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Abstract: Urban trees provide social, economic, environmental and ecosystem services benefits that
improve the liveability of cities and contribute to individual and community wellbeing. There is
thus a need for effective mapping, monitoring and maintenance of urban trees. Remote sensing
technologies can effectively map and monitor urban tree coverage and changes over time as an
efficient and low-cost alternative to field-based measurements, which are time consuming and costly.
Automatic extraction of urban land cover features with high accuracy is a challenging task, and it
demands object based artificial intelligence workflows for efficiency and thematic accuracy. The aim of
this research is to effectively map urban tree cover changes and model the relationship of such changes
with socioeconomic variables. The object-based convolutional neural network (CNN) method is
illustrated by mapping urban tree cover changes between 2005 and 2015/16 using satellite, Google
Earth imageries and Light Detection and Ranging (LiDAR) datasets. The training sample for CNN
model was generated by Object Based Image Analysis (OBIA) using thresholds in a Canopy Height
Model (CHM) and the Normalised Difference Vegetation Index (NDVI). The tree heatmap produced
from the CNN model was further refined using OBIA. Tree cover loss, gain and persistence was
extracted, and multiple regression analysis was applied to model the relationship with socioeconomic
variables. The overall accuracy and kappa coefficient of tree cover extraction was 96% and 0.77 for
2005 images and 98% and 0.93 for 2015/16 images, indicating that the object-based CNN technique
can be effectively implemented for urban tree coverage mapping and monitoring. There was a decline
in tree coverage in all suburbs. Mean parcel size and median household income were significantly
related to tree cover loss (R2 = 58.5%). Tree cover gain and persistence had positive relationship with
tertiary education, parcel size and ownership change (gain: R2 = 67.8% and persistence: R2 = 75.3%).
The research findings demonstrated that remote sensing data with intelligent processing can contribute
to the development of policy input for management of tree coverage in cities.

Keywords: convolution neural networks (CNNs); deep learning; GEOBIA; object-based CNN; urban
tree mapping; socioeconomic predictor variables

1. Introduction

Trees are an important element of the city and suburbs, benefiting and inconveniencing other
urbanites in manifold ways [1–5]. Therefore, it is not surprising that there has been a growing literature
documenting temporal change in urban tree density and cover [6–11] and testing hypotheses on the
causes of change [12–18].

Remote Sens. 2020, 12, 3017; doi:10.3390/rs12183017 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0002-4875-2127
https://orcid.org/0000-0003-2763-2692
http://dx.doi.org/10.3390/rs12183017
http://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/2072-4292/12/18/3017?type=check_update&version=2


Remote Sens. 2020, 12, 3017 2 of 27

The heterogenous nature of natural and built environments in urban landscapes makes it
difficult to quantify and monitor the spatial extent of urban tree canopies [19,20]. These assessments
are typically achieved through conventional field-based methods that involve ground-based data
collection activities [21,22]. Ground methods are labour and cost-intensive. Making periodic field
visits for regular monitoring is not always feasible [19,21,22]. Furthermore, field-based tree cover data
collection in cities may be limited by access to private lands. As an alternative to field-based methods,
visual interpretation of aerial photography has been used extensively in tree detection since the early
1960s. However, the visual interpretation method is also labour and cost-intensive [21,22].

Remote sensing techniques can effectively map urban trees and monitor the temporal and spatial
changes of complex urban environment. Remote sensing assessments can be quicker and more
cost-effective than ground-based data collection and can overcome accessibility difficulties [23–26].
Hence, with the availability of historical remote sensing data and advancement in image resolutions,
remote sensing technology can have great utility in mapping and monitoring urban tree cover [23,27,28].

Geographic object-based image analysis (GEOBIA) on very high-resolution satellite imagery
has been widely used to measure urban tree cover [28,29]. Our search in Scopus in July 2020 for
publications that mentioned “Object Based Image Analysis for Remote Sensing and Urban Trees” had
170 returns. The use of GEOBIA for urban tree extraction has been increasing due to the availability of
very high-resolution satellite imagery [30,31] and the introduction of user-friendly GEOBIA software
packages [32], including Trimble eCognition (https://geospatial.trimble.com), ENVI feature extraction
model (https://www.harrisgeospatial.com) and ERDAS Imagine (https://www.hexagongeospatial.com).
These GEOBIA software allow users to develop rulesets based on the study area, available dataset and
research objectives in capturing the semantics associated with the geographic features.

