POIs data and land use/cover data were used to categorise the tourism-related
sites and non-tourism-related sites. POI data were extracted from the Amap Open Platform, one of the
largest navigation map websites in China. These POIs provided location-based geographic information

http://wap.amap.com
http://wap.amap.com
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and other detailed information for each geographic element on the map. Land use data for the year
2000 and 2018, from the Resource and Environment Data Cloud Platform of the Chinese Academy of
Sciences, were used to analyse the land-use changes and extract sites with changing land use patterns
driven by tourism development.

3. Methodology

3.1. Data Pre-Processing

3.1.1. Retrieval of NDVI and LST Images from GEE

LST and NDVI products were retrieved from the archives of GEE. The pre-processing step included
filtering the required data from the LST and NDVI archives in GEE and clipping the data to the
outline of the study area. In each case, the data were filtered from January 2000 to December 2019.
For both the LST and the NDVI, annual mean images and long-term mean images for each product
were calculated. In addition, the long-term per pixel mean LST was calculated to aid in computing the
annual LST anomalies.

Specifically, we used MODIS Terra 8-day LST as the source of LST data. For the NDVI, we used
MODIS Terra Vegetation 16-day indices in GEE. 913 LST images were retrieved and used as part of
the LST image collection, and 457 NDVI images were retrieved and used as part of the NDVI image
collection. The LST anomaly images were calculated based on the long-term mean and annual mean
images, which is illustrated in the following Section 3.3. The pre-data processing steps are indicated by
the orange boxes in the workflow schema shown in Figure 2.
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3.1.2. Classification of POIs into Tourism-Related and Non-Tourism-Related Sites

Two main place types were categorised from the POIs data; these were tourism-related sites
and non-tourism-related sites. In addition, the tourism-related POIs were further divided into four
sub-classes. The categorisation of the tourism-related sites and non-tourism-related sites was based
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on the intersection between POIs and land-use classes. According to the functions of POIs and the
land-use data, we defined four sub-classes: ‘residential sites along shorelines’, ‘accommodation service
sites’, ‘other tourism-related sites’ and ‘orchard’ sites (Table 2). The first three sub-classes mainly
encompass POIs for which information was filtered using tourism-related keywords.

Table 2. The function-defined classification of sites.

Class Sub-Classes The Function/Descriptions of Sub-Classes

Tourism-related sites

Residential sites along
shorelines

Residential real estate along the shoreline hosting new
immigration & tourists which located within 10 km buffer
of shoreline

Accommodation
service sites

Tourism-related accommodation services, including
hotels and other accommodation facilities

Other tourism-related
sites

Recreation, shopping, dining, transportation and other
commercial sites.

Orchard sites Transformed from forest and cultivated land into orchard

Non-tourism-related sites Unchanged land-use type, original residential sites,
transportation, leisure places, etc.

Specifically, ‘orchard sites’ are the land-use patches that were converted from cultivated land and
forest land in 2000 into orchards in 2018 to meet the tourists’ demand for tropical fruits, according
to the previous study in Hainan [20]. The ‘Residential sites along shorelines’ sub-class contains
the construction sites of real estate to facilitate the housing of the “migratory-bird tourists” or
“migratory-bird population”, who purchased apartments in Hainan and regularly spent the winter
months in Hainan but left again in summer each year; this category of tourist is classified as new
immigration. Based on the previous study in which residential sites were identified [20], we extracted
the ‘residential sites along shorelines’ from the residential POIs within the 10 km buffer along the
shoreline and the construction lands which were previously farmlands in the plains along the shoreline.
The ‘accommodation service sites’ sub-class includes hotels and other accommodation facilities for
hosting short-term tourists. The ‘Accommodation service sites’ sub-class sites were filtered from
the POIs information using keywords related to accommodation. The ‘Other tourism-related sites’
sub-class contains the sites that facilitate tourists’ dining, shopping, entertainment and transportation
needs. These sub-class sites were chosen from the POIs that contained ‘cultural service places’,
‘museums’, ‘theatres’, ‘shopping centres’, ‘city parks’, ‘transportation’ and other related keywords.
‘Orchard’ sites were extracted from the random points on the land use patches in 2000 and 2018 based on
the land use/cover data. The ‘Orchard’ sites sub-class represents the sites where land was transformed
from cultivated land and forest in 2000 into orchard in 2018, in order to meet the tourists’ demand for
tropical fruits, according to the previous study [20]. There were 2319 tourism-driven sites (including
1879 ‘other tourism-related sites’, 179 ‘residential sites along shorelines’ and 152 ‘accommodation
service sites’ 109 ‘orchard sites’) and 1493 non-tourism-driven sites (Table 2).

