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Abstract: Cyclone detection is a classical topic and researchers have developed various methods
of cyclone detection based on sea-level pressure, cloud image, wind field, etc. In this article,
a deep-learning algorithm is incorporated with modern remote-sensing technology and forms a
global-scale cyclone/anticyclone detection model. Instead of using optical images, wind field data
obtained from Mean Wind Field-Advanced Scatterometer (MWF-ASCAT) is utilized as the dataset for
model training and testing. The wind field vectors are reconstructed and fed to the deep-learning
model, which is built based on a faster-region with convolutional neural network (faster-RCNN).
The model consists of three modules: a series of convolutional and pooling layers as the feature
extractor, a region proposal network that searches for the potential areas of cyclone/anticyclone within
the dataset, and the classifier that classifies the proposed region as cyclone or anticyclone through
a fully-connected neural network. Compared with existing methods of cyclone detection, the test
results indicate that this model based on deep learning is able to reduce the number of false alarms,
and at the same time, maintain high accuracy in cyclone detection. An application of this method is
presented in the article. By processing temporally continuous data of wind field, the model is able to
track the path of Hurricane Irma in September, 2017. The advantages and limitations of the model are
also discussed in the article.
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1. Introduction

Cyclone detection is a classical yet still actively developing topic, since it provides the theoretical
foundation for the responses of extreme weather condition, as well as studies of the Earth’s climate
system. As the development of modern (especially satellite-based) remote sensing, detecting cyclones
in the larger temporal and spatial scale has become a trend of relevant studies [1]. Traditional cyclone
detection methods focus on the characteristics of a pressure gradient, and detect the cyclones by
locating the low-pressure centers [2–4]. Rudeva and Gulev analyzed sea-level pressure (SLP) data over
the northern hemisphere, based on which they detected cyclones by locating the minimum points of
SLP [5]. Based on this method, Simmonds et al. proposed an automatic cyclone detection algorithm by
comparing the Laplacian operator of SLP at each grid point to those at neighboring grid points [6].
Hanley and Caballero also developed an identification and tracking method that specifically recognized
multicenter cyclones by examining the gradient of SLP and finding minimum points [7]. Although the
minimum SLP method can effectively detect an ideal cyclone, the accuracy of the detection result is
limited due to the lack of in situ data and ambiguities in satellite presentation.
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Because the wind field of a cyclone has strong characteristics in geometric symmetry, the vector
field formed by the wind speed certainly has the potential for detecting cyclones. Fluid dynamicists
developed various methods of identifying a vortex core in the fluid field [8,9]. The Okubo–Weiss (OW)
approach is one of the most well-known methods of distinguishing high vorticity zone within the flow
field by calculating OW parameter using strain and vorticity of the velocity field as follows [10,11]:

W = S2
s + S2

n −ω
2 (1)

where Ss and Sn are the shear and normal components of strain, and ω is the relative vorticity. They can
be calculated using the following equations:
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where U’ and V’ are the zonal and meridional components of the flow velocity; x and y represent
the coordinates.

The OW parameter quantitatively describes the significance of rotation compared with deformation
in the flow field. Generally, the vortex core is characterized as strong rotation, and has an OW parameter
of negative value; while vortex ring is characterized as strong deformation, and has an OW parameter
of positive value. The OW parameter that is close to 0 indicates the background with no vortex-shape
events. By defining a threshold value W0, vortex core can be identified by searching for the areas with
OW parameter that is smaller than the predefined threshold. This method has been widely used in
oceanography and meteorology. For example, numerous studies have applied the OW approach on
sea-level anomaly (SLA) data and developed identification models for oceanic eddies [12–18]. Similarly,
a cyclone could be detected by examining the vorticity of the wind field, since the cyclone eyes usually
have high vorticity [19]. Wong et al. studied the patterns of a spiraling vector field and developed
a method of identifying a circulating center. They suggested that this method could potentially be
applied to detect cyclone eyes [20]. Following this method, Inatsu proposed a cyclone identification
method by comparing the vorticity field of the cyclone eyes with that of the neighborhoods [21].
With the data collected by modern remote-sensing techniques, researchers are able to identify cyclones
in larger spatial scale. Zou et al. proposed an automatic cyclone detection algorithm using the wind
vector obtained from the Quick Scatterometter (QuikSCAT) satellite [22]. Warunsin and Chitsobhuk
further combined the wind data with cloud shape and developed a fuzzy inference system for cyclone
detection [23]. However, such studies usually focus on a regional area, even with the data obtained at
global scale [14–17]. This is partly because of the difficulties in determining the appropriate threshold
W0 for the OW parameter at the global scale. In practice, the threshold W0 needs to be adjusted
for different location and time when identifying vortex cores in large-scale [24] or time series [25]
data. Other approaches are proposed by researchers in order to avoid using the regional threshold
and overcome this limitation. For examples, Williams et al. simulated the physics and geometry of
idealized vortex, and presented the R2 method, which determines how well an eddy confirms to the
characteristics of an ideal Gaussian vortex through linear regression [26]. Peterson et al. conducted a
large-scale simulation on oceanic eddies, and identified the simulated eddies using the R2 method [27].
Li et al. proposed an iterative algorithm for eddy detection, in which the eddy regions are separated
from non-eddy regions through data segmentation, and then recognized using a density clustering
method [28].

