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Abstract: As an important production base for livestock and a unique ecological zone in China,
the northeast Tibetan Plateau has experienced dramatic land use/land cover (LULC) changes with
increasing human activities and continuous climate change. However, extensive cloud cover limits
the ability of optical remote sensing satellites to monitor accurately LULC changes in this area. To
overcome this problem in LULC mapping in the Ganan Prefecture, 2000–2018, we used the dense
time stacking of multi-temporal Landsat images and random forest algorithm based on the Google
Earth Engine (GEE) platform. The dynamic trends of LULC changes were analyzed, and geographical
detectors quantitatively evaluated the key driving factors of these changes. The results showed that
(1) the overall classification accuracy varied between 89.14% and 91.41%, and the kappa values were
greater than 86.55%, indicating that the classification results were reliably accurate. (2) The major
LULC types in the study area were grassland and forest, and their area accounted for 50% and 25%,
respectively. During the study period, the grassland area decreased, while the area of forest land and
construction land increased to varying degrees. The land-use intensity presents multi-level intensity,
and it was higher in the northeast than that in the southwest. (3) Elevation and population density
were the major driving factors of LULC changes, and economic development has also significantly
affected LULC. These findings revealed the main factors driving LULC changes in Gannan Prefecture
and provided a reference for assisting in the development of sustainable land management and
ecological protection policy decisions.

Keywords: Google Earth Engine (GEE); random forest; land use degree index; geographical detector;
Gannan Prefecture

1. Introduction

Land use/land cover (LULC) changes are the most basic and prominent landscape characteristic
describing the impact of anthropogenic disturbance on the surface of the Earth and play an important
role in the studies of regional and global environmental changes [1]. In the past few decades, LULC
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has undergone tremendous changes around the world, especially in the Tibetan Plateau (TP), home to
Earth’s highest altitude and the harshest and most sensitive environment [2,3]. The TP has warmed
much faster than the global average in the past fifty years, according to observations and climate
models [4,5]. In addition, increasing human population and activity seriously threaten biodiversity,
ecosystem services, and wildlife habitat. Thus, monitoring LULC changes and their underlying
mechanisms on the TP is vital to achieving sustainable development.

There are currently great uncertainties and differences among existing global LULC products due
to different data sources, methods, and classification systems. Furthermore, most previous studies
were concerned about long-term vegetation change on the TP [6,7]. The LULC of the TP is usually
based on low-resolution satellite imagery, such as AVHRR and MODIS. For example, Wang et al. [3]
used MODIS to quantitatively analyze the land change trends and driving factors of change on the TP
from 2001 to 2015. High-resolution optical satellite images of the TP are affected by the high cloud
cover and data gaps. It is a challenging task to use a single scene image to monitor LULC changes
on the TP. The dense time stack method overlays all available images and replaces the area covered
by clouds through stacking the coverage using another image to create a clear image [8,9]. Similar
methods have been applied with good results for forest [10], land use [11], and impervious surface
change monitoring [12].

However, the processing of multi-source satellite data is a huge challenge for computing capacity.
Currently, a free cloud platform provides new methods for geospatial analysis. The Google Earth
Engine (GEE) can avoid the process of image downloading and preprocessing and hence greatly
improve the efficiency of LULC change research [13,14]. GEE provides a JavaScript and Python coding
environment to facilitate data processing for the user. The application of dense time stacking of Landsat
image on the GEE platform effectively overcomes the cloud cover challenge and has proven to be a
successful method of solving image quality problems [9,11].

