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Abstract

:

The surface anthropogenic heat island (SAHI) phenomenon is one of the most important environmental concerns in urban areas. SAHIs play a significant role in quality of urban life. Hence, the quantification of SAHI intensity (SAHII) is of great importance. The impervious surface cover (ISC) can well reflect the degree and extent of anthropogenic activities in an area. Various actual ISC (AISC) datasets are available for different regions of the world. However, the temporal and spatial coverage of available and accessible AISC datasets is limited. This study was aimed to evaluate the spectral indices efficiency to daytime SAHII (DSAHII) quantification. Consequently, 14 cities including Budapest, Bucharest, Ciechanow, Hamburg, Lyon, Madrid, Porto, and Rome in Europe and Dallas, Seattle, Minneapolis, Los Angeles, Chicago, and Phoenix in the USA, were selected. A set of 91 Landsat 8 images, the Landsat provisional surface temperature product, the High Resolution Imperviousness Layer (HRIL), and the National Land Cover Database (NLCD) imperviousness data were used as the AISC datasets for the selected cities. The spectral index-based ISC (SIISC) and land surface temperature (LST) were modelled from the Landsat 8 images. Then, a linear least square model (LLSM) obtained from the LST-AISC feature space was applied to quantify the actual SAHII of the selected cities. Finally, the SAHII of the selected cities was modelled based on the LST-SIISC feature space-derived LLSM. Finally, the values of the coefficient of determination (R2) and the root mean square error (RMSE) between the actual and modelled SAHII were calculated to evaluate and compare the performance of different spectral indices in SAHII quantification. The performance of the spectral indices used in the built LST-SIISC feature space for SAHII quantification differed. The index-based built-up index (IBI) (R2 = 0.98, RMSE = 0.34 °C) and albedo (0.76, 1.39 °C) performed the best and worst performance in SAHII quantification, respectively. Our results indicate that the LST-SIISC feature space is very useful and effective for SAHII quantification. The advantages of the spectral indices used in SAHII quantification include (1) synchronization with the recording of thermal data, (2) simplicity, (3) low cost, (4) accessibility under different spatial and temporal conditions, and (5) scalability.
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1. Introduction


The rapid and often uncontrolled growth of urbanization and built-up development over the past years has caused a large number of environmental, climatic, and socio-economic problems at local, regional, and global scales [1,2,3,4]. One of the most important environmental challenges in urban areas is the increase in air and land surface temperature (LST) as a result of a lack of vegetation, the widespread use of impervious surfaces, the increased thermal diffusivity of urban materials, the low solar reflectance of urban materials, urban geometries that trap heat and slow wind speeds, increased levels of air pollution, and increased energy use; these factors create surface urban heat islands (SUHIs) [5,6,7,8].



SUHIs are one of the most common urban phenomena; in a SUHI the temperature of urban areas, and city centers in particular, is higher than the temperature of the surrounding rural areas [9,10]. Several studies have investigated the impact of SUHIs on urban flora [11], climate [12], pollutant concentrations [13], air quality [14,15], human health and heat-related deaths [16], global warming [17], thermal comfort [18,19], energy consumption [20], and socioeconomic and environmental impacts [21]; thus, SUHIs play a large role in the quality of urban life [22,23]. Due to these negative effects and considering that rapid population growth is expected in the near future, it will become increasingly important to monitor, predict, and recognize SUHI patterns to improve the quality of urban life [24,25,26,27].



Many factors contribute to SUHI morphology and intensity in a city. These factors can be divided into two main types of factors: (a) uncontrollable factors, such as wind speed, cloudiness, humidity, season, and anti-cyclonic conditions and (b) controllable factors, such as geometry, structural and biophysical characteristics of urban/non-urban areas, and anthropogenic activities and their subsequent impacts, e.g., air pollution [28,29,30,31,32,33]. Based on the effect on the surface energy balance, the factors contributing to SUHI formation in the city can be grouped into five main sets of factors: (a) anthropogenic heat enhancers, (b) evaporation reducers, (c) heat storage enhancers, (d) net radiation enhancers, and (e) convection reducers [31,34].



According to the above perspectives, the anthropogenic heat flux (AHF) in a city majorly contributes to the increase in SUHI intensity (SUHII) [6,35,36]. AHF is released to human activity and comes from many sources, including appliances, buildings, transportation, lighting, industrial and manufacturing processes, and even people themselves, which convert energy into AHF [36,37,38,39,40].



Analyzing the contribution of AHF to urban temperature can help to reduce the uncertainties in our quantitative and qualitative knowledge of the SUHII [35]. Additionally, due to excessive population growth, urban area expansion, increased energy consumption, increasing human activities, and increasing anthropogenic heat in major global cities, monitoring and recognizing surface anthropogenic heat islands (SAHIs) are very important [6,37,38,41]. The effects of human activity on air temperature, LST, and energy balance equilibrium and their spatial distribution in the urban environment have been studied and modelled in various studies.



Hu, et al. [42] found that no AHF was generated by nonartificial surfaces; only some impervious surface layers were involved in AHF, such as roads, residential structures (low-rise and high-rise dwellings), industrial structures (factories), airports, commercial areas, and so on. Zhang, Balzter and Wu [35] analyzed the spatial distribution of AHF across land cover types, impervious surface areas, and vegetation coverages. It is apparent that the contribution of AHF is lower in suburban areas and higher in high-density urban areas. The variation in AHF is influenced by urban expansion, land-cover change, and increasing energy consumption. Chen and Hu [41] showed that the spatial distribution of AHF results is generally centered on urban areas and gradually decreases towards suburbs. The spatial pattern of the AHF results within urban areas corresponds well to the distribution of population density, building density, and industrial districts. Wang, Hu, Chen and Yu [38] showed that high-value AHF areas are mainly distributed at airports, railway stations, industrial areas, and commercial centers. Previous studies have shown that AHF differs across different land covers and is highly correlated with impervious surface cover (ISC) [38,41,42,43,44,45,46,47].