3.2. LST Variations

We calculated the mean annual temperature from 2000 to 2019 and the long-term mean temperature
image for the 20 years from all 913 images. The long-term mean LST was mapped to identify the LST
spatial distribution on Hainan Island. The LST variations for the two classes and the four sub-classes
of sites were plotted to show the correlation of the LST with tourism-related activities in the 20 years.
Specifically, the mean annual LST for the sites of both classes were plotted for each year using line
charts to show the LST difference in each year and the LST variations within the two groups for the
whole period. The mean temperature distribution of the four sub-class sites in the 20-year period was
plotted to compare the relative LST differences within the four function-defined tourism-related sites,
which highlights the influence of various types of tourism-related human activities on the LST.
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3.3. LST Annual Anomalies and Trends

The long-term mean LST image was calculated based on all 913 8-day LST images from 2000
to 2019. An anomaly is when the conditions depart from average conditions for a chosen area at a
given research period. Anomalies have been used to analyse interannual variations of temperature,
vegetation and precipitation from long-term mean situations [53]. In this study, annual anomaly
images were computed by subtracting the long-term mean LST from the annual mean LST. Therefore,
the pixel-based anomaly indicated the geographic variation of each annual LST image from the 20-year
mean LST in the study area. The POI data were then used to extract annual LST anomaly data for
each tourism-related and non-tourism-related point and then the average annual anomalies for both
two groups were plotted, thus allowing for analysis and visualisation of the 20-year changes in the
LST anomalies in the tourism and non-tourism-related sites. In addition, trendlines were plotted to
show the general trend of changes in LST within tourism-related sites and in non-tourism related
sites respectively.

3.4. NDVI Variations

The 457 16-day NDVI images from 2000 to 2019 were used to calculate the long-term mean and
annual mean NDVI images for each year in the analysed period. The annual mean NDVI values for the
two classes (the tourism-related and non-tourism-related sites) in each year were plotted in a line chart
to compare the NDVI discrepancy with the influence of the tourism-related activities in the same year
and to show the changing trends in the annual mean NDVI over the 20 year period. The long-term
mean NDVI distribution was mapped to show the spatial vegetation variation on Hainan Island in the
examined 20 year period.

3.5. LULC Matrix Dynamics

To understand the land-use change dynamics in the study areas, a simple land cover change
matrix was computed in Quantum GIS (QGIS) software using the Semi-Automatic Classification Plugin
(SCP). The aim of this step was to assess the potential link between tourism-related developments
and land cover changes in the study area. The 10 land cover classes included cropland, dense forest,
shrubland, sparse forest, orchard, grassland, water, urban area, bare land and wetland. We were
particularly interested in the dynamics of land cover transformations in the orchard, urban area and
cropland classes. We assumed that land use/land cover transformations from forest and shrubland
into orchard was to meet the increasing demand for food and the tropical fruit products consumed by
tourists [20]. On the other hand, the transformation of croplands into artificial surfaces was assumed to
be indicative of the fast urbanisation, partly boosted by the increasing accommodation demands of new
immigrants and “migratory-bird tourists”. They mainly purchased apartments on the plains along the
coastline [20,44]. Accordingly, the land use matrix transformation related to the orchard, cropland
and urban areas were considered as the indicators of the influence of the tourism-driven activities.
We compared the land cover changes and the LST changes on the transformation of land-use types.