An object-based classification approach to map urban forest and to isolate vegetation patches from
shrubs to large trees in Phoenix using 0.61-m spatial resolution aerial RGB images was developed by
Walker and Briggs [30]. Using the above classification method, Walker and Blaschke [33] generated a
transferable object-based ruleset to classify and map the urban forest in the Phoenix Metropolitan area.
Zhou et al. [31] applied object-based approach for land cover classification and change detection using
high-resolution imagery (0.60 m) for two time periods and LiDAR data. They classified their images into
five land cover classes: (1) buildings, (2) pavement, (3) coarse-textured vegetation (trees and shrubs),
(4) fine-textured vegetation (herbaceous vegetation and grasses) and (5) bare soil. They compare
the accuracy of land cover change method between pixel based and object-based post-classification.
Due to the integration of spatial information and expert knowledge into the change detection process,
the object-based approach was found to be better, with an overall accuracy of 90% and Kappa coefficient
of 0.85, than a pixel-based method with an overall accuracy of 81% and kappa coefficient of 0.71.
Moskal et al. [19] used the OBIA approach for land use/land cover (LULC) classification and tree cover
assessments in the city of Seattle, WA, USA. They did LULC classification comparisons between 2009
aerial photograph of four bands with 1-m spatial resolutions and QuickBird satellite images of four
bands with 0.6-m spatial resolutions of 2009. They found that the spectral properties of remote sensing
imagery are more useful than the spatial properties of tree cover assessments in urban environments.
Zhou et al. [34] used object-based change detection in multiple levels to map urban vegetation at the
individual tree scale. They used nine groups of near-infrared (NIR) aerial images from 1988 to 2006 for
Shanghai, China. The ruleset was created by using Normalised Difference Vegetation Index (NDVI),
Normalised Difference of Saturation and Brightness (NDSV), density of low-NIR pixels and density of
dark details. Banzhaf and Kollai [35] applied the OBIA approach to map urban trees of 10 districts of
Leipzig, Germany using four-band digital orthophotos of 2002 and 2012, with spatial resolutions of
0.20-m and LiDAR derivatives (2-m digital elevation model (DEM) and digital surface model (DSM))
for 2012. They used the thresholds of (NDVI) and normalised DSM (DSM-DEM) to identify urban trees.
Ejares et al. [36] extracted the tree canopy cover using the OBIA approach from LiDAR data to map
trees in urban Barangays of Cebu City, Philippines. The height, area, roundness, slope, length-width
and elliptic fit were also evaluated to extract the contextual features of tree canopies. They used
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multi-thresholds followed by multi-resolution segmentation to segment the surface model into finer
objects. The threshold of the CHM (4 m to 40 m) was used as a final classification to extract trees from
other classes. The overall accuracy of the tree canopy cover extraction was 96.6%, with a Kappa Index
of Agreement (KIA) of 0.9.

The GEOBIA method can be more accurate than methods using pixels, especially for very
high-resolution images [28,32,37]. However, problems have been experienced in situations in which
over segmentation and under-segmentation appear within the same image [38–41]. Additionally,
feature extraction in urban environments is difficult because of the range of materials that make up the
same classes [42] and the occlusion and shadows that break image objects into finer objects [20].

Extracting urban land cover features with high thematic accuracy in an automated way is
still a challenging task with GEOBIA, and it demands machine-learning artificial intelligence
workflows [43–45]. Among numerous alternative techniques, convolutional neural networks
(CNNs) [46] are thought to be among the most promising for image classification [47–49]. The CNN
technique became popular after release of AlexNet in 2012 [50] and with the release of CNN in Google
TensorFlow. CNN is a deep-learning, supervised neural network that uses labelled data. CNN works
with a combination of input layer, hidden layers with hidden units and an output layer. The hidden
units are like neurons that are fully connected with each individual neuron from a previous layer [49,51].
CNN has proven successful in vegetation contexts [52–57]. Li et al. [52] used the CNN algorithm in very
high-resolution quick bird images for oil palm trees detection in Malaysia and achieved 87.95% overall
accuracy. Chen et al. [53] proposed a novel approach based on CNN to count apples and oranges in an
unstructured environment with a 0.76 F1 score. Similarly, Wang et al. [54] used a faster region-based
CNN (R-CNN) workflow to detect mango fruit flowers. Sa et al. [55] used the R-CNN workflow for
sweet pepper and melon detection and achieved accuracy of a 0.84 F1 score. Similarly, Csillik et al. [56]
used the CNN workflow, with post-processing using GEOBIA, for identifying citrus trees in a complex
agricultural area of California from unmanned aerial vehicle (UAV) imagery, achieving 96.24% overall
accuracy. Timilsina et al. [57] demonstrated that the accuracy of the image classifications can be
improved by using a combination of OBIA and CNN methods to map the urban tree cover. No study
has been published that maps temporal and spatial changes of tree covers using GEOBIA and CNN.

Trees in domestic gardens have been shown to be associated with high levels of household
incomes [14–18,58,59], high levels of education [15–17,58,60] and large block size [16]. Motives for
planting and removing trees have proven to be highly varied, as have preferences for particular
types of trees, suggesting that changes of garden ownership may be a major cause of tree changes in
suburbia [61,62]. However, neither time since purchase at the parcel level or mean time since purchase
at the aggregate level have been included in any of the works that relate tree changes to other variables.

The main objective of this research is to identify the urban tree cover changes in suburban
Hobart, Tasmania, Australia between 2005 and 2015/16 using object-based CNN and to model a
relationship between tree cover changes and socioeconomic variables. In order to meet the main
objective, the following subobjectives are addressed:

• Perform stratified random sampling to select sample study areas,
• Process imagery and LiDAR data and generate the canopy height model (CHM) and normalised

difference vegetation index (NDVI),
• Prepare automatic training samples and run object-based CNN for 2005 and 2015/16 images,
• Perform a sample and parcel level tree cover change analysis between 2005 and 2015/16 and
• Perform a multiple regression analysis and general linear model (GLM) analysis to model

relationships between tree cover changes and socioeconomic variables.

The organisation of this paper is as follows: in Section 2, the study area, datasets and the adapted
methodology are presented. Section 3 presents the results. Section 4 presents the discussions from the
results, and Section 5 presents the conclusions and possible future works.
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2. Materials and Methods

2.1. Study Area and Sample Selection

Fourteen suburbs in the inner and general residential zone of the western suburbs of Hobart,
Tasmania, Australia were selected (Figure 1, Table 1) to represent a range in socioeconomic characteristics
(median household income and tertiary education). The mean elevation of selected suburbs ranges
between 23 and 69 m (https://en-au.topographic-map.com/maps/jqqb/Hobart/). One sample point in
each suburb was generated using the “random point creation” tool in ArcGIS Pro 2.4. For each sample
point, a sample patch of four hectares was created by buffering sample points (Table 1). A representative
raster plot of sample patches is presented in Figure 2 (refer to Appendix A for all the sample patch
images). Ten random private cadastral parcels from each sample patch were selected using the “create
random points” tool (Figure 3). The selected parcels had to be completely inside the boundary of each
sample patch. Roads and parks were excluded from selection.
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Figure 2. Raster plot (50 × 50 m) of a sample patch image of the Claremont suburb of Glenorchy,
Tasmania: (a) 2005 satellite image with four bands (red, green, blue and near-infrared) and (b) 2016
Google Earth images with three bands (red, green and blue).