As in the development of artificial intelligence (AI) technology in the last decade, machine learning
algorithm has been successfully applied in the subjects of object detection and pattern recognition
owing to its ability to efficiently extract imagery information. In the subjects of oceanography
and meteorology, state-of-the-art machine-learning algorithms have been applied to recognize the
circulating pattern in a spiraling fluid field [29]. Moreover, deep convolutional neural network (DCNN)
has been utilized to detect and classify objects in remote-sensing images [30,31]. Based on DCNN,
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researchers have successfully developed object detection models for land-use and land-cover [32,33],
vegetation [34,35], urban commerce [36,37], transportation vehicles [38,39], etc. Similarly, attempts
are made to detect cyclones based on cloud images. Lee and Liu classified the appearance of tropical
cyclones in remote-sensing images into eight possible categories, and then trained the neural network
based on this classification [40]. The drawback of using remote-sensing images as the training dataset
of cyclone detection is that the appearance of some non-cyclone clouds is similar to those of cyclones.
That fact negatively affects the accuracy of the identification model [41,42]. Bai et al., constructed
and trained a deep-learning model for oceanic eddy detection using enhanced maps of a streampath,
which are produced using ocean velocity field data [43]. Ho and Talukder conducted a series of
studies and proposed automatic cyclone identification methods based on a support vector machine
(SVM) and dominant wind direction (DOWD) classifier using the wind data from the QuikSCAT
satellite [1,44,45]. They further combined the wind data from QuikSCAT and precipitation data from
the Tropical Rainfall Measurement Mission (TRMM), and built a Cyclone Discovery Module (CDM)
that was able to achieve accurate detection results [1,45]. These successful applications of machine
learning illustrate its ability of analyzing complex systems that are not well understood, but with
plenty of observations. With the extensive data collected by modern remote-sensing technology,
obviously, the machine-learning method could be potentially applied to study the complex climate
system, including cyclone and anticyclone.

In this study, a cross-boundary research is achieved by applying a state-of-the-art deep learning
model into a classical research field. The wind field vector in the global scale is reconstructed to form
the training and testing dataset for the deep-learning model, and the model is modified in order to
work with wind field data. The deep-learning technology is expected to accomplish a large-scale
cyclone/anticyclone detection that is difficult to achieve with traditional methods.

2. Methodology

2.1. Dataset Acquisition and Reconstruction

Instead of using optical remote-sensing images, wind speed data is utilized to construct the
dataset. Specifically, mean wind fields (MWF) data obtained by the Advanced Scatterometer (ASCAT)
is applied in this study. MWF-ASCAT wind field data cover the Earth’s surface between 80◦N~80◦S
and 180◦W~0◦~180◦E, with the spatial resolution of 0.25◦ × 0.25◦. Their temporal coverage starts from
March 2007. The daily average series data are used in this study. The MWF-ASCAT dataset contains
15 variables including: longitude, latitude, surface wind speed (m/s), eastward wind (m/s), northward
wind (m/s), surface wind stress (Pa), horizontal surface wind divergence (1/s), horizontal wind stress
curl (Pa/m), etc. Four of these variables are used in the study: northward wind and eastward wind are
used to form the 2-layer dataset; latitude and longitude are used to locate the cyclone/anticyclone in
the dataset.