The driving force analysis can determine the process of LULC changes and reveal the regional
ecological environment change mechanism [15]. The LULC changes over time and space are affected
by many factors, such as society, economy, and the natural ecological environment [1,15,16]. The
driving force methods of analyzing LULC changes could be divided into the qualitative description
and quantitative analysis [17]. The qualitative analysis methods are coarse and can only characterize
the development trend of LULC and various driving factors, and it is difficult to estimate the extent
to which each factor affects LULC changes. Quantitative methods mainly use correlation analysis,
multiple linear regression, principal component analysis, and logistic regression models to clarify
the relationship between driving factors and LULC changes [17–19]. However, these methods are
subjective and ignore the spatial relationship between driving factors and LULC changes; it is difficult
to study the underlying mechanism of their inherent changes accurately. Geographical detectors
are statistical methods that detect spatial differentiation and reveal influencing factors [20], doing
so without too many assumptions while overcoming the limitations of traditional linear statistical
methods such as correlation and regression analysis [19,21]. Thus, geographical detectors are widely
used to analyze the driving factors of vegetation change [22,23] and ecosystem health [24].

Gannan Prefecture is an important water supply area for the Yellow River, located in the northeast
TP. This area plays an important role in conserving water sources, maintaining biodiversity, and
regulating climate [25]. To date, due to unreasonable land use and population growth, vegetation has
been severely damaged, causing environmental deterioration [26]. These changes not only affect the
livelihood of farmers and herdsmen but also threaten the ecological security of the Yellow River Basin
and even the whole of northern China. Therefore, studying LULC changes in the Gannan Prefecture is
of great significance to sustainable regional development. However, severe weather conditions make it
difficult to obtain cloudless single-scene Landsat images, which limits the ability to monitor LULC
changes in the area. Moreover, studies on LULC classification and its driving mechanism throughout
the region are still lacking. Therefore, it is necessary to conduct a dynamic study on LULC in this area
to support decision-making for economic development and ecological conservation.
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This study applied dense time stacking of Landsat images to monitor LULC changes in Gannan
Prefecture and explored its driving factors based on geographical detectors. We aimed to (1) obtain
the LULC information of Gannan Prefecture 2000–2018 based on the GEE platform, (2) analyze the
spatiotemporal change pattern of land-use intensity in Gannan Prefecture, and (3) identify the main
socioeconomic and natural factors affecting LULC changes using geographical detectors. The results
are expected to provide theoretical support for adjusting and optimizing land use in Gannan Prefecture.

2. Materials and Methods

2.1. Study Area

The Gannan Prefecture is within the alpine pastoral region in the southwest of Gansu Province,
located in the transition zone between the northeastern Tibetan Plateau (TP) and the Loess Plateau
(Figure 1). The study area covers approximately 45,000 km2. The longitude ranges from 100◦46′ E
to 104◦44′ E, and the latitude from 33◦06′ N to 36◦10′ N [27]. The terrain is high in the northwest
and low in the southeast, with elevations varying between 1175 m and 4779 m. The study area has a
typical plateau continental climate and is cold and humid. The average annual precipitation is between
400 mm and 700 mm, and the average annual temperature is below 3 ◦C. The region experienced
significant socioeconomic development during 2000–2018, with population growth from 653,600 people
to 722,951 people and GDP increasing from 137.29 to 1502.17 million yuan. Meanwhile, livestock
production is the main income source in Gannan Prefecture, which promotes LULC changes to some
extent [26].
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Figure 1. Location of Gannan Prefecture. The right column shows examples of land use/land cover
(LULC) types (a: farmland, b: forest land, c: grassland, and d: wetland).

2.2. Data Preparation

The GEE platform provides Landsat datasets by the United States Geological Survey (USGS,
https://www.usgs.gov/) [13]. All Landsat images were acquired, preprocessed, mosaicked, and
processed through the JavaScript application programming interface (API). In this work, available
Landsat TM and OLI Collection 1 Tier 1 top-of-atmosphere (TOA) reflectance products in Gannan
Prefecture were analyzed. We choose the TOA reflectance product because its reflectance algorithm

https://www.usgs.gov/
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removes the exoplanetary effects associated with variable solar irradiance as a function of variability in
(1) solar zenith angles, (2) spectral band differences, and (3) Earth-to-Sun distances at different times of
the year [8,28]. The elevation, slope, and aspect were extracted from a digital elevation model (DEM)
with a spatial resolution of 30 m. All these images and the DEM originated from the GEE. The climate,
soil, and vegetation types were obtained from the Resources and Environmental Science Data Center of
the Chinese Academy of Sciences (http://www.resdc.cn/). In addition, the study also collected annual
regional socioeconomic statistical data (county), including population density, gross domestic product
(GDP), livestock quantity, and chemical fertilizer consumption. These data were derived from the
Gansu Development Yearbook, Gansu Statistical Yearbook, and Gannan Statistical Yearbook (Table 1).