3.6. Accuracy Assessment

To assess the accuracy of the LST data, which were extracted and calculated from the MODIS
archives on GEE, we used in situ air temperature data from four weather stations in Hainan Island.
The specific stations were Dongfang, Haikou, Sanya and Qionghai within the island. Air temperature
data were available as daily mean values. The daily temperature was aggregated to yearly mean values
to make them comparable with the annual mean LST data derived from MODIS. We then extracted
LST values from the 20 annual mean LST images at the locations of the four stations. The extracted
LST values were then compared against the annual in situ air temperature at the same station. Pearson
correlation and root mean square error (RMSE) were used to analyse the accuracy between the
two datasets.
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For each of the four stations, in situ air temperature was generally lower compared to the MODIS
derived LST values. The comparison of in situ air temperature and MODIS derived LST revealed
Pearson correlation coefficients of 0.73 (Dongfang station), 0.2 (Haikou station), 0.56 (Qionghai station)
and 0.40 (Sanya station), implying a marginal to high positive correlation between satellite-derived
LST and observed in situ temperature. Root mean square error (RMSE) values for the variation of LST
and in situ temperature in the four stations were 3.28 ◦C, 7.25 ◦C, 5.73 ◦C and 2.97 ◦C in Dongfang,
Haikou, Qionghai and Sanya stations, respectively.

The comparison of MODIS derived LST values with in situ air temperature measurements from
four sites on Hainan Island revealed a reasonable agreement between the two data sets (Figure 3),
while all four stations showed large variability in yearly mean air temperature and LST values.
However, an exact match of both variables could not be expected as LST and air temperature represent
different values and variables. In the case of Sanya Station (Figure 3), we observed a significant drop in
the air temperatures between 2008 and 2009. While we could not directly explain this abrupt change
from the data, other studies have shown a significant negative trend in temperature data from the Sanya
station when compared to the data from other stations in South China [54]. For a direct comparison
of MODIS LST data with in situ land surface temperature measurements, extensive field campaigns
would be necessary, while this approach is not feasible when looking to conduct a study covering a
long time period.
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4. Results

4.1. Hainan Island Population Changes

From the annual Statistics Yearbooks (listed in Table 1) published by the Chinese National Bureau
of Statistics (2000 to 2018), we collated and tabulated the annual population data of the Hainan region
(Figure 4). The population of Hainan Island includes the rural, urban and tourist population. The rural
population remained stable for the duration of the study, while the urban population increased from
about 2 million people in 2000 to 3.6 million in 2018. According to the yearbook, the changes in
the urban population could partially be attributed to the “migratory-bird migration” population,
whereby the owners only reside in their private apartments during the winter season. There was a
relatively drastic increase in the tourist population, with a growth from about 10.1 million in 2000
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to 76.3 million in 2018. The tourist population in 2018 was more than eight times that of the local
population. Inevitably, the rise of tourist population and development of tourism-related infrastructure
in the region would be expected to contribute to environmental changes, including vegetation changes,
variation in the land surface temperature and other variables of the local ecosystem.
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4.2. LST Variations

4.2.1. Function-Defined POIs Categories

As described in Section 3.1.2, we classified the random points into two classes (the tourism-related
class and the non-tourism-related class) and four sub-classes within the tourism-related class (residential
sites along shorelines, accommodation services sites, other tourism-related sites and orchards) (Figure 5).
As shown in Figure 5, the residential sites are mainly distributed on the plains along the shoreline,
and orchard sites are in the central platform areas, which is consistent with the findings of other
researcher’s studies [20].