The training dataset is constructed by manually labelling the clockwise and anticlockwise cyclone
within the dataset. Because the wind fields of cyclone and anticyclone rotate in the opposite directions
in the northern and southern hemisphere, it is easier for the model to classify the wind fields as a
clockwise or anticlockwise cyclone, and then determine whether they are cyclone or anticyclone based
on their locations (clockwise cyclones in the southern hemisphere and anticlockwise cyclones in the
northern hemisphere are classified as cyclones, and vice versa). Thus, the training dataset are classified
into two categories: (1) Class 1: wind field of clockwise rotation; (2) Class 2: wind field of anticlockwise
rotation. The examples of the wind fields that belong to the two categories are shown in Figure 1.

The cyclones and anticyclones in the dataset are selected from March 2007 to December 2014.
The reconstructed dataset includes 700 examples from Class 1, and 800 examples from Class 2. We tried
to avoid including the same cyclone that appeared in two consecutive days in the dataset. Moreover,
we tried to balance the number of cyclones and anticyclones (828 cyclones and 672 anticyclones),
as well as their locations (766 from the northern hemisphere and 734 from the southern hemisphere).
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The Visual Object Tagging Tool (VoTT) is used to label cyclones in the dataset (the code can be accessed
from: https://github.com/microsoft/VoTT). Because it is much easier for human eyes to find rotational
flow field on the figures of vector field rather than the 2-layer dataset of northward and eastward wind
speed, the clockwise and anticlockwise cyclones are labelled on the image of the vector field (Figure 1)
first. Then the labelling boxes are mapped onto the 2-layer dataset of the same dimension based on
latitude and longitude information. The time and location of cyclones in the dataset are confirmed
with the hurricane data from Unisys Weather.
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Figure 1. Examples of classified wind fields in the dataset: (a) green box represents Class 1 (clockwise
cyclone); (b) red box represents Class 2 (anticlockwise cyclone). Both of the examples are selected from
the northern hemisphere.

2.2. Model Structures

Various deep-learning models have been developed for object detection, including YOLO
(you only look once) [46], SSD (single shot multibox detector) [47], and faster-RCNN (faster-region
with convolutional neural network) [48]. In this study, we adopted the faster-RCNN algorithm to
construct the model. As shown in Figure 2, the algorithm includes three parts: (1) the first part is a
feature extractor, which is similar to the VGG-16 model [49] and consists of 5 convolutional layers
and 5 pooling layers; (2) the second part is a region proposal network (RPN) that seeks for potential
areas with cyclone and anticyclone in the wind field; (3) the third part is a classifier that classifies the
proposed region into two categories (cyclone and anticyclone).
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Because the faster-RCNN model is intended to detect objects in a red, green and blue (RGB) image,
while the wind field dataset constructed in this study has a different structure from a RGB image,
the feature extraction part needs to be modified in order to work with the wind field dataset. Unlike an
RGB image that has the depth of three (representing the value of red, green, and blue, respectively),
the wind field dataset has the depth of two, which represents northward wind and eastward wind
respectively. Therefore, the input dimension of the convolutional layers in the feature extractor is
adjusted in order to process the wind field data.

As shown in Figure 2, five convolution layers and pooling layers are applied on the reconstructed
dataset and produce the feature maps. Rectified linear unit (ReLU) [50] is applied as the activation
function between the convolutional and pooling layers. Based on these feature maps, RPN proposes
candidate cyclone/anticyclone regions, of which the probability is estimated on a fixed set of anchors on
different positions of the feature maps. According to the size of the cyclone/anticyclone, three types of
anchor size are applied in the model: 4, 8, and 16, which represent 1◦, 2◦, and 4◦ on the Earth’s surface.
For the anchor ratio, only 1:1 square is applied in the model because the shapes of cyclone/anticyclone
are mostly close to a circle, and can be enclosed in a square region.

Softmax function is used to determine whether the region is positive or negative, and bounding
box regression function is used to calibrate the location of the anchor. The calibrated positive regions
of different sizes are then processed through another pooling layer and normalized as 5 × 5 feature
maps. The feature maps are further processed through 2 convolutional layers and turned into vectors
with a dimension of 1024 × 1 × 1. These vectors, together with the locations of the candidate regions,
are fed to the classifier for cyclone/anticyclone classification.

In the classifier, the feature vectors (1024D) are sent to the fully-connected (FC) layers to make
the prediction for each proposed region. The FC layers consist of an input layer, two hidden layers
(each of which consists of 256 units), and an output layer. The activation function of hidden layers is
also ReLU, while that of output layers is a sigmoid function.