Firozjaei, et al. [48] developed a physical approach based on a triple-source surface energy balance (triple-SEB) to model LST due to AHF and SAHI intensity (SAHII). They showed that LST due to AHF in Beijing, Tehran, Istanbul, Athens, Atlanta, and Los Angeles over the past three decades ranged from 0.72, 0.58, 0.64, 0.61, 0.55, and 2.02 to 2.76, 2.32, 1.19, 1.66, 1.73, and 2.99 °C, respectively. Additionally, the SAHII value for these cities increased by 1.32, 0.95, 0.98, 0.95, 0.92, and 0.73 °C, respectively. They showed a high spatial correlation between ISC and LST due to AHF. Single date Landsat 8 images in each year were used to model LST due to AHF and SAHII variations over the past three decades.



Various studies have shown that the ISC can well reflect the degree and extent of human activity in an area. However, the accurate extraction of ISC from satellite imagery is a major challenge. Different actual ISC (AISC) datasets are available for different parts of the world. For example, the National Land Cover Database (NLCD) dataset represents surface imperviousness information for the United States of America (USA) for 1992, 2001, 2006, 2011, and 2016. The High Resolution Imperviousness Layer (HRIL) database also contains information on European impervious surfaces for 2006, 2009, 2012, and 2015. However, the temporal and spatial coverage of available and accessible AISC datasets are limited. Therefore, it is necessary to use remote sensing (RS)-based indices and methods to extract ISC information for different environmental applications.



In previous studies, various spectral indices and methods, such as the urban index (UI) [49,50], the normalized difference bareness index (NDBaI) [50], the normalized difference built-up index (NDBI) [51], the index-based built-up index (IBI) [52], the modified NDBI [53], the band ratio for built-up area (BRBA) and the normalized built-up area index (NBAI) [54], the built-up index (BUI) [55], the new built-up index (NBI) [56], the bare soil index (BI) [57], soil index (SI), normalized built-up and bare soil index (NBBSI) [58], the built-up area extraction method (BAEM) [59], the enhanced built-up and bareness index (EBBI) [60], and the automated built-up extraction index (ABEI) [61], have been proposed for the extraction of built-up and impervious lands. The advantages of these indices include (1) synchronization with the recording of thermal data, (2) simplicity, (3) low cost, (4) accessibility under different spatial and temporal conditions, and (5) scalability [61]. Therefore, using these indices can be useful for SAHI quantification.



The objective of this study was to evaluate the spectral indices efficiency to daytime SAHII (DSAHII) quantification. The innovations and distinguishing features of the present study are (1) SAHII modelling based on spectral indices and (2) evaluation of the DSAHII of some European and American cities.




2. Study Area


To evaluate and compare the performance of different spectral indices through SAHI modelling, 14 test sites with different conditions were selected. The test sites were Budapest, Bucharest, Ciechanow, Hamburg, Lyon, Madrid, Porto, and Rome in Europe and Minneapolis, Dallas, Phoenix, Los Angeles, Chicago, and Seattle in the USA. The geographical locations of these cities are shown in Figure 1.



To select these cities, various criteria including (1) geographical conditions, (2) surface characteristics, (3) climatic conditions, (4) varied physical size, and (5) population density were considered [61,62]. The characteristics of selected cities are summarized in Table 1.




3. Data and Methods


3.1. Data


A set of Landsat 8 satellite image data, MODIS products, and AISC datasets were used. Details on the data used are shown in Table 2.



Landsat 8 images were used to model surface properties such as LST and various built-up indices. According to previous studies, Landsat images are suitable data for modelling and monitoring environmental conditions due to their spatial, temporal, and radiometric resolution [24,31]. The characteristics of the Landsat 8 bands are given in Table 3.



The Landsat Provisional Surface Temperature product with 30 m spatial resolution was used for USA cities. This product is generated from the Landsat Collection 1 Level-1 thermal infrared bands, Top of Atmosphere (TOA) Reflectance, Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GED) data, ASTER Normalized Difference Vegetation Index (NDVI) data, and atmospheric profiles of geopotential height, specific humidity, and air temperature were extracted from reanalysis data (https://www.usgs.gov/land-resources/nli/landsat/landsat-surface-temperature).



MOD11A1 and MOD07 products were also used to calculate and evaluate LST based on Landsat 8 images for European cities. The HRLI and NCLD datasets were used as the AISC for European and American cities, respectively.




3.2. Methods


In this study, a conceptual model with four main sections was designed (Figure 2). First, the Landsat 8 images were preprocessed. Second, the spectral index-based ISC (SIISC) and LST were modelled based on different built-up indices (as described in Section 3.2.2), tasseled cap transformation (TCT), the biophysical composition index (BCI), and a Single-channel algorithm, from the Landsat 8 images. Additionally, a linear least squares model (LLSM) was obtained from the LST-AISC feature space was applied to quantify the actual DSAHII of the selected cities. In the third step, the DSAHII of selected cities was modelled based on the LST-SIISC feature space-derived LLSM. Finally, the value of the coefficient of determination (R2) and the root mean square error (RMSE) between the actual and modelled DSAHII were calculated to evaluate and compare the performance of the different spectral indices in DSAHII quantification.