4.2.2. LST Variations between Tourism-Related and Non-Tourism-Related Categories

Figure 6 represents the long-term mean LST for the period from 2000 to 2019. We observed
that most areas in the hinterlands of the island had a relatively lower mean LST in the past 20 years
compared to the areas along the shoreline, which had a relatively higher LST in the period 2000 to
2019. We plotted the statistical distribution of the mean LST in the 20 years for the tourism-related and
non-tourism-related sites in Figure 7a. A box and whisker plot (Figure 7a) illustrated the LST values
distribution for all POIs on the two types of sites, and the maximum, the 3rd quartile, the median,
the 1st quartile and the minimum LST values were represented and marked by the short lines and
the box boundary of the Figure 7a. We found that both the mean and the median LST value for
tourism-related sites were relatively higher than those of non-tourism-related sites. The median LST
difference was 1.3 ◦C, with 30.5 ◦C for tourism-related sites and 29.2 ◦C for the non-tourism-related sites,
with the standard deviation of 1.1 ◦C and 1.5 ◦C for the tourism-related and the non-tourism-related
sites, separately. In Figure 7b, the LST values in tourism sites were consistently higher than those
values of non-tourism sites for every year of the 20-year research period. The annual mean LST in
tourism-related sites ranges from 29.4 ◦C to 31.6 ◦C, while for non-tourism-related sites, it ranges from
28.3 ◦C to 30 ◦C. The LST annual mean average difference between the two groups for the 20 years was
1.2 ◦C, and the max difference was 1.7 ◦C in the year 2015. The trendlines for the annual temperature
variation in the sampling locations showed that, while there was a positive trend of change in annual
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temperature in the tourism-related sites, the trend of variation in annual temperature in non-tourism
related points from 2000–2019 was marginally negative.Remote Sens. 2020, 12, x 10 of 23 
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Figure 7. Annual LST variation in tourism-related and in non-tourism-related sites: ((a) Box and
Whisker plots of long-term (20-year) variation of LST showing relatively high mean (30.3 ◦C) and
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related sites. (b) Annual mean LST variation showing positive and negative trends of change in
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4.2.3. LST Variations within the Four Sub-Classes of Tourism-Related Sites

The mean LST statistics (Figure 8) for the research period was plotted for the four sub-classes.
The mean LST in the past 20 years in ‘other tourism-related sites’, which encompass leisure,
entertainment, transportation and dining activities, had the highest value of 30.4 ◦C. The mean
LST in the ‘residential sites along shorelines’ (30.2 ◦C), which represented the residential communities
along the shoreline, was higher than the mean LST in the ‘accommodation-related services sites’
(30.0 ◦C), which represents the accommodation facilities for tourists. The mean LST in the ‘orchard
sites’ had the lowest LST (28.8 ◦C) of the four sub-classes of tourism-related sites.
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4.3. Annual LST Anomalies

From the plot of temporal variations of annual LST anomalies (Figure 9), we observed that
prior to the year 2011, the LST anomalies at tourism-related places were generally below the mean
LST anomalies for the non-tourism-related sites. However, after 2011, the annual LST anomalies for
the tourism-related sites remained higher than the anomalies of non-tourism-related sites, with the
difference in the anomalies between the tourism and non-tourism-related sites ranging from 0.1 ◦C
to 0.5 ◦C. The highest difference was recorded in 2015, and the mean annual difference was 0.3 ◦C.
This indicated that, for all tourism-related sites in the study area, the annual mean LST were generally
higher than the corresponding values of non-tourism-related sites when both were compared against
their respective twenty-year mean values.
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4.4. NDVI Variations between Tourism-Related and Non-Tourism-Related Sites

Figure 10a represents the long-term mean NDVI values at each pixel from all images within the
period from 2000 to 2019. From the map, we observed that the vegetation loss was predominant along
the shoreline in the Hainan region. In addition, the sites of tourism-related activities consistently had
relatively lower NDVI values compared to the non-tourism-related places (Figure 10b). The annual
mean NDVI for tourism-related places ranged from 0.34 to 0.4, while the annual mean NDVI for
non-tourism-related sites ranged from 0.57 to 0.69. The average NDVI difference between the two
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groups was 0.26. The minimum difference (0.20) between the two classes was in the year 2000, and
the highest NDVI discrepancy (0.30) was in 2017. While the vegetation in non-tourism-related sites
expanded in the past 20 years with the peak value of 0.69 in 2019, the NDVI values in tourism-related
sites remained below 0.41.
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4.5. LULC and LST Changes