2.3. Implementation Details

The model in this study is constructed and trained with Keras in the Tensorflow backend [51] and
Python 3.6 environment. In terms of hyperparameter settings, the initial learning rate is set at 0.0001,
and reduces at a factor of 10 after 10,000 iterations. The maximum number of iterations is set at 20,000.
Non-maximum suppression (NMS) [48] is applied in the classifier to decide the prediction, and the
intersection-over-union (IoU) thresholds of NMS are 0.75 and 0.25 for training and testing, respectively.
The model is trained using the dataset built in the previous section. 70% of the wind field data are
used for training, 10% of the data are used for validation, and 20% of the data are used for testing.

3. Results

A performance experiment is conducted based on the global MWF-ASCAT data collected from
25 February 2020 to 5 March 2020 (these data are not included in the training or testing dataset).
Figure 3 shows the clockwise and anticlockwise cyclones detected at a global scale on 25 February
2020. The results show the model is able to detect cyclones and anticyclones at different latitude.

In order to verify the accuracy of the model, the results are evaluated by the standard performance
measurements: true positive rate (TPR), true negative rate (TNR), false positive rate (FPR), and false
negative rate (FNR). According to the wind field data of these 10 days, there are totally 161 cyclones
and 74 anticyclones. The confusion matrix of the detection result is shown in Figure 4. Based on the
confusion matrix, the corresponding performance measurements for cyclones and anticyclones are
calculated in Table 1.
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Table 1. Performance measurements for cyclones and anticyclones detection results.

True Positive Rate
(TPR)

True Negative
Rate (TNR)

False Positive Rate
(FPR)

False Negative
Rate (FNR)

Cyclone 0.9130 0.8795 0.1215 0.0870
Anticyclone 0.9324 0.9176 0.0824 0.0676

Typical examples of missing reports and false alarms are found and analyzed. Because
MWF-ASCAT only provides wind field over the ocean surface, when the cyclone landed (Figure 5a),
its wind field is not completely recorded in the dataset. As a result, the model fails to detect the cyclone.
For the same reason, it can be inferred that when the cyclone or anticyclone locates at the boundary
of the dataset (part of the wind field is cut off), it may not be detected by the model. This problem
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may be overcome by some data preprocessing techniques. For example, the missing wind field in
the areas of small island may be filled with objectively-mapped wind vectors, or spatial interpolation
of neighboring wind field; and the wind field that is cut off by the 180◦ meridian may be supplied
by duplicating part of the wind field (e.g., 2◦ to 4◦ in longitude) on the boundary of the other side
of the dataset. However, the cyclones and anticyclones within the duplicated zone are likely to be
detected twice.
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Figure 5. Examples of missing report and false alarm in the test results: (a) a cyclone lands on island,
and is not detected by the model; (b) a turbulence that is recognized as anticlockwise cyclone.

According to the false alarm shown in Figure 5b, some cyclone-like turbulences are recognized
as cyclones. Such turbulences are likely to be caused by a tropical depression that is not strong
enough to develop (or downgrades from) a cyclone, or a monsoon gyre at a specific time and location.
These examples of missing reports indicated that the model may not be able to distinguish the wind
rotation with high vorticity causing by non-cyclone event from actual cyclone.

The accuracy of the detection results can also be evaluated through a precision-recall (PR) curve.
According to the PR curve shown in Figure 6, it is found that the classification model is able to achieve
accurate results on both cyclone and anticyclone—their average precision (AP) values are more than
0.85. It is also found that the high precision and recall values are achieved for both cyclone and
anticyclone with the confidence over 0.9. Therefore, the proposed region with a confidence over 0.9 is
preserved for the model training.
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The cyclone detection algorithm based on the deep-learning method proposed in this article is
compared with that based on SVM proposed by Ho and Talukder [44] on the same dataset. The results
are also evaluated by standard performance measurements and shown in Table 2.

Table 2. Performance measurements for cyclones detection results using two different methods.

TPR TNR FPR FNR

Faster- region with convolutional neural
network (faster-RCNN) 0.9130 0.8795 0.1215 0.0870

Support vector machine (SVM) [44] 0.8759 0.7002 0.2998 0.1241

4. Discussion

4.1. Accuracy Analysis and Comparison

As shown in the PR curve (Figure 6), both cyclones and anticyclones can be effectively distinguished
through the deep-learning model. The differences between the AP values of cyclone and anticyclone
detection results are not significant, which means the model does not have bias on the detection of
either type of cyclone.