3.2.1. Preprocessing


To model surface characteristics using Landsat imagery, the digital numbers of the reflective and thermal bands must be converted to top-of-atmosphere radiance and top-of-atmosphere brightness temperature (BT) based on the calibration data provided via metadata [63,64]. Then, the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model was applied to perform atmospheric correction on the Landsat reflective bands [65].




3.2.2. Modelling LST and SIISC


Single-channel algorithm, TCT, BCI, and built-up indices were used to model LST and SIISC. The single-channel algorithm method presented by [66] was used to calculate LST. The Landsat 8 band 11 has a bias that causes an error in calculating LST [67,68]. Hence, in this method, the top-of-atmosphere BTs obtained from band 10 of Landsat 8 were used to LST calculation based on single-channel algorithm. This algorithm can be presented as:


  LST =    γ   (   1  LSE    (   ψ 1   L  sen   +  ψ 2   )  +  ψ 3   )  + δ  



(1)




where    L  sen     is the quantity of recorded spectral radiance in the sensor for the thermal band, LSE is the amount of land surface emissivity coefficient related to the wavelength of the thermal band used,  γ  and  δ  are parameters related to the Planck function and    ψ 1   ,    ψ 1   , and    ψ 2    are atmospheric functions.



MOD07 was used to calculate the amount of water vapor in the atmosphere. The NDVI threshold method was also used to calculate the pixel-scale LSE.



MOD11A1 was used to evaluate the accuracy of the LST obtained from the Landsat 8 images. First, the spatial resolution of the Landsat 8 image-derived LST was up-sampled to 1000 m. Then, the R2 and RMSE were calculated between the up-sampled LST values of the Landsat 8 images and the LST values obtained from the MOD11A1 product for each city. Additionally, the Landsat Provisional Surface Temperature product with 30 m spatial resolution was used for USA cities.



TCT is a method based on the linear combination of different spectral bands to extract information about the main surface characteristics. Equations (2)–(4) were, respectively, used to extract surface brightness, greenness, and wetness information based on Landsat 8 image bands [69].


  Brightness =   0.3029 B 2 + 0.2786 B 3 + 0.4733 B 4 + 0.5599 B 5 + 0.508 B 6 + 0.1872 B 7  



(2)






  Greenness =   − 0.2941 B 2 − 0.243 B 3 − 0.5424 B 4 + 0.7276 B 5 + 0.0713 B 6 − 0.1608 B 7  



(3)






  Wetness =   0.1511 B 2 + 0.1973 B 3 + 0.3283 B 4 + 0.3407 B 5 − 0.7117 B 6 − 0.4559 B 7  



(4)




where Bi indicates the surface reflectance in the i band of the Operational Land Imager (OLI) sensor.



Deng and Wu [70] showed that the combination of brightness, greenness, and wetness information obtained from the TCT method based on BCI indicates the ISC. For this purpose, in the first step, the standardized brightness, greenness, and wetness maps were calculated using Equations (5)–(7).


  SBrightness =   Brightness −   Brightness   min       Brightness   max   −   Brightness   min      



(5)






  SGreenness =   Greenness −   Greenness   min       Greenness   max   −   Greenness   min      



(6)






  SWetness =   Wetness −   Wetness   min       Wetness   max   −   Wetness   min      



(7)







The subscripts “max” and “min” represent the highest and lowest values of each of the brightness, greenness, and wetness maps, respectively. In the second step, the BCI was calculated based on Equation (8).


  BCI =        (  SBrightness + SWetness  )   2  − SGreenness      (  SBrightness + SWetness  )   2  + SGreenness    



(8)







In previous studies, various spectral indices have been developed for the extraction of built-up lands. A number of these indices were used in this study (Table 4). Information from two or more spectral bands and different spectral indices was combined to calculate these indices.



Equations (9) and (10) were used to calculate the normalized difference vegetation index (NDVI) and the modified normalized difference water index (MNDWI).


  NDVI =   B 5 − B 4   B 5 + B 4    



(9)






  MNDWI =   B 6 − B 5   B 6 + B 5    



(10)







In this study, the mean and standard deviation (SD) values for the surface characteristics obtained from the different spectral indices were calculated for the different cities and compared with each other.




3.2.3. Quantifying DSAHII


Human activities such as the conversion of natural surfaces to urban surfaces are the most important factor affecting the change in SAHI. The conversion of natural surfaces into impervious urban lands increases the value of LST. ISC datasets such as HRLI and NLCD can be used to represent urban lands and human settlement regions [71,72]. In this study, HRLI and NLCD datasets were used to build the LST-AISC feature space (Figure 3). The fitted linear regression function slope, i.e., the increment of LST versus AISC, was used to quantify the DSAHII. The value of the slope indicates how much the LST value increases with increasing AISC. A higher slope value indicates a higher value of DSAHII. The process for DSAHII quantification is composed of the following four steps: (a) rescale the AISC values to between 0 and 1; (b) classify pixels based on the standardized AISC values per 100 classes with a class length of 0.01; (c) calculate the mean values of LST and rescale the AISC in each group of pixels to reduce the uncertainty caused by the heterogeneity of urban surfaces in modelling; (d) adapt an LLSM between the mean values of the LST and the rescaled AISC, in which the slope value of the fitted function indicates the value of the DSAHII. Additionally, the R2 value indicates the accuracy of the LLSM in DSAHII modelling.