Table 1. Factors influencing LULC changes.

Factors Types Code Index Unit

Socioeconomic
factors

X1 Population density people/km2

X2 Gross domestic product (GDP) yuan
X3 Livestock quantity sheep
X4 Chemical fertilizer consumption ton

Natural factors

X5 Annual mean temperature ◦C
X6 Annual mean precipitation mm
X7 Elevation m
X8 Slope degree ◦

X9 Aspect ◦

X10 Vegetation type /
X11 Soil type /

2.2.1. Satellite Imagery

All processing of Landsat TM and OLI data was conducted on the GEE platform (https://
earthengine.google.com). The image processing mainly included the following steps. (1) To correct
for the problem of cloudy optical images in alpine regions, we selected all TOA reflectance data of
the vegetation growth season (May–September) [6,29] for each study year. The images before and
after the years were used to replace and supplement the images covered by clouds and fog, and the
most available pixel image composites were produced (Supplementary Materials Table S1). (2) The
clouds were removed from the Landsat images in the study area (cloud cover is less than 30%). (3) The
median ee.Reducer function was used to generate a single image from the image collection. (4) The
normalized difference vegetation index (NDVI) [30], the normalized difference built index (NDBI) [31],
and the modified normalized difference water index (MNDWI) [32] were calculated for each image. (5)
The slope and aspect generated from DEM data were used to enhance the classification performance.
Therefore, the best image combination, cloud-free, combining NDVI, NDBI, and MNDWI, could be
obtained. In order to compare with the classification results in the study, we obtained the existing
global LULC products. The FROM-GLC10 product with 10 m spatial resolution was downloaded from
http://data.ess.tsinghua.edu.cn [33].

2.2.2. Training and Validation Sample Selection

The classification system was determined based on current LULC in the Gannan Prefecture and by
referring to previous research [34,35]. There were seven major LULC types: farmland, grassland, forest
land, water body, wetland, construction land, and unused land (Supplementary Materials Table S2).

Supervised classification methods require high-quality training and validation samples. Training
samples used to create the classification model were collected through visual interpretation and field
observations [36]. Specifically, to collect the field survey points, we randomly chose points that
were more than 1500 m apart to minimize spatial homogeneity [3]. The location information was
acquired from the Trimble Juno series handheld GPS (https://www.trimble.com). The other reference
samples were based on the high-resolution image of the Google Earth map in different years. In total,

http://www.resdc.cn/
https://earthengine.google.com
https://earthengine.google.com
http://data.ess.tsinghua.edu.cn
https://www.trimble.com
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we collected more than 1323 reference points in 2000, 2009, and 2018, covering seven LULC types
(Supplementary Materials Figure S1). At least 40 samples were collected for each LULC type, 70% of
which were randomly selected as participants in LULC classification as training samples, and 30%
used to verify the classification results as validation samples [37].

2.2.3. Anthropogenic and Natural Data

Because anthropogenic and natural factors profoundly influence LULC changes, 11 potential
factors were selected in this study to detect their influence on LULC changes in Gannan Prefecture in
2000, 2009, and 2018 (Figure 2). In ArcGIS 10.6 software, the natural breakpoints method was used to
divide the above factors into different grades [23]. We selected the natural breakpoints method because
it determines clusters according to the intrinsic attributes of the data to reduce the variance within the
group and increase the variance between the groups [38]. This method has been widely used in data
classification when applying the geographical detector method. Population density, GDP, livestock
quantity, chemical fertilizer consumption, annual mean temperature, annual mean precipitation, and
elevation were classified into six grades. The slope, aspect, and vegetation type were classified into
nine classes according to previously published studies [38]. Soils were divided into 14 types. The
spatial distribution maps of 11 anthropogenic and natural factors are shown in Figure 2.
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2.3. Methods