Table 1. Sample patch area representation in the inner and general residential zone suburbs.

Sample
Number Suburb Name Inner and General Residential

Zone Area in Hectare
Sample Patch Area
Representation (%)

1 Claremont 433.93 0.92
2 Chigwell 81.36 4.92
3 Berriedale 143.74 2.78
4 Montrose 83.92 4.77
5 Goodwood 34.61 11.56
6 Glenorchy 416.49 0.96
7 Moonah 163.20 2.45
8 New Town 209.63 1.91
9 North Hobart 61.47 6.51
10 West Hobart 188.26 2.12
11 Sandy Bay 372.22 1.07
12 Kingston 463.71 0.86
13 Kingston Beach 75.92 5.27
14 Blackmans Bay 274.97 1.45
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Figure 3. Sample patch and parcel selection methodology applied in this research; different boxes
represent the sequential steps followed in executing the research.

2.2. Datasets

Very high spatial resolution (VHSR) multispectral QuickBird satellite images (60 cm) with red,
green, blue and near infra-red (NIR) (Figure 4a) spectral bands acquired in November 2005, were
used for the 2005 measurements. The same type of image was available for December 2015 for the
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three southernmost suburbs. These images were atmospherically and geometrically corrected. For the
other eleven suburbs, January 2016 Google Earth images with red, green, and blue bands (1-m spatial
resolutions) (Figure 4b) were downloaded. These December 2015 and January 2016 images were used
for the 2015 measurements.
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Figure 4. Spectral profile with pixel values on the X-axis and frequency on the Y-axis: (a) 2005 satellite
image with four bands (red, green, blue and near-infrared) and (b) 2016 Google Earth images with
three bands (red, green and blue).

Airborne LiDAR point clouds of the study area for 2008 (Climate Future Mission) and 2011
(Mt. Wellington Mission) were downloaded from the Elevation and Depth Foundation Spatial Data
(ELVIS) website. The point clouds of 2008 and 2011 were used to generate canopy height models
(CHMs) and further used to define tree height thresholds for 2005 and 2015/16 images, respectively.
The technical details of point cloud data acquisition missions are listed in Table 2.

Table 2. LiDAR dataset specification (The LIST, 2019).

Description Climate Future Mission Mt. Willington Mission

Acquisition start date 04 March 2008 20 January 2011
Acquisition end date 09 March 2008 28 January 2011

Device name Optech Orion Optech “ALTM Gemini”
Laser returns 1st, 2nd, 3rd and Last 1st, 2nd, 3rd and Last

Average point density (per square metre) 1.5 1
Flying height 800 m 1400 m
Swath width 700 m 1040 m
Side overlap 30% 40%

Spatial accuracy horizontal 0.25 m 0.30 m
Spatial accuracy vertical 0.25 m 0.15 m

Horizontal datum GDA94 GDA94
Vertical datum AHD AHD

Tenure, land use zoning and area of each cadastral parcel was obtained from [63] (https://listdata.
thelist.tas.gov.au/opendata/). Median household income in 2016, and percentage of residents with
tertiary qualifications in 2016 were obtained from the Australian Bureau of Statistics (ABS) website [64]
(www.abs.gov.au) for the fourteen suburbs. Dates of sales of each parcel in the period 1983–2015 were
obtained from the nationally leading property website (www.realestate.com.au). The years between
the last sale and 2015 and the number of sales in the period 1983–2015 were extracted from these data.

2.3. Data Preprocessing

2.3.1. Image Georeferencing

Google Earth images for January 2016 were georeferenced to the projected Universal Transverse
Mercator (UTM) coordinates of zone 55 (GDA 1994 MGA Zone 55). Reference placemarks with UTM
coordinates were marked in the Google Earth screen before capturing. The georeferencing was done

https://listdata.thelist.tas.gov.au/opendata/
https://listdata.thelist.tas.gov.au/opendata/
www.abs.gov.au
www.realestate.com.au
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by associating recorded corresponding coordinates to the marks. The transformation was done by
first-order polynomial (Affine), as it provides better and more accurate transformation results than
other techniques [65,66]. The accuracy of rectified images was cross-verified with the 2005 satellite
images. The atmospheric and geometric correction of rectified images were determined prior to further
image analysis.

2.3.2. Normalised Difference Vegetation Index

The Normalised Difference Vegetation Index (NDVI) was calculated from 2005 satellite images by
using the mean of red and near infra-red bands (Equation (1)) [67]. The NDVI value of 0.4 was used as
a threshold to identify tree coverage from the 2005 images.

NDVI =
Mean (NIR) −Mean (Red)
Mean (NIR) + Mean (Red)

(1)

2.3.3. Canopy Height Model (CHM)

The LiDAR point cloud datasets were merged and clipped for the study area for both 2008 and 2011
using LAStools (https://rapidlasso.com/lastools/). Ground and high vegetation points in the classified
LiDAR point cloud dataset were represented by class 2 and class 5, respectively. Hence, the digital
surface model (DSM) was prepared by filtering the class 5-point cloud using the “las2dem” tool.
A digital elevation model (DEM) was generated with the combined point cloud of class 2 and class 5.
The canopy height model (CHM) was prepared by subtracting DEM from the DSM (Equation (2),
Figure 5) [68] using the “band math” tool in ENVI 5.5. The CHMs for 2008 and 2011 were used in the
process of identifying the tree coverage in 2005 and 2015/16 images, respectively.