In this study, the DSAHII values of different cities were calculated and compared based on the LLSM obtained from the LST-AISC feature space.




3.2.4. Evaluating the Efficiency of SIISC for DSAHII Quantification


To evaluate and compare the performance of the SIISC in DSAHII quantification, the SIISC was used instead of AISC in the conceptual model presented in Figure 3. The SIISC parameters include UI, BI, BAEM, BU, NBBSI, SI, IBI, albedo, NDBI, brightness, ABEI, and BCI. A DSAHII value was modelled for each city based on each spectral index. To evaluate the performance of the spectral indices in DSAHII quantification, the R2 and RMSE between the modelled DSAHII based on SIISC and the actual DSAHII obtained from the AISC were calculated.






4. Results


4.1. Spatial Distribution of Spectral Index Values


The mean values of R2 and RMSE between the LST values obtained from the Landsat 8 images and MOD11A1 for the selected cities were obtained to be 0.91 and 1.58 °C, respectively. These values indicate a reasonable accuracy of the Landsat 8-derived LST for these cities [2,73]. The spectral index values of selected cities were spatially heterogeneous (Figure 4 and Figure 5). The values of built-up land indices, BCI-derived characteristics, and LST in the central areas of the cities were higher than those in the suburbs.



The mean and SD values of the different spectral index values for the selected cities were different (Table 5). The mean (SD) values of the standardized LST (SLST) for European cities, namely, Budapest, Bucharest, Ciechanow, Hamburg, Lion, Madrid, Porto, and Rome, were 0.42 (0.10), 0.46 (0.11), 0.36 (0.11), 0.43 (0.08), 0.54 (0.09), 0.61 (0.10), 0.48 (0.17), and 0.45 (0.10), respectively. These values for the American cities, namely, Dallas, Seattle, Minneapolis, Los Angeles, Chicago, and Phoenix, were 0.50 (0.07), 0.39 (0.13), 0.33 (0.08), 0.42 (0.19), 0.43 (0.08), and 0.81 (0.08), respectively. Among European cities, the lowest and highest CV for SLST belonged to Madrid (0.16) and Porto (0.35), and among USA cities, belonged to Phoenix (0.09) and Los Angeles (0.45). The highest and lowest mean values of standardized AISC (SAISC) for the selected cities were found in Porto (0.66) and Seattle (0.37), respectively. The CVs of SAISC were 0.51, 0.45, 0.51, 0.45, 0.37, 0.39, 0.39, and 0.35 for the European cities, respectively, and 0.68, 0.70, 0.77, 0.50, 0.60, and 0.63 for the American cities, respectively. In general, the spatial variation of AISC was higher in USA cities than in European cities. Among the various indices, AISC and ABEI had the highest and lowest CV, respectively.




4.2. Quantifying DSAHII


The LST-AISC feature space formed for the different cities is shown in Figure 6. The results indicated that the mean LST values of suburban areas for the European cities, namely, Budapest, Bucharest, Ciechanow, Hamburg, Lyon, Madrid, Porto, and Rome, were 27.7, 29.8, 26.6, 24.3, 25.7, 31.2, 28.5, and 31.3 °C, respectively, and those for American cities, namely, Dallas, Seattle, Minneapolis, Los Angeles, Chicago, and Phoenix, were 30.4, 23.1, 27.6, 34.9, 27.2, and 40.8 °C, respectively. Rome and Madrid in Europe and Los Angeles and Phoenix in the USA have warmer and drier climates than the other cities, so their LSTs were higher than those of other cities. The R2 values between the mean values of LST and the rescaled AISC for the selected European cities were 0.98, 0.94, 0.93, 0.98, 0.98, 0.97, 0.98, and 0.96, respectively. For USA cities, these values were 0.97, 0.96, 0.98, 0.96, 0.95, and 0.94, respectively. These results indicate that the accuracy of the LLSM for DSAHII estimation is reasonably high.



The mean DSAHII values for selected European cities were 4.5, 6.6, 4.3, 3.5, 3.0, 3.0, 2.3, and 1.9 °C, respectively, and those for USA cities were 3.0, 6.7, 5.6, 4.4, 5.4, and 1.9 °C, respectively. The impact of human activity on LST varied among the selected cities. Among those, Rome and Seattle had the highest and lowest negative impacts of human activities on LST, respectively. The mean DSAHII values for the selected cities in Europe and USA were 3.6 and 4.5 °C, respectively. Generally, in green cities (with large fraction of vegetation coverage) including Hamburg, Budapest, Porto, Bucharest, Minneapolis, Seattle, Chicago, and Dallas due to high surface wetness and vegetation cover, and low heat and dryness, DSAHII is more intense. While in desert cities including Ciechanow, Madrid, Lyon, Rome, Los Angeles, and Phoenix, the DSAHII is lower.




4.3. Evaluating the Effectiveness of SIISC for DSAHII Quantification


The performance of the SIISC parameters in DSAHII quantification differed (Figure 7). The obtained R2 values between the actual and modelled DSAHII based on UI, BI, BAEM, BU, NBBSI, SI, IBI, albedo, NDBI, brightness, ABEI, and BCI were 0.87, 0.93, 0.88, 0.95, 0.97, 0.94, 0.98, 0.76, 0.87, 0.52, 0.75, and 0.95, respectively. Additionally, the RMSE values between the actual and modelled DSAHII based on spectral index indicators were 0.77, 0.56, 0.74, 0.50, 0.36, 0.51, 0.34, 1.32, 0.74, 1.56, 1.58, and 0.83 °C, respectively. The IBI (R2 = 0.98, RMSE = 0.34 °C) had the highest performance in DSAHII quantification, but the performance of albedo (0.76, 1.32 °C), ABEI (0.75, 1.58 °C), and brightness (0.52, 1.52 °C) was poor. Our results show that the use of spectral indices such as IBI, BU, and NBBSI is quite useful and effective for DSAHII quantification.