We used Landsat images based on the dense time stack of multi-temporal Landsat images to
generate a cloudless and minimal snow cover image on the GEE platform. The specific research
methods and structural framework are shown in Figure 3. First, we collected the training and validation
sample datasets and uploaded them to the GEE. Landsat images were then preprocessed by date
filtering, cloud masking, mosaicking, and clipping to obtain a Landsat TOA composite image and
to calculate the characteristic parameters to implement the later classification. The random forest
(RF) machine learning algorithm was implemented to the LULC classification, and the results were
validated using a confusion matrix. Finally, the land use transfer matrix was used to analyze the
change in each LULC type, and the geographical detector was used to discuss the influence mechanism
of anthropogenic and natural factors on LULC changes in Gannan Prefecture.
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2.3.1. LULC Classification and Accuracy Assessment

We selected a random forest (RF) algorithm as the classifier because it generally has greater
processing power for data noise and overfitting [39,40]. Furthermore, RF can deal with complex data
of large dimensions, and can usually provide higher accuracy than other traditional algorithms, such
as maximum likelihood and single decision tree [41–43]. The RF is an ensemble learning method that
creates random features and uses them to generate multiple decision trees and classifies a dataset by
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using the prediction modes of all decision trees [44]. The RF classifier could easily measure the relative
importance of each target variable class and has been widely applied to LULC classification due to its
excellent classification results [45]. Based on the acquired samples, the ee.Classifier.smileRandomForest
function was applied in the GEE platform to obtain the LULC classification maps for each chosen
year. The RF classifier is only required to identify two parameters: the number of classification trees
desired and the number of prediction variables used in each node to make the tree grow [15]. In this
study, the number of trees was set to 500, and six random variables were selected from the best split
when each tree grows. The application of the RF classifier in GEE could refer to the developer’s guide
(https://developers.google.com/earth-engine/classification).

An accuracy assessment is necessary for LULC classification to explain the correspondence between
ground truth and classification results [17]. The confusion matrix is a general method for evaluating
the accuracy of remote sensing image classification, which provides the correspondence between the
LULC classification results and verification data. In this work, the verification of classification accuracy
is reflected by overall accuracy, kappa coefficient, producer’s accuracy, and user’s accuracy [46].

2.3.2. Land Use Degree Index

Land-use intensity is the most intuitive representation of human activity and can directly reflect
the state of LULC [47]. The land use degree index (La) directly describes the extent and intensity of
land use in a specific period. Its essence is explained by the regional land use and development level,
which comprehensively reflects the impact of human activities and natural environmental factors on
LULC changes. The higher the value of La, the stronger the land-use intensity and the more complex
the social and economic activities in the area [48]. La in Gannan Prefecture was calculated as:

La = 100×
n∑

i=1

Ai ×Ci La ∈ [100, 400] (1)

where La is the land use degree index value; Ai is the hierarchical index of land use degree i; Ci is the
percentage of the graded area of land use degree of category i. According to the previous studies of
Zhuang et al. [48] and Liu et al. [49], the LULC types are divided into four levels and different graded
indexes are assigned respectively (Table 2).

Table 2. The hierarchical values of LULC types in this study.

Type of Land Uncultivated Land Ecological Land Agricultural Land Construction Land

LULC types Unused land (sand
and bare land)

Forest land,
grassland, wetland,
and water body

Farmland
Urban, residential
area, traffic land,
and industrial land

Index of
Classification 1 2 3 4

2.3.3. Geographical Detector

The geographical detector model is a spatial heterogeneity detection method usually used to
quantify the driving force of each factor on the dependent variable [23,24]. We used the Excel
GeoDetector software developed by Wang et al. [20] to implement the geographical detector, which
can be downloaded for free from the website (http://www.geodetector.cn). The geographical detector
includes factor detectors, risk detectors, ecological detectors, and interactive detectors. Specifically, the
factor detectors can detect whether the independent variable x is the influencing factor of variable y
(land use degree index) and explain the spatial differentiation mechanism of variable y to a certain
extent. Therefore, this study chose the factor detector to analyze the driving mechanisms of LULC
changes, which could be measured by the value of q; the formula for the q value was estimated as:

https://developers.google.com/earth-engine/classification
http://www.geodetector.cn
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q = 1−