CHM = DSM−DEM (2)Remote Sens. 2020, 12, x FOR PEER REVIEW 9 of 27 
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Figure 5. Canopy height model (CHM) generation from the digital surface model (DSM) and digital
elevation model (DEM).

2.4. Preparation of Training Samples

The training sample for the CNN model require at least two land cover classes [69]. Hence,
tree and other (nontree) classes were prepared. The tree class represented urban trees of different

https://rapidlasso.com/lastools/
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species within the sample patches, and the other class represented all other nontree features, including
grassland, bare land, buildings, water bodies and roads.

Object-based image analysis (OBIA) in eCognition was used to segment images using the
multiresolution segmentation algorithm at the pixel level. The tree and nontree classes for the training
dataset from the 2005 satellite images were prepared by calculating CHM and NDVI values (Figure 6).
The shape and compactness parameters were set to 0.1 and 0.5, respectively. To find the optimum scale
factor for segmentation, iterative segmentation was done with different scale factor values ranging
from 50 to 0.1 (Table 3) within a 2005 sample patch. A scale factor value of 2 gave the optimum
segmentation result for the 2005 image. The maximum and minimum values of CHM and NDVI did
not change beyond this level of scale factor 2 (Table 3) and provided a steady state.
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Figure 6. Training sample of tree class (parrot green) within a sample area of the 2005 image using the
normalised difference vegetation index (NDVI) and canopy height model (CHM) thresholds.

Table 3. List of the number of objects, maximum and minimum canopy height model (CHM) and
normalised difference vegetation index (NDVI) values from iterative segmentation with different scale
factors. The maximum and minimum values of CHM and NDVI did not change beyond scale factor 2.

Scale Factor No. of Objects
CHM Value (Metre) NDVI Value

Min Max Min Max

50 615 0 9.71 −0.059 0.912
40 1051 0 11.85 −0.078 0.953
30 2593 0 13.73 −0.091 0.984
20 3180 0 16.07 −0.151 1
10 10,777 0 28.45 −0.406 1
5 41,742 0 28.45 −0.312 1
2 200,907 0 31.56 −0.466 1
1 299,065 0 31.56 −0.466 1

0.5 325,070 0 31.56 −0.466 1
0.25 345,384 0 31.56 −0.466 1
0.1 345,384 0 32.56 −0.466 1

The height threshold of five metres as calculated in the CHM was used to separate trees from
other vegetation covers. The height threshold was calculated by assuming that a tree of two metres in
2005 would grow at one metre per year.
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The 2015/16 images were segmented using the multiresolution segmentation algorithm with the
scale, shape and compactness parameters set at 2, 0.1 and 0.5, respectively. The training dataset of tree
class for 2015/16 images was prepared by using CHM values only and not including NDVI. This is
because of the absence of the NIR band in the 2016 Google Earth image. Those segments with CHM
(from the 2011 Lidar point cloud) values greater than and equal to two metres were assigned to the
tree class. The representative training samples for trees and other classes were generated from the
whole study area. Those trees that were present in 2011 but not in 2015 were manually filtered out by
visual examination.

2.5. Object-Based CNN for Tree Cover Identification

Some parts of this section are repeated from an earlier paper by the two senior authors [57].
The CNN workflow of Trimble’s eCognition software Developer 9.4 was applied for tree extraction

(Figure 7). This CNN workflow in eCognition software is based on Google TensorFlow API [69].
The overall analysis was done in a computer system having 64-bit operating system, 16 GB RAM and
Intel (R) Core (TM) i7-7700 CPU @ 3.60 GHz processor.
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workflow in eCognition software.

2.5.1. Generate Labelled Sample Patches for CNN Model

In deep learning, finding the most suitable architecture for the CNN is still ongoing research.
While generating sample patches, there are some parameters that should be considered. They are
sample count, sample patch size and image layers. In the present research, 8000 sample patches were
generated for the tree and other classes, separately. The sample size was assigned to 22 × 22 pixels.
The selection of sample patch size was done by trial-and-error approaches. Values smaller than 22 × 22
increased tree canopy detection error, whereas values larger than 22 × 22 missed some of the small
trees. Most of small trees in the study area were found to be within 22 × 22 pixels.

To apply max pooling while creating the CNN model, the size of the input training image should
be an even number [69]. The samples were generated based on the thresholds for NDVI and CHM.
The generated sample patches were saved in tiff format (Figure 8). It took almost five minutes to
generate sample patches for each class. The processing time depends on the number of sample patches
to be generated. The higher the number of samples, the more time will be consumed to generate the
samples. All four spectral bands (green, red, infrared and blue) were used while generating samples
from the 2005 images, whereas three spectral bands (blue, green and red) were used while generating
samples from the 2015/16 images.
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Figure 8. Example of 22 × 22 pixels samples generated from the CNN. Images in the first row represent
example samples of the tree class, and images in the second row represent example samples of the
other (nontree) class.