5. Discussion


SAHIs are one of the important negative effects of human activity in the natural environment [37,48]. Increasing human activity increases the percentage of impermeable surfaces and increases the LST of these areas compared to that in natural areas (Figure 4 and Figure 5).



Marando, et al. [74] investigated the effect of green infrastructure elements such as urban and peri-urban forests, street trees, as well as the effect of vegetation cover and tree diversity in the reduction of the SUHI effect in Rome, Italy. The results of this study show that the green infrastructure significantly reduces the SUHI phenomenon in a Mediterranean city. Grigoraș and Urițescu [75] conducted an analysis based on multi-time remote sensing data to investigate the impact of land use change in Bucharest’s SUHI. The results suggest that the increase in built-up lands and the decrease in vegetation cover due to anthropogenic activities caused an increase in surface temperature and expansion of the area affected by SUHI. Arnds, et al. [76] analyzed the spatio-temporal variance of the SUHI of Hamburg. In summary, the SUHI showed a radial gradient in the center, which is mostly corresponding to the urban densities. Dian, et al. [77] studied the relationship between SUHII and local climate zones (LCZ) classes for Budapest. The results of this investigation indicate that as the density of the building decreases, the intensity of SUHI also decreases. The highest SUHII is in the city center and the lowest intensity of SUHI with negative values can be found in vegetation-covered LCZ classes.



Due to the negative consequences of the SAHI effect on various aspects of human quality of life, its quantification is of great importance. Firozjaei, Weng, Zhao, Kiavarz, Lu and Alavipanah [48] used a triple-SEB to model SAHII. The results showed that the triple-SEB could be highly effective for SAHII modelling. However, triple-SEBs are highly complex and require many calculations. Additionally, the implementation of this model requires many input datasets, including land cover parameters, surface digital models, climatic conditions, and so on.



Various studies have shown that ISC information is a good index for the degree of urban-related human activity in an area [38,41,43,44]. Zhang and Cheng [72] and Li, Zhou, Li, Meng, Wang, Wu and Sodoudi [71] used the LST-ISC feature space to model SUHII. The most important challenge of this method is using appropriate ISC information. Existing ISC databases have serious drawbacks, including spatial and temporal coverage constraints. However, satellite imagery can be used to address these challenges. In previous studies, various spectral indices and methods have been proposed for ISC modelling and built-up land extraction [51,53,61].



The results of this study showed that the IBI, BU, and NBBSI indices show good performance in DSAHII modelling (Figure 7). The TCT-derived brightness did not perform well in DSAHII modelling. Combining brightness with greenness and wetness information in the BCI increases the accuracy of DSAHII modelling. Some studies have shown that BCI can be effective in demonstrating spatial changes in the ISC in urban environments [24,70]. Firozjaei, Sedighi, Kiavarz, Qureshi, Haase and Alavipanah [61] showed that the ABEI is more effective than other indices for separating built-up lands from other land covers, especially bare lands. However, in this study, the ABEI accuracy for DSAHII quantification was lower than that of other indices. Therefore, this study showed that the ABEI is not suitable for heterogeneous modelling within built-up lands.



In general, SIISC has advantages for quantifying DSAHII, such as concurrency with thermal data recording, simplicity, low cost, accessibility under different spatial and temporal conditions, and scalability. The results showed that the use of the LST-SIISC feature space was highly effective for DSAHII modelling. However, one of the limitations of this method is that it is unable to model DSAHII changes in different geographical locations within a city. Therefore, to increase the spatial resolution of the modelled DSAHII, the LST-SIISC feature space must be implemented locally, such as for different urban regions.




6. Conclusions


SAHI modelling and quantification are very important to the quality of urban life. In this study, to evaluate and compare spectral indices used for DSAHII modelling, 14 cities in Europe and the USA with different conditions were selected. The DSAHII was quantified using the LST-AISC feature space and the LST-SIISC feature space. The results showed that the DSAHII in the selected cities in Europe and the USA was different. The DSAHII in cities with humid climates was higher than that in cities with dry climates. The performance of the spectral indices in DSAHII quantification varied. The results showed that IBI had the best performance for DSAHII quantification. In general, regarding the advantages of SIISC, it can be useful in identifying and characterizing the effects of human activity on the urban environment. It is suggested that in future studies, based on the approach presented in this study, the DSAHII in cities worldwide should be examined multi-temporally. Providing an appropriate model for future DSAHII prediction is also an important area for future studies.
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Figure 1. Geographical location and colour-composite images (Blue, near-infrared (NIR), and Short-wave infrared 2 (SWIR2) bands) of selected cities in the USA and Europe. 
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Figure 2. Flowchart of the study. 
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Figure 3. Conceptual diagram of modelling the daytime surface anthropogenic heat island intensity (DSAHII) based on the land surface temperature (LST)-actual impervious surface cover (AISC) feature space. The LSTu is the urban LST, representing the LST in the urban area where the rescaled AISC is 1 (AISC is 100%), and LSTr is the rural LST, representing the LST in the rural area where the rescaled AISC is 0 (AISC is 0%). 
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Figure 4. The mean of standardized ISC (SISC), standardized normalized difference built-up index (SNDBI), standardized greenness (SGreeness), standardized wetness (SWetness), and standardized LST (SLST) maps for the selected cities in USA on different dates. 
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Figure 5. The mean of SISC, SNDBI, SGreeness, SWetness, and SLST maps for selected cities in Europe on different dates. 
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Figure 6. The mean value of DSAHII obtained from the LST-ISC feature space for selected cities in Europe and USA on different dates. 
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Figure 7. The obtained R2 and root mean square error (RMSE) values between the actual and modelled DSAHII based on spectral index-based ISC (SIISC). Solid red line represents the predicted relationship between actual and modeled DSAHII. 
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Table 1. Summary characteristics of selected cities in the USA and Europe.