Table 3 outlines the land cover change matrix between 2000 and 2018, and the land cover in the
2 years are compared in Figure 11. From the results, we observed that cropland and dense forest
decreased by 313 km2 and 328 km2, respectively, between 2000 and 2018. On the other hand, land-use
classes that expanded during the same period were urban areas, water surface and orchard areas with
positive changes of 313 km2, 209 km2, and 100 km2, respectively. There was a net transformation
of about 16 km2 of croplands to orchards and a net transformation of about 245 km2 of cropland to
urban areas. In the same period, about 65 km2 of the initial 86 km2 of shrubland was converted to
urban areas, while 103 km2 of the initial 185 km2 of dense forest was also converted to urban areas.
This reveals the influence of urban infrastructure on cropland, shrubland and forest cover. Orchards
have mainly expanded from cropland and dense forests to meet the fruit demands of the tourism
sector. The results were consistent with the land-use change research in Sanya city of Hainan [20].
Accordingly, the tourism-driven land-use dynamics mainly affected the cropland, orchards and urban
areas. We mapped the tourism-driven land-use dynamics (Figure 12a) and compared the LST of 2010
and 2019 (Figure 12b). It was difficult to quantify the LST dynamics on the land dynamics every year
for the long-term research, so we only used the LST in 2000 and 2019 to compare the LST changes to
show the potential influence of tourism on the transformation of land-use types (Figure 12b). As can
be seen in Figure 12b, the LST of the three land-use types transformed by tourism (cropland, orchard
and urban land) in 2019 had increased compared with the LST of the original land-use types in 2000.
Specifically, the LST difference was 0.5 ◦C, which was an increase from 29.5 ◦C to 30.0 ◦C that occurred
when the land-use type was converted to urban land. The positive LST changes were 0.4 ◦C and 0.3 ◦C
for the orchard and cropland changes.
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Table 3. The land cover changes between 2000 and 2018 (* represents land cover classes that increased in size in 2018 in comparison to their baseline areas in 2000).

Land Cover Classes in The Follow-Up Year (2018)

Land Cover Cropland Dense Forest Shrubland Sparse Forest Orchard Grassland Water Urban Bareland Wetland Area (Km2)

Baseline land
cover (2000)

Cropland 4728 1254 581 246 1057 184 318 526 16 8 8918
Dense forest 1283 10,037 291 202 629 428 246 185 5 0 13,306
Shrubland 553 337 1139 49 179 76 66 86 5 1 2491

Sparse forest 246 175 59 287 118 36 33 28 2 0 984
Orchard 1041 451 212 76 2831 72 142 138 8 0 4971

Grassland 174 440 74 39 76 327 47 36 2 2 1217
Water 253 197 39 19 110 30 485 70 7 2 1212
Urban 281 82 21 13 66 13 66 207 1 0 750

Bareland 42 4 7 6 5 10 17 10 24 0 125
Wetland 4 1 0 0 0 0 1 6 0 3 15

Area (km2) 8605 12,978 2423 937 5071 1176 1421 1292 70 16 33,989

Change −313 −328 −68 −47 100 * −41 209 * 542 * −55 1 *
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4.6. Ecological Effects of Tourism-Related Activities

As shown in Figure 7a, the long-term median LST in the tourism-related sites was 1.3 ◦C higher
than the LST in non-tourism-related sites. The annual mean LST of tourism-related sites was consistently
higher than the respective annual LST values in non-tourism-related sites, with the average annual
difference being about 1.2 ◦C. The LST differences were also noted in the various tourism-related
sub-classes (other tourism-related sites, the residential sites along shorelines, the accommodation
services sites and orchards). The long-term median LST in the four tourism-related sub-classes were
30.5 ◦C for the other tourism-related sites, 30.0 ◦C for the residential sites along shorelines, 29.9 ◦C for
accommodation services sites, and 28.7 ◦C for the orchard sites. The annual mean NDVI values in the
tourism-related sites were generally lower than the respective values in the non-tourism-related places
for each year. On average, the NDVI difference between non-tourism-related sites and tourism-related
sites was 0.26, with the minimum and maximum annual NDVI difference of 0.2 in 2000 and 0.3 in
2017. In terms of LST anomaly, higher annual LST anomalies were noted in tourism-related sites,
compared to the non-tourism-related sites every year from 2011 onwards. The mean annual LST
anomaly difference between tourism-related sites and non-tourism-related sites in the period between
2011 to 2019 was 0.3 ◦C. The land cover changed significantly: croplands and forests were reduced
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by 313 km2 and 375 km2, respectively, while the orchards and urban areas increased by 100 km2 and
542 km2, respectively. This indicates a tourism-driven conversion of cropland and forest into orchards
and urban areas to meet the demands for tropical fruits and accommodation.