The algorithm proposed in this article is compared with the SVM model proposed by Ho and
Talukder [44]. As indicated in Table 2, both of these two methods are able to achieve good results in
cyclone detection. It should be noted that our method achieves a significantly better performance on
TNR compared with that based on the SVM method. This is possibly because the region of interest
(ROI) for a potential cyclone is formed by a wind speed threshold in the SVM method, which means
that non-cyclone areas with strong wind (these areas are commonly seen in the data) will be picked as
a potential cyclone region for the classifier. In our method, the potential cyclone regions are formed
from the positive anchors proposed by RPN (see Section 2.2 for details). As a result, less ROI is likely
to be formed and tested for the classifier. In that vein, it is expected that the model would be more
efficient, and less non-cyclone events would be identified from the dataset. Therefore, compared with
the existing cyclone detection model based on machine learning, this method based on deep learning
is able to produce fewer false alarms, and at the same time, maintain high sensitivity and accuracy.

4.2. Potential Application of the Model

As a global-scale, programmable tool with high efficiency and accuracy, the cyclone/anticyclone
detection model based on deep learning proposed in this article is expected to be applied in large-scale
studies on cyclones and climate patterns. For example, by detecting cyclones in the global range with
high accuracy and efficiency, it is possible to construct a comprehensive dataset of cyclone occurrences
in a large temporal and spatial scale. By statistically analyzing this dataset, further studies on the
patterns of cyclone occurrences could be realized.

Another application of this model would be tracking the cyclone path. By processing the
temporally continuous data using the cyclone detection model, the locational information of the
cyclone can be obtained through the proposed regions and the movement of a cyclone can be captured
by the model.

As an example, the path of Hurricane Irma that occurred in September 2017 was tracked with
this model. As the results show in Figure 7a, hurricane Irma was detected when it was only a tropical
storm. Moreover, its moving path was also tracked: it moved westward from the west Atlantic Ocean,
flew over Cuba, turned northward and finally landed on Florida, United States. The cyclone was not
detected by the model in Figure 7d, because the hurricane landed on Cuba and the MWF-ASCAT does
not include wind field data on land. Therefore, ideally, the wind field dataset that covers both land
and ocean area is preferable for accurate cyclone tracking.
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Figure 7. Hurricane Irma tracked by the model: (a) appeared as tropical storm and detected by
the model; (b) developed into tropical hurricane; (c) moved westward and approached Puerto Rico;
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It should be noted that although this model is able to detect cyclone regions, it cannot accurately
determine cyclone eyes. However, it is more important to identify the location of a cyclone eye
for cyclone tracking. Thus, in order to develop a completed cyclone tracking model, an additional
algorithm for locating a cyclone eye needs to be integrated in the deep-learning model. Considering
the symmetric geometry of the cyclone, one of the easiest algorithms is probably making the center of
the proposed region as the location of the cyclone eye. However, this is not tested and may not be very
accurate, since the shape of the cyclone could still be irregular. Combining the deep-learning model
with an appropriate algorithm for locating cyclone eyes and developing a global cyclone tracking
model would be the topic of our near future study.

Moreover, for the purpose of cyclone analysis, the resolution of the satellite data (0.25◦ × 0.25◦

in this study) is sometimes too coarse to determine the exact location of the cyclone eyes. Therefore,
the model developed in this study is more suitable and effective for the application of cyclone detection
in a large spatial and temporal scale without strict requirements on the spatial resolution of the
detection result, or some census-type of studies over a large area or long period. This problem is
also expected to be solved by providing high-resolution wind field data, which could potentially be
achieved through the development of modern remote-sensing technology.

5. Conclusions

A novel approach for cyclone and anticyclone detection based on wind-field data and deep
learning is presented in this study. This model learns to search for potential areas of cyclone and
anticyclone events through RPN, and then perform the classification based on DCNN. The feature
of the wind vector field is extracted by convolutional layers, and the spiral pattern of a cyclone is
recognized and captured as proposed regions, which are further classified through FC neural networks.

The model proposed in this study is compared with existing methods of cyclone detection based
on machine learning. Unlike the existing methods that generate ROI based on the wind speed threshold,
our algorithm adopts faster-RCNN, which proposes ROI using RPN. Because the potential areas of
cyclone events are more accurately captured, the efficiency of the model is improved and the number
of false alarms is reduced.

In that vein, it is expected that this model is a promising tool for the pattern analysis of cyclone
occurrences in a larger temporal and spatial scale. Utilizing the computational power of a state-of-the-art
machine-learning algorithm, we hope this cyclone detection model can help propel large-scale studies
on cyclone occurrences and climate patterns.
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