Table 1. Summary characteristics of selected cities in the USA and Europe.





	

	
Centre Point Coordinate (Lon, Lat-WGS84)

	
Country

	
Area (km2)

	
Mean Alt. (m)

	
Climate

	
Population (2020)






	

	
European cities




	
Rome

	
12.45, 41.85

	
Italy

	
631.7

	
50

	
Mediterranean

	
>4,250,000




	
Madrid

	
−3.70, 40.41

	
Spain

	
2332.3

	
650

	
Mediterranean and semi-arid

	
>6,670,000




	
Porto

	
−8.60, 41.16

	
Portugal

	
481.4

	
80

	
Mediterranean

	
>1,309,000




	
Lyon

	
4.83, 45.76

	
France

	
1143.6

	
175

	
Humid subtropical

	
>1,710,000




	
Ciechanow

	
20.60, 52.82

	
Poland

	
81.1

	
151

	
Humid subtropical

	
>44,000




	
Hamburg

	
10.02, 53.60

	
Germany

	
1097.5

	
10

	
Oceanic

	
>1,795,000




	
Budapest

	
19.07, 47.59

	
Hungary

	
3664.3

	
120

	
Oceanic and Humid subtropical

	
>1,764,000




	
Bucharest

	
26.10, 44.42

	
Romania

	
1385.7

	
85

	
Humid continental

	
>1,815,000




	
American cities




	
Minneapolis

	
−93.26, 44.97

	
United States

	
8719.6

	
253

	
Humid continental

	
>432,110




	
Fort Worth

	
−96.95, 36.85

	
14,998.1

	
199

	
Humid subtropical

	
>875,000




	
Phoenix

	
−112.09, 33.12

	
8543.8

	
331

	
Midlatitude desert

	
>1,632,000




	
Seattle

	
−122.25, 45.47

	
11,497.5

	
52

	
Marine West coast

	
>3,406,000




	
Chicago

	
−87.66, 41.86

	
12,685.1

	
182

	
Humid continental

	
>2,705,000




	
Los Angeles

	
−118.22, 34.00

	
11,127.4

	
282

	
Mediterranean

	
>4,000,000
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Table 2. Details of the data utilized in the study.
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Landsat 8