∑L
h=1 Nhσ

2
h

Nσ2 q ∈ [0, 1] (2)

where q is the explanatory power index of the influencing factors of land use degree. The greater the
q value, the greater the effect of the independent variable x on the heterogeneity of land use. Nh is the
number of samples of the sub-regions h; N is the total sample size; σ and σ2 denote the total variance
and variance of samples in sub-region h, respectively.

3. Results

3.1. Variable Importance Analysis and Accuracy Assessment of LULC Classification

The RF model can analyze the importance of characteristic variables, which improves classification
accuracy while reducing data redundancy and processing workload. We used the explain method on
the classifier to view the importance of characteristic parameters on the GEE platform. The higher the
importance score indicated, the greater the impact and contribution of the variable to the classification
results. Our results showed that elevation had the highest importance score among all the characteristic
variables; its average value was greater than 1100 (Figure 4). Slope, MNDWI, and NDVI followed, and
they are more important for the identification of water body and vegetation. The importance score of
other characteristic variables for LULC classification remained stable (Figure 4).

Remote Sens. 2020, 12, x  8  of  18 

MNDWI, and NDVI followed, and they are more important for the identification of water body and 

vegetation. The importance score of other characteristic variables for LULC classification remained 

stable (Figure 4). 

 

Figure 4. Importance distribution of characteristic variables in LULC classification. 

The  accuracy  of  the  classification  result  is  an  important  prerequisite  for  analyzing  LULC 

changes. Our classification results showed that the overall accuracy was 90.08%, 89.54%, and 91.41% 

for 2000, 2009, and 2018, respectively, and the kappa coefficient was 87.63%, 87.06%, and 89.40% for 

2000, 2009, and 2018,  respectively  (Table 3). The overall accuracy of  the classification  reached  the 

acceptable threshold, indicating that the classification accuracy could meet the requirements of the 

LULC classification. The confusion matrix showed detailed classification accuracy  for each LULC 

type (Table 3). Furthermore, in order to further evaluate our classification result, we compared it with 

FROM‐GLC10 products (Figure 5). As a whole, the spatial distribution of the main LULC types was 

consistent through visual manual inspection. This study has a finer effect on wetland classification, 

but there are some misclassifications of farmland (Figure 5). 

Table  3. Confusion matrix of  the  classification. The user’s  accuracy, producer’s  accuracy, overall 

accuracy, and kappa coefficient for LULC classification are shown (Unit: %). 

LULC Types 

2000  2009  2018 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

User’s 

Accuracy 

Producer’s 

Accuracy 

Farmland  75  79.41  78.68  90.56  83.33  84.67 

Grassland  87.64  93.97  90.27  91.54  90  84.70 

Forest  99  98.01  94.62  94.62  96.77  97.27 

Water  92.85  84.41  95.23  88.49  93.25  93.78 

Wetland  86.48  82.05  86.66  92.85  91.89  82.92 

Construction land  86.36  90.47  91.22  77.61  91.87  93.03 

Unused land  88.88  100  83.33  83.33  69.23  90 

Overall accuracy  90.35  89.14  91.41 

Kappa coefficient  87.97  86.55  89.40 

Figure 4. Importance distribution of characteristic variables in LULC classification.

The accuracy of the classification result is an important prerequisite for analyzing LULC changes.
Our classification results showed that the overall accuracy was 90.08%, 89.54%, and 91.41% for
2000, 2009, and 2018, respectively, and the kappa coefficient was 87.63%, 87.06%, and 89.40% for
2000, 2009, and 2018, respectively (Table 3). The overall accuracy of the classification reached the
acceptable threshold, indicating that the classification accuracy could meet the requirements of the
LULC classification. The confusion matrix showed detailed classification accuracy for each LULC
type (Table 3). Furthermore, in order to further evaluate our classification result, we compared it with
FROM-GLC10 products (Figure 5). As a whole, the spatial distribution of the main LULC types was
consistent through visual manual inspection. This study has a finer effect on wetland classification, but
there are some misclassifications of farmland (Figure 5).
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Table 3. Confusion matrix of the classification. The user’s accuracy, producer’s accuracy, overall
accuracy, and kappa coefficient for LULC classification are shown (Unit: %).