2.5.2. Create CNN Model

A simple CNN model was created with one hidden layer. The hidden layer is based on the kernel
size, number of feature maps and max pooling. As the even-sized kernels will generate hidden units
located between pixels and then are shifted to match the pixel borders, old size kernels (13 × 13) were
assigned with 40 feature maps. Max pooling using a 2 × 2 filter with a stride of 2 in both horizontal
and vertical directions was applied to reduce the resolution of the feature maps. Thus, the weight of
4 × 13 × 13 × 40 corresponds to the hidden layer kernel. The first factor (4) represents the number
of image layers, and the second and third factors (13 × 13) describe the number of units in the local
neighbourhood, from which connections are forwarded into the hidden layer. The final factor (40)
represents the number of feature maps generated. The hidden layer of this network thus contains
27,040 (4 × 13 × 13 × 40) different weights that can be trained.

2.5.3. Train CNN Model

The model was then trained based on the labelled sample patches and the adjusted model weights
using backpropagation. The learning rate is an important parameter, as it defines the amount by which
weights are adjusted in each iteration of the statistical gradient descent optimisation [69]. The learning
rate of 0.0015 was assigned based on trial-and-error. The higher the value of the learning rate, the faster
the speed of training, but the bottom of the optimal minimum may not be reached, while smaller
values will slow down the training processing and may become stuck in local minima and end up
with weights not even close to the optimal settings [69]. Training steps and training samples were set
as 5000 and 50, respectively. With the given labelled samples and weight parameters, it took almost
30 min to complete the training process.

2.5.4. Apply CNN Model

After applying the trained CNN model to the input image with four layers in the 2005 image
and 3 layers in the 2015 image, heatmaps were produced for the tree class (Figure 9). The algorithm
used was “apply convolutional neural network” in eCognition software. The heatmaps show the
probability values of trees detected within the range of values 1 to 0 (the values close to 1 indicate
the high likelihood of trees and those close to 0 indicate a low likelihood of trees). In order to extract
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trees from the image, the produced heatmaps were smoothed using a 7 × 7 gaussian filter with a 32-bit
float output type. The local maxima of the smoothed heatmap of the trees were generated using a
morphology (dilate) filter of 3 × 3 pixels.
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image with tree training samples (red polygon) and (d) tree heatmap (the values close to 1 (red) indicate
the high likelihood of trees, and those close to 0 (blue) indicate a low likelihood of trees).

2.5.5. Object-Based Classification Refinement

The heatmaps were segmented using multiresolution segmentation with scale factor of 10, shape
0.1 and compactness 0.5. The segments with tree probability values greater than 0.5 were classified into
the refined tree class. To reduce the noise on classification due to similar spectral properties of trees,
grass and nontree objects, the CHM threshold of less than or equal to 2 m and NDVI threshold of less
than 0.1 were applied in the classification. The classified refined tree objects were further refined using
the assign merge function, pixel-based object resizing and remove object function. The tree segments
with relational borders greater than and equal to 0 and with neighbour tree segments were merged.
Growing and shrinking modes with surface tension values greater than or equal to 0.5 and box sizes in
X, Y and Z as 5, 5 and 1, respectively, were applied consequently in the pixel-based object resizing
algorithm in order to refine the shapes of tree segments. To eliminate smaller segments that were not
trees, a number of pixel thresholds was used. Hence, tree segments with areas smaller than or equal
to 200 pixels (equivalent to areas of 4.5 square metres) were removed from the trees class. Further,
some manual editing was done to refine the tree class. The refined tree class was exported as an ESRI
(Environmental Systems Research Institute) shapefile.
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2.6. Accuracy Assessment

A manual digitisation of one randomly selected parcel from each of the 14 patches for the 2015/2016
images was used as the ground truth in an accuracy assessment. It was easy to discriminate trees
using shape, colour and shadow length. The accuracy of tree detection was compared using true
positive (TP), false positive (FP) and false negative (FN) classes at the pixel level [70], as presented in
Equations (3) to (6). TP represents those pixels that are correctly identified as trees and that exactly
intersect with the ground truth. FPs are the pixels that were classified as tree objects from the CNN
classification but those were not trees based on the ground truth. FN corresponds to pixels that are not
detected as trees from the applied CNN classification method. Four different statistical parameters
associated with TP, FP and FN were used. They are as follow:

Precision (P) =
TP

TP + FP
(3)

Recall (R) =
TP

TP + FN
(4)

F1 measure (F1) =
2 ∗ P ∗R
P + R

(5)

Intersection Over Union (IOU) =
TP

TP + FP + FN
(6)

Precision (P) answers the question, “How many of the classified pixels are trees”? Recall (R)
determines the proportion of the actual (ground truth) tree pixels that were classified as trees in the
image. The balance between P and R was determined using the F1 measurement. The validation metric
intersection over union (IOU) was used to measure the accuracy of the classification results based on
the ground truth [71]. An IOU value of 100% represents the detected object exactly overlapping with
the ground truth mapping, whereas an IOU value of 0% indicates no overlap.

2.7. Statistical Analysis

Statistical analysis was carried out in Minitab 18 software [72]. Regression analysis was performed
at the patch level with five predictor variables: income, tertiary education, mean parcel size, mean
years since last sale and mean numbers of times sold between 1983 and 2015 to model each of the tree
cover loss, gain and persistence. The mean parcel size in the sample level analysis was the average
area of the 10 random parcels. Similarly, the mean years since the sale and mean number of times sold
were averages of the 10 random parcels. The model with the highest adjusted R2 and all predictor
variables with significant (p < 0.05) slopes was selected.

A general linear model (GLM) was used to model each of tree loss, gain and persistence at the
parcel level with four predictor variables: sample patch number, parcel size, years from sale and
number of times sold. The sample patch number was used as a random variable in this analysis.
The others were covariates. Due to the low number of sample patches, an adjusted R2 was used to
indicate the level of explanation of alternative models. The model with the highest adjusted R2, and all
predictor variables with significant (p < 0.05) slopes was selected.

3. Results

3.1. Accuracy Assessment

The IOU values ranged from 62% to 88%. The F1 measure values ranged from 77% to 94%.
The mean IOU value was found to be 70%. The mean precision and recall values were 87% and
85%, respectively.
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An overall accuracy of 96% and a kappa coefficient of 0.77 was found for tree extraction for the
2005 data. Whereas, for the 2015/16 data, the accuracy was higher, with 98% overall accuracy and
0.93 kappa coefficient (Figure 10).
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Figure 10. Accuracy assessment of tree extraction using the object-based convolutional neural network
(OB-CNN) for 2005 and 2015/16.

3.2. Tree Cover Change

There was a net tree cover loss in all the sample patches. The highest tree cover losses were in the
Kingston (18.4%), Blackmans Bay (14.1%) and Kingston Beach (12.9%) sample patches. The lowest tree
cover losses were in Chigwell (3.9%), North Hobart (4.2%) and Goodwood (4.6%) (Figure 11).Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 27 
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Figure 11. Percentages of tree cover area losses, gains and persistence within fourteen sample patches
with four hectares of area each.

There was a strong positive relationship between the net tree cover losses of 2005–2015 and tree
covers in 2005, with a strong positive residual for the net loss for Kingston and a strong negative
residual for North Hobart (Figure 12).



Remote Sens. 2020, 12, 3017 15 of 27

Remote Sens. 2020, 12, x FOR PEER REVIEW 15 of 27 

 

 

Figure 11. Percentages of tree cover area losses, gains and persistence within fourteen sample patches 

with four hectares of area each. 

There was a strong positive relationship between the net tree cover losses of 2005–2015 and tree 

covers in 2005, with a strong positive residual for the net loss for Kingston and a strong negative 

residual for North Hobart (Figure 12). 

 

Figure 12. Percentage tree cover in 2005 versus net tree cover losses between 2005 and 2015/16 with 

fourteen sample patches with four hectares of area each (equation of trendline: net tree cover losses 

between 2005 and 2015/16 = 0.3318 tree cover (2005) + 0.138; R2 = 0.55). 

The best model for tree cover loss at the patch level had positive influences from income and 

mean parcel size (Table 4). At the parcel level, the parcel size was the only predictor of tree cover loss, 

with the larger the parcel, the greater the tree loss (Table 5). The best model for tree cover gain at the 

patch level had positive influences from tertiary education, mean parcel size and mean years since 

sale (Table 4). At the parcel level, a poorly explanatory model had positive influences from parcel 

size and years since sale (Table 5). Tree persistence was well-explained at the patch level by tertiary 

education, mean parcel size and mean years since sale, all with positive influences (Table 4). At the 

parcel level, only the influence of the parcel size remained (Table 5). 

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

loss (%) gain (%) persistent (%)

Kingston (14.8)

Berriedale (8.0)

Claremont (7.8)

Blackmans Bay (7.8)
Montrose (7.2)

Kingston Beach (6.2)Sandy Bay (4.6)

New Town (4.5)

Glenorchy (4.2)

Moonah (3.7)

West Hobart (3.1)

Goodwood (2.2)

Chigwell (1.8)

North Hobart(1.5)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0

N
et

 t
re

e 
co

ve
r 

lo
ss

 b
et

w
ee

n
 2

0
0

5
 a

n
d

 
2

0
1

5
/1

6
 (

%
)

% tree cover - 2005

Figure 12. Percentage tree cover in 2005 versus net tree cover losses between 2005 and 2015/16 with
fourteen sample patches with four hectares of area each (equation of trendline: net tree cover losses
between 2005 and 2015/16 = 0.3318 tree cover (2005) + 0.138; R2 = 0.55).

The best model for tree cover loss at the patch level had positive influences from income and
mean parcel size (Table 4). At the parcel level, the parcel size was the only predictor of tree cover loss,
with the larger the parcel, the greater the tree loss (Table 5). The best model for tree cover gain at the
patch level had positive influences from tertiary education, mean parcel size and mean years since sale
(Table 4). At the parcel level, a poorly explanatory model had positive influences from parcel size and
years since sale (Table 5). Tree persistence was well-explained at the patch level by tertiary education,
mean parcel size and mean years since sale, all with positive influences (Table 4). At the parcel level,
only the influence of the parcel size remained (Table 5).

Table 4. Best fit multiple regression model to predict the tree cover loss, gain and persistence in
patch level.

Model Response Predictor p-Value R2 Equation

SL1 Tree cover loss

Median household
weekly income (2016) 0.013

58.5% Loss = −17.27 + 0.01099 Income +
0.01972 Parcel size

Mean parcel size (2015) 0.006

SL2 Tree cover gain

Tertiary education (2016) 0.004

67.8%

Gain = −8.53 + 0.1505 education +
0.00765 Parcel size + 0.2679 mean

no. of years sale between 1983
and 2015

Mean parcel size (2015) 0.025

Mean no. of years sale
between 1983 and 2015 0.012

SL3
Tree cover
persistence

Tertiary education (2016) 0.001

75.3%

Persistence = −30.91 + 0.4121
education + 0.03162 Parcel

size + 0.555 mean no. of years sale
between 1983 and 2015

Mean parcel size (2015) 0.001

Mean no. of years sale
between 1983 and 2015 0.020
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Table 5. Best fit multiple regression model to predict the tree cover loss, gain and persistence in
parcel level.

Model Response Predictor p-Value R2 Equation

PL1 Tree cover loss Parcel size (2015) <0.001 47.6% Loss = −26.8 + 0.1973 Parcel size

PL2 Tree cover gain
Parcel size (2015) 0.002

9.9%
Gain = −0.37 + 0.02884 Parcel size
+ 0.606 no. of years sale between

1983 and 2015
No. of years sale

between 1983 and 2015 0.044

PL3 Tree cover
persistence Parcel size (2015) <0.001 44.7% Persistence = −140.6 + 0.3233

Parcel size

4. Discussion

4.1. Object-Based CNN Method for Urban Tree Cover Mapping

Mapping urban tree cover changes with high thematic accuracy in an automated way is a
challenging task, and various attempts have been made in the past. Ellis and Mathews [73] used OBIA
to find out urban tree canopy changes between 2006 and 2013 in Oklahoma City using RGB aerial
imagery of one-metre spatial resolution and LiDAR data. Guo et al. [7] used very high resolution RGB
aerial images of 2011 (0.1 m) and 2015/16 (0.075 m) and a LiDAR dataset of 2011 to map city-wide
canopy cover changes of Christchurch, New Zealand using OBIA and the random forest classifier.
However, both studies [7,73] acknowledged that their tree extraction results could have been better if
they could have used aerial imagery with a near-infrared (NIR) band to fix the misclassifications caused
by spectral similarities between roof materials and trees. In the present study, we used CHM and
NDVI values as the thresholds to generate training samples of tree classes from 2005 satellite imagery.
These derived threshold values are the result of using the NIR band. However, due to unavailability of
the NIR band for the 2015/16 imagery, we generated tree training samples from RGB bands using only
the threshold of the CHM with manual editing.

Branson et al. [74] also used aerial and Google Street View images to extract urban trees, detect
the species of trees and map the tree species cover changes of a city of California, USA using the
state-of-the-art CNN method. In contrast to the method of [74], we used LiDAR data to extract urban
trees from Google Earth images using object-based CNN. The use of LiDAR data provided an accurate
extent and location of the tree considering the third dimension on top of latitude and longitude.

In the present study, the CNN model was trained by using automatically generated samples.
The object-based CNN method when trained with manually generated samples might produce better
accuracy than the present research if applied to very high-resolution multispectral imagery [56].
However, the manual preparation of training samples might not be always feasible in terms of time
and costs.

A comparison with previous relevant studies using the OBIA and CNN methods for urban tree
cover mapping reveals a novelty in the combination of the use of LiDAR, very high-resolution satellite
imagery, aerial imagery and the latest Google Earth imagery, with an overall accuracy of above 95%
based on the confusion matrix and 70% based on IOU.

4.2. Urban Tree Cover Change

The influence on tree cover gain and tree cover persistence of years since sale of
house (Figures 13 and 14) is consistent with the hypothesis that tree change is associated with changes
in garden/parcel ownership [61,62]. Gain would result from the growth of new trees planted soon
after possession and those allowed to survive. Persistence would reflect the stability of trees in
long-possessed gardens. The lack of a negative effect of time since sale on tree cover loss over the
decade may relate to a putatively short period in which trees are removed to satisfy preferences for
other trees or less trees. If this period were a year and there was a ten percent house turnover per
annum, the same tree loss would be expected in each of the ten years between 2005 and 2015, making
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it unlikely that the time since sale would have a linear relationship with tree loss. In contrast, all gains
would be incremental after the initial loss.

Remote Sens. 2020, 12, x FOR PEER REVIEW 17 of 27 

 

A comparison with previous relevant studies using the OBIA and CNN methods for urban tree 

cover mapping reveals a novelty in the combination of the use of LiDAR, very high-resolution 

satellite imagery, aerial imagery and the latest Google Earth imagery, with an overall accuracy of 

above 95% based on the confusion matrix and 70% based on IOU. 

4.2. Urban Tree Cover Change 

The influence on tree cover gain and tree cover persistence of years since sale of house (Figures 

13 and 14) is consistent with the hypothesis that tree change is associated with changes in 

garden/parcel ownership [61,62]. Gain would result from the growth of new trees planted soon after 

possession and those allowed to survive. Persistence would reflect the stability of trees in long-

possessed gardens. The lack of a negative effect of time since sale on tree cover loss over the decade 

may relate to a putatively short period in which trees are removed to satisfy preferences for other 

trees or less trees. If this period were a year and there was a ten percent house turnover per annum, 

the same tree loss would be expected in each of the ten years between 2005 and 2015, making it 

unlikely that the time since sale would have a linear relationship with tree loss. In contrast, all gains 

would be incremental after the initial loss. 

The net tree cover loss contrasts with the widespread tree density gain recorded for Hobart in 

an earlier period (1961–2006) [16] but is consistent with some other observations from Australia [75–

78] and elsewhere [7,73,79–81]. Tree cover is likely to be predicted by tree density, except where very 

recent suburbs on previously treeless areas are contrasted with older suburbs or where houses that 

were built amongst pre-existing trees are contrasted with suburbs of the same age built in treeless 

areas. The highest losses of tree cover between 2005 and 2015 were in those areas where new 

developments of houses occurred amongst indigenous trees. The removal of older local indigenous 

trees tends to occur gradually, as they drop limbs. The older suburbs and those developed on 

farmlands did not exhibit high levels of net tree losses. 

Variations of tree cover loss, gain and persistence with parcel sizes (Figures 13–15) was expected, 

because the opportunity to lose trees is much greater with more trees in more spaces [16]. The positive 

effects of high proportions of householders with tertiary incomes on tree gain and persistence 

(Figures 14 and 15) is consistent with the influence of a tertiary education on garden complexity [15]. 

The significant relationship at the patch scale between the tree cover loss and median household 

income with the parcel size (Figure 13) held constant is superficially puzzling, given that the 

household income was the best predictor of the percentage frequency of trees in front gardens in 

Hobart suburbs out of many socioeconomic, environmental and demographic variables [15]. The 

positive correlation between household income and tree cover loss might be taken to indicate that 

people with higher household incomes can better afford tree removal from their properties than 

poorer people or that people with higher incomes are more likely to perform building extensions, 

landscaping, and other structural development activities that result in tree losses. However, the main 

reason is likely to be that income relates closely to absolute tree abundance, so equal proportionate 

losses will result in higher absolute losses in richer areas. Our loss figures are the absolute percentage 

of a block from which the tree cover has disappeared, not a percentage of the 2005 cover. 

 

Figure 13. Sample level tree cover loss versus median household income ($AUD) and mean parcel 

area (m2). 
Figure 13. Sample level tree cover loss versus median household income ($AUD) and mean parcel
area (m2).Remote Sens. 2020, 12, x FOR PEER REVIEW 18 of 27 

 

 

Figure 14. Sample level tree cover gain versus mean parcel area (m2), mean number of years between 

the most recent sale in the period 2000–2015 and 2015 and tertiary education (%). 

 

Figure 15. Sample level tree cover persistence versus mean parcel area (m2), mean number of years 

between the most recent sale in the period 2000–2015 and 2015 and tertiary education (%). 

5. Limitation 

The main limitation of this research is the time difference between the used remote-sensing 

images (2005 and 2015/16) and LIDAR dataset (2008 and 2011). This could have introduced error in 

the analysis, because the analysis uses the CHM generated from the LiDAR dataset to identify the 

Figure 14. Sample level tree cover gain versus mean parcel area (m2), mean number of years between
the most recent sale in the period 2000–2015 and 2015 and tertiary education (%).

The net tree cover loss contrasts with the widespread tree density gain recorded for Hobart in an
earlier period (1961–2006) [16] but is consistent with some other observations from Australia [75–78]
and elsewhere [7,73,79–81]. Tree cover is likely to be predicted by tree density, except where very
recent suburbs on previously treeless areas are contrasted with older suburbs or where houses that
were built amongst pre-existing trees are contrasted with suburbs of the same age built in treeless areas.
The highest losses of tree cover between 2005 and 2015 were in those areas where new developments
of houses occurred amongst indigenous trees. The removal of older local indigenous trees tends to
occur gradually, as they drop limbs. The older suburbs and those developed on farmlands did not
exhibit high levels of net tree losses.

Variations of tree cover loss, gain and persistence with parcel sizes (Figures 13–15) was expected,
because the opportunity to lose trees is much greater with more trees in more spaces [16]. The positive
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effects of high proportions of householders with tertiary incomes on tree gain and persistence
(Figures 14 and 15) is consistent with the influence of a tertiary education on garden complexity [15].
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The significant relationship at the patch scale between the tree cover loss and median household
income with the parcel size (Figure 13) held constant is superficially puzzling, given that the household
income was the best predictor of the percentage frequency of trees in front gardens in Hobart suburbs
out of many socioeconomic, environmental and demographic variables [15]. The positive correlation
between household income and tree cover loss might be taken to indicate that people with higher
household incomes can better afford tree removal from their properties than poorer people or that
people with higher incomes are more likely to perform building extensions, landscaping, and other
structural development activities that result in tree losses. However, the main reason is likely to be that
income relates closely to absolute tree abundance, so equal proportionate losses will result in higher
absolute losses in richer areas. Our loss figures are the absolute percentage of a block from which the
tree cover has disappeared, not a percentage of the 2005 cover.

5. Limitation

The main limitation of this research is the time difference between the used remote-sensing images
(2005 and 2015/16) and LIDAR dataset (2008 and 2011). This could have introduced error in the
analysis, because the analysis uses the CHM generated from the LiDAR dataset to identify the tree
cover. This means those trees that have been cleared in between the acquisition of the LiDAR data
(2008) and orthophoto (2005) may not have been classified as trees. On the other hand, those planted
after the acquisition of LiDAR data (2011) and taller than two metres during the orthophoto acquisition
(2015/16) might not be classified as trees. Additionally, the inconsistency in the spatial resolution of
input images due to different sources—QuickBird satellite images, Google Earth images and aerial
images—might have introduced some errors.
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6. Conclusions

Urban trees have economic, environmental and socioeconomic benefits to the extent that their
maintenance or increase are often objectives for governments. The development and implementation
of policies requires accurate data on tree changes. The present research successfully maps tree cover
changes and models the relationship of changes with socioeconomic factors. This research has made
three major contributions. First, the use of automatically generated training samples to train the
CNN model. Second, the application of a combined CNN and OBIA method to map urban trees and
urban tree cover changes per sample and a cadastral parcel spatial analysis unit. Third, to model
the relationship between tree cover change and socioeconomic variables. A net tree cover loss was
measured in the study area of Greater Hobart between 2005 and 2015/16. This finding may motivate
local councils to make plans and policies to reverse this tendency, such as increasing tree planting on
public lands.

This research uses a simple CNN model with a single hidden layer. In future research, multiple
hidden layers with a change in parameters can be applied and tested. Similarly, deeper CNN methods,
including region-based CNN (R-CNN) and fully connected CNN (F-CNN), can be further tested for
urban tree coverage mapping and tree species identification.

Five socioeconomic predictor variables were used to model the tree cover changes using a
regression analysis. Topographic and climatic variables, such as slope, elevation, aspect, solar radiation,
geology and precipitation could be used as predictors in developing higher-order spatial-statistical
methods that may help in further understanding spatial and temporal associations in tree cover
change mapping.
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