The comparison of LST variations between the tourism-related and non-tourism-related sites
showed a significant variation between these two sets of places. It can thus be assumed that the
type of tourism-related development had a potential influence on the land surface temperature.
Similarly, the lower NDVI values in the tourism-related sites compared to the non-tourism-related
counterparts could be indicative of the potential vegetation degradation resulting from the expansion
of tourism-related activities in the region. In addition, the land-use changes indicate that the urban
areas are expanding with the forest shrinking. In sensitive coastal ecosystems, minor variations
in temperature and in the vegetation cover characteristics are inevitably expected to influence the
biodiversity of these landscapes, mainly through habitat loss and the variation of the temperatures
beyond the optimum levels that are conducive for different organisms to survive.

The higher LST, vegetation loss and land-use conversion in tourism-related sites highlighted the
human disturbance on the coastal ecosystem. At the shorelines of the island, higher long-term mean
LST and lower long-term NDVI were noted for the duration of the study. To bring this into perspective,
the Hainan region hosts one-third of the total mangrove forest areas of China [51]; hence, the inter-tidal
estuarine ecosystem is currently extremely vulnerable to any human influence. The reduction of
plants and psammolittoral organisms (coral reefs, mangroves and seaweed) have been recorded in
other studies [51,52,55,56]. The tourism-related activities along the shoreline, if left unchecked, could
further degrade the inter-tidal areas where the vulnerable plants and psammolittoral organisms live.
In the interest of sustainable tourism development, policy should focus on the preservation of the
local ecosystem when developing the tourism-related industries. The results of this study showed
that even though the areas along the shorelines are the most critical in terms of providing habitat for
vulnerable organisms, they are also the most affected in terms of land surface temperatures, vegetation
loss and land-use changes. This calls for more attention to be paid toward approving tourism-related
construction and developments along the shorelines.

5. Conclusions

This study aimed to assess the long-term spatio-temporal influence of specific human activities
on the ecological variables. Specifically, the study focused on the influence of the tourism-related
human activities on the variation of LST, NDVI and land-use changes. We adopted a combination of
satellite-derived products from the cloud-based Google Earth Engine, land cover data and place-based
POIs to analyse the spatio-temporal variations of ecological variables in tourism-related sites and
non-tourism-related sites. In order to highlight the influence of tourism-related activities, we mainly
used the POIs with geographic information to categorise random sites into tourism-related and
non-tourism-related sites and four function-defined tourism-related sites, in order to compare the
influence on the variation of LST and NDVI changes of different tourism-related activities.

The findings illustrated the relative influence of tourism-related activities on land surface
temperature (LST), vegetation (NDVI) and land cover dynamics (LULC). Firstly, in terms of LST,
the long-term median LST for 20 years in the tourism-related sites (30.5 ◦C) was relatively higher than
that of the non-tourism-related sites (29.2 ◦C). Similarly, every annual mean LST of tourism-related
sites was higher than the LST values in non-tourism-related sites during the research period, with an
average difference of 1.2 ◦C for the 20 years and a maximum difference of 1.7 ◦C. The general trend of
change in the annual mean LST in the tourism-related sites was positive, while that in the non-tourism
related sites was negative, indicating that tourism-related sites were likely to have higher LST values
when compared against the non-tourism related sites. Furthermore, we observed higher annual LST
anomalies for tourist-related sites, compared to non-tourism sites, especially after 2010, indicating
the annual LST values for tourism-related sites were likely to be relatively farther from the long-term
average LST in comparison to the LST anomalies for non-tourism related sites. The results highlighted
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the disproportionate rise in LST in tourism-related sites and the high influence of tourism activities
particularly after the year 2010. These results are similar to previous studies that have found a link
between increasing surface temperatures and the related human activity developments, including the
patterns and the changes of LULC, human settlement, UHI, SUHI, urbanization, construction, general
human activities etc. [30–40].