LULC Types
2000 2009 2018

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

User’s
Accuracy

Producer’s
Accuracy

Farmland 75 79.41 78.68 90.56 83.33 84.67
Grassland 87.64 93.97 90.27 91.54 90 84.70

Forest 99 98.01 94.62 94.62 96.77 97.27
Water 92.85 84.41 95.23 88.49 93.25 93.78

Wetland 86.48 82.05 86.66 92.85 91.89 82.92
Construction land 86.36 90.47 91.22 77.61 91.87 93.03

Unused land 88.88 100 83.33 83.33 69.23 90
Overall accuracy 90.35 89.14 91.41
Kappa coefficient 87.97 86.55 89.40

3.2. Spatiotemporal Characteristics of LULC Changes

The LULC maps of Gannan Prefecture in 2000, 2009, and 2018 are shown in Figure 6. Grassland
was the main LULC type, occupying more than 55% of the total land area, and was mainly distributed
in northwestern Gannan Prefecture (Maqu, Luqu, and Xiahe). The forest land was mainly concentrated
in the southeastern regions of Gannan Prefecture, with an area ratio of approximately 25%. The
farmland was mainly distributed in Lintan county, with approximately 10% of the total land area. The
construction land area was the smallest, less than 0.71%. From 2000 to 2018, the area of forest land,
construction land, and unused land expanded, especially the percentage of forest land area, which
increased from 24.68% to 28.18%. However, during that period, the grassland and wetland gradually
decreased (Figure 6d).
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3.3. LULC Transformation

To observe the changes in various LULC types, we used the spatial analysis method to create the
2000–2018 LULC changes transition matrix and mapped them. From 2000 to 2009, in general, grassland
and wetlands decreased, and farmland, forest land, and construction land expanded (Figures 7a and 8a).
Among these, 623.44 km2 and 1026.87 km2 grassland was transformed into farmland and forest land,
respectively. The expansion of construction land came from farmland, while the forest land was mainly
converted into farmland (Figure 7a). In addition, approximately 712.15 km2 of wetland was converted
to grassland, and the most obvious expansion of grassland occurred in Maqu (Figure 8a).

Similarly, from 2009 to 2018, the areas of farmland and grassland continued to decrease, while
forest land, wetland, and unused land expanded (Figures 7b and 8b). Specifically, farmland was mainly
converted into forest land (662.06 km2), construction land (148.51 km2), and grassland (87.06 km2)
(Figure 8b). Compared with the period from 2000 to 2009, the area of expanded construction land
increased. The grassland continued to degrade during this period, and the grassland was mainly
converted into forest land (858.14 km2), wetland (513.65 km2), and unused land (299.82 km2), which
primarily occurred in Maqu, Diebu, and Zhouqu. At the same time, some of the water body area was
converted to unused land.

Comparing the spatial-temporal changes in LULC between 2000–2009 and 2009–2018, we found
that the farmland area increased first and then decreased, but the wetland area followed the opposite
trend. In general, between 2000–2018, the grassland was continuously degraded, and the area under
forest land and construction land gradually increased. The water body area did not change much,
and the area of unused land also increased, which was mainly caused by grassland and water
body shrinkage.
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3.4. Degree of Land Use Change

We calculated the dynamic degree of land use based on the LULC dataset of Gannan Prefecture.
The spatial changes in land-use intensity represent diversified types and multi-level intensity, and
the overall land-use intensity in the northeast was higher than that in the southwest (Figure 9). The
high land-use intensity was primarily concentrated in Lintan, Zhuoni, Hezuo, and the north of Xiahe,
which were mainly affected by