	
Selected Cities

	
Date

	
Row

	
Path

	
Spatial Resolution

	
Source






	
Rome

	
12 April 2015,

	
191

	
031

	
30 m for reflective and 100 m for thermal bands

	
United States Geological Survey (USGS) website




	
14 May 2015,




	
30 May 2015,




	
01 July 2015,




	
17 July 2015




	
Madrid

	
02 April 2015,

	
197

	
028




	
20 May 2015,




	
21 June 2015,




	
07 July 2015,




	
23 July 2015,




	
25 September 2015




	
Porto

	
07 April 2015,

	
204

	
032




	
16 May 2015,




	
17 June 2015,




	
03 July 2015,




	
12 July 2015,




	
28 July 2015,




	
04 August 2015,




	
29 August 2015,




	
21 September 2015




	
Lyon

	
06 April 2015,

	
196

	
023




	
25 June 2015,




	
04 July 2015,




	
05 August 2015,




	
21 August 2015,




	
28 August 2015,




	
29 September 2015




	
Ciechanow

	
23 April 2015,

	
189

	
023




	
03 July 2015,




	
04 August 2015,




	
13 August 2015




	
Hamburg

	
15 April 2015,

	
201

	
34




	
24 April 2015,




	
11 June 2015,




	
04 July 2015,




	
21 August 2015




	
Budapest

	
16 April 2015,

	
188

	
027




	
10 June 2015,




	
12 July 2015,




	
13 August 2015,




	
29 August 2015




	
Bucharest

	
13 April 2015,

	
182

	
029




	
15 May 2015,




	
07 June 2015,




	
09 July 2015,




	
25 July 2015,




	
03 August 2015,




	
26 August 2015,




	
04 September 2015




	
Minneapolis

	
19 May 2016,

	
027

	
029




	
20 June 2016,




	
06 July 2016,




	
22 July 2016,




	
23 August 2016,




	
08 September 2016




	
Dallas

	
03 May 2016,

	
027

	
037




	
06 July 2016,




	
22 July 2016,




	
07 August 2016,




	
08 September 2016




	
Phoenix

	
23 April 2016,

	
037

	
037




	
09 May 2016,




	
25 May 2016,




	
12 July 2016,




	
28 July 2016,




	
29 August 2016,




	
14 September 2016




	
Seattle

	
31 May 2016,

	
046

	
027




	
27 July 2016,




	
03 August 2016,




	
12 August 2016,




	
19 August 2016,




	
13 September 2016




	
Chicago

	
05 April 2016,

	
021

	
031




	
14 April 2016,




	
23 May 2016,




	
08 June 2016,




	
17 June 2016,




	
24 June 2016,




	
04 August 2016,




	
12 September 2016




	
Los Angeles

	
19 April 2016,

	
041

	
037




	
22 June 2016,




	
08 July 2016,




	
24 July 2016,




	
09 August 2016,




	
25 August 2016,




	
10 September 2016,




	
26 September 2016




	
MODIS products




	
MOD07

	
Landsat 8 overpass dates

	
-

	
5000 m

	
Atmosphere Archive and Distribution System (AADS) website




	
MOD11A1

	
1000 m




	
AISC dataset




	
NLCD imperviousness

	
2016

	
-

	
30 m

	
USGS at the https://www.mrlc.gov/data website




	
HRLI

	
2015

	
20 m

	
Copernicus Global Land Service (CGLS) at the https://land.copernicus.eu/ website
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Table 3. Spectral and spatial characteristics of Landsat 8 bands.
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Band Numbers

	
Band Names

	
Sensor

	
Effective Wavelength (Micrometer)

	
Spatial Resolution (Meter)






	
B1

	
Coastal aerosol

	
OLI

	
0.443

	
30




	
B2

	
Blue

	
0.4826




	
B3

	
Green

	
0.5613




	
B4

	
Red

	
0.6546




	
B5

	
Near Infrared (NIR)

	
0.8646




	
B6

	
SWIR 1

	
1.609




	
B7

	
SWIR 2

	
2.201




	
B8

	
Panchromatic

	
0.5917

	
15




	
B9

	
Cirrus

	
1.373

	
30




	
B10

	
Thermal Infrared 1

	
TIRS

	
10.9

	
100 (resampled to 30)




	
B11

	
Thermal Infrared 2

	
12.0
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Table 4. Spectral indices used in this study.






Table 4. Spectral indices used in this study.





	Spectral Index
	Equation





	NDBI
	     B 6 − B 5   B 6 + B 5     



	BI
	      (  B 6 + B 4  )  −  (  B 5 + B 2  )     (  B 6 + B 4  )  +  (  B 5 + B 2  )      



	UI
	     B 7 − B 5   B 7 + B 5     



	IBI
	    (   (    2 B 6   B 6 + B 5    )  −  (    B 5   B 5 + B 4    )  +  (    B 3   B 3 + B 6    )   )  /  (   (    2 B 6   B 6 + B 5    )  +  (    B 5   B 5 + B 4    )  −  (    B 3   B 3 + B 6    )   )    



	BU
	   NDBI − NDVI   



	BAEM
	   NDBI − NDVI − MNDWI   



	Albedo
	   0.2266 B 1 + 0.2320 B 2 − 0.2138 B 3 − 0.1803 B 4 + 0.1103 B 5 − 0.0278 B 6 + 0.0099 B 7   



	ABEI
	   0.312 B 1 + 0.513 B 2 − 0.086 B 3 − 0.441 B 4 + 0.052 B 5 − 0.198 B 6 + 0.278 B 7   



	SI
	    (  B 6 + B 4  )  −  (  B 5 + B 2  )  /  (  B 6 + B 4  )  +  (  B 5 + B 2  )    



	NBBSI
	      (  SI + IBI  )   2    
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Table 5. The mean value and SD of the different spectral index values for the selected cities on different dates. SISC: Standardized Impervious Surface Cover; SUI: Standardized Urban Index; SBI: Standardized Bare Soil Index; SBAEM: Standardized Built-up Area Extraction Method; SBU: Standardized Built-up Index; SBBSI: Standardized Built-up and Bare Soil Index; SSI: Standardized soil index (SI); SIBI: Standardized Index-based Built-up Index; SAlbedo: Standardized Albedo; SNDBI: Standardized Normalized Difference Built-up Index; SBrightness: Standardized Brightness; SABEI: Standardized Automated Built-up Extraction Index; SBCI: Standardized Biophysical Composition Index; SLST: Standardized Land Surface Temperature.
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Cities