Secondly, the mean NDVI value in tourism-related sites was significantly lower than that in
non-tourism places every year, with an average NDVI difference of 0.26 between the two categories of
sites. This may be explained by the fact that tourism development, particularly the development of
accommodation, transport and energy infrastructure to support tourism activities, is usually associated
with clearing or modification of indigenous vegetation. Vegetation is therefore likely to be vulnerable to
degradation and exploitation in the tourism-related sites than it is in non-tourism-related sites [51,57,58].
Vegetation is an important ecological indicator when assessing the environment influence by tourism
development [57–59]. Thus, the relatively lower NDVI values in tourism-related sites may be indicative
of the adverse effects of tourist-related development on the ecosystem.

Thirdly, between 2000 and 2018, the land cover changed significantly with croplands and forests
by 313 km2 (3.5%) and 375 km2 (2.8%), respectively. On the other hand, the areas which were covered
by orchards and urban areas increased by 100 km2 (2%) and 542 km2 (72%), respectively. This finding
agreed with the previous finding conducted in one city of Hainan, where the orchard conversion by
fruit demanding of tourists was highlighted [20]. In addition, the relatively rapid conversion of coastal
lands to urban cover to serve the interests of tourists has also been documented [20].

Finally, in this study the identified spatial hotspots with higher LST and vegetation degradation
are mainly distributed along the Hainan Island shorelines. This reinforces previous studies that have
found that most of the valuable plants and psammolittoral organisms (mangroves, seaweed and
coral reefs) along the shoreline suffered a severe reduction [51–53,56]. By identifying the geographic
variabilities in the LST, NDVI and LULC characterization in the island, the output from this study
could inform targeted land management and sustainable tourism development. In particular, tourism
development plans could pay attention to the offshore biodiversity degradation, and the potential effect
of tourism-development projects on carbon sequestration potential of the island ecosystem. The diverse
LST for the four function-defined sub-classes sites provides evidences for the tourism management
department to develop eco-friendly tourism programs and reduce the tourists’ accommodation and
infrastructure constructions.

Overall, the main contribution of this study was to identify the specific spatial and temporal
influence of tourism-related activities on environmental variables, particularly vegetation and land
cover dynamics, but also probably LST. In spite of the results from this work, it should be noted
that apart from human activities, there are other factors which also contribute to changes in LST
and NDVI. Such factors may include climate change, precipitation and season change in the tidal
characteristics. In our analysis, we only considered annual variations in LST and NDVI as a way of
mitigating for the probably influence of seasonal changes in precipitation and other natural factors.
In addition, when assessing the influence on the long-term LST changing trends, we calculated the LST
anomalies which shows the difference from the average or the baseline temperature, and the higher
LST anomalies after year of 2011 in tourism sites allowed us to highlight the greater influence from
tourism activities compared from the non-tourism activities. When choosing POI data to locate the
tourism and non-tourism sites, the POIs were randomly selected within every classes to reduce the
bias that could be brought by uneven distribution of samples data.

However, the following limitations were highlighted in this research. Firstly, while the
satellite-derived products in this work were available at a high spatial (1 km) and temporal resolution
(8 day for LST and 16 day for NDVI), the tourist population data were only available at a regional
and annual scale, thus limiting the rigorous comparison of the population dynamics and the LST
and NDVI changes. Secondly, there were limitations in the accuracy of the satellite-derived LST.
The LST data were aggregated to annual raster data and thus could not be expected to be comparable
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to measured air-temperature data which were aggregated from daily field measurements. Generally,
temperature data from the satellite-derived approaches underestimate measured turbulent heat fluxes
and anthropogenic heat fluxes, etc.; accordingly, it is necessary to compare these with the date from in
situ measurements [60–63]. Furthermore, LULC referenced maps used in this study were acquired
from satellites images, which could yield a classification error because of the images acquisition time in
different seasons or its own accuracy of satellite image [64–66]. Although the field-based verification on
Hainan Island for LULC was not actualized in this study, emergence of finer resolution LULC dataset
could be adopted in the future to improve the accuracy of land cover mapping. Another limitation
was the lack of data to show temporal changes in the POIs, hence denying us the chance to tease out
any potential influence of the tourist population on the changes in the points of interest. Future studies
could focus on mining the POI data for further analysis of the social structure of urban ecosystems.
Other future directions could also explore the links between the daily variation of ecological variables
and the daily dynamics of tourist populations.
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