	
Parameters

	
SISC

	
SUI

	
SBI

	
SBAEM

	
SBU

	
SBBSI

	
SSI

	
SIBI

	
SAlbedo

	
SNDBI

	
SBrightness

	
SABEI

	
SBCI

	
SLST






	
Budapest

	
Mean

	
0.41

	
0.71

	
0.34

	
0.68

	
0.59

	
0.62

	
0.34

	
0.74

	
0.14

	
0.01

	
0.01

	
0.32

	
0.16

	
0.42




	
SD

	
0.21

	
0.05

	
0.11

	
0.05

	
0.07

	
0.08

	
0.11

	
0.05

	
0.06

	
0.01

	
0.01

	
0.06

	
0.07

	
0.10




	
Bucharest

	
Mean

	
0.51

	
0.64

	
0.36

	
0.63

	
0.50

	
0.51

	
0.36

	
0.51

	
0.13

	
0.01

	
0.01

	
0.27

	
0.17

	
0.46




	
SD

	
0.23

	
0.02

	
0.07

	
0.03

	
0.03

	
0.05

	
0.07

	
0.03

	
0.02

	
0.00

	
0.00

	
0.01

	
0.03

	
0.11




	
Ciechanow

	
Mean

	
0.39

	
0.48

	
0.57

	
0.56

	
0.39

	
0.55

	
0.57

	
0.40

	
0.18

	
0.48

	
0.31

	
0.26

	
0.13

	
0.36




	
SD

	
0.20

	
0.16

	
0.18

	
0.16

	
0.15

	
0.19

	
0.18

	
0.14

	
0.04

	
0.16

	
0.06

	
0.04

	
0.07

	
0.11




	
Hamburg

	
Mean

	
0.59

	
0.56

	
0.32

	
0.37

	
0.24

	
0.45

	
0.32

	
0.46

	
0.09

	
0.56

	
0.09

	
0.24

	
0.18

	
0.43




	
SD

	
0.27

	
0.05

	
0.07

	
0.05

	
0.08

	
0.09

	
0.07

	
0.08

	
0.02

	
0.05

	
0.02

	
0.01

	
0.03

	
0.08




	
Lyon

	
Mean

	
0.65

	
0.50

	
0.57

	
0.57

	
0.50

	
0.66

	
0.57

	
0.52

	
0.13

	
0.50

	
0.11

	
0.26

	
0.20

	
0.54




	
SD

	
0.24

	
0.08

	
0.04

	
0.07

	
0.09

	
0.06

	
0.04

	
0.06

	
0.02

	
0.08

	
0.02

	
0.01

	
0.03

	
0.09




	
Madrid

	
Mean

	
0.63

	
0.74

	
0.04

	
0.46

	
0.47

	
0.85

	
0.04

	
0.87

	
0.13

	
0.74

	
0.11

	
0.27

	
0.16

	
0.61




	
SD

	
0.24

	
0.03

	
0.01

	
0.04

	
0.06

	
0.16

	
0.81

	
0.09

	
0.02

	
0.03

	
0.03

	
0.01

	
0.03

	
0.10




	
Porto

	
Mean

	
0.66

	
0.31

	
0.85

	
0.39

	
0.35

	
0.08

	
0.85

	
0.87

	
0.18

	
0.31

	
0.13

	
0.28

	
0.20

	
0.48




	
SD

	
0.26

	
0.07

	
0.31

	
0.09

	
0.09

	
0.47

	
0.31

	
0.28

	
0.04

	
0.07

	
0.06

	
0.01

	
0.06

	
0.17




	
Rome

	
Mean

	
0.63

	
0.36

	
0.36

	
0.38

	
0.30

	
0.57

	
0.36

	
0.56

	
0.13

	
0.36

	
0.11

	
0.27

	
0.15

	
0.45




	
SD

	
0.23

	
0.08

	
0.11

	
0.09

	
0.11

	
0.12

	
0.11

	
0.11

	
0.02

	
0.08

	
0.02

	
0.02

	
0.04

	
0.10




	
Dallas

	
Mean

	
0.45

	
0.35

	
0.13

	
0.31

	
0.20

	
0.06

	
0.13

	
0.19

	
0.14

	
0.35

	
0.13

	
0.25

	
0.19

	
0.50




	
SD

	
0.29

	
0.02

	
0.01

	
0.02

	
0.03

	
0.01

	
0.01

	
0.02

	
0.03

	
0.02

	
0.04

	
0.02

	
0.03

	
0.07




	
Seattle

	
Mean

	
0.37

	
0.31

	
0.31

	
0.37

	
0.23

	
0.37

	
0.31

	
0.37

	
0.07

	
0.31

	
0.09

	
0.32

	
0.18

	
0.39




	
SD

	
0.26

	
0.11

	
0.15

	
0.1

	
0.12

	
0.15

	
0.15

	
0.19

	
0.04

	
0.11

	
0.05

	
0.01

	
0.06

	
0.13




	
Minneapolis

	
Mean

	
0.36

	
0.34

	
0.31

	
0.45

	
0.17

	
0.32

	
0.31

	
0.24

	
0.04

	
0.34

	
0.08

	
0.19

	
0.22

	
0.33




	
SD

	
0.28

	
0.07

	
0.09

	
0.07

	
0.08

	
0.13

	
0.09

	
0.13

	
0.01

	
0.07

	
0.02

	
0.01

	
0.02

	
0.08




	
Los Angeles

	
Mean

	
0.56

	
0.54

	
0.44

	
0.53

	
0.56

	
0.56

	
0.44

	
0.56

	
0.1

	
0.54

	
0.1

	
0.35

	
0.26

	
0.42




	
SD

	
0.26

	
0.09

	
0.13

	
0.11

	
0.1

	
0.09

	
0.13

	
0.14

	
0.06

	
0.09

	
0.06

	
0.04

	
0.06

	
0.19




	
Chicago

	
Mean

	
0.43

	
0.38

	
0.29

	
0.46

	
0.24

	
0.34

	
0.29

	
0.36

	
0.06

	
0.38

	
0.1

	
0.19

	
0.14

	
0.43




	
SD

	
0.26

	
0.06

	
0.1

	
0.07

	
0.13

	
0.12

	
0.1

	
0.19

	
0.03

	
0.07

	
0.06

	
0.01

	
0.04

	
0.08




	
Phoenix

	
Mean

	
0.41

	
0.5

	
0.58

	
0.58

	
0.38

	
0.64

	
0.58

	
0.47

	
0.1

	
0.51

	
0.15

	
0.27

	
0.18

	
0.81




	
SD

	
0.26

	
0.06

	
0.08

	
0.07

	
0.06

	
0.09

	
0.08

	
0.07

	
0.03

	
0.06

	
0.04

	
0.01

	
0.04

	
0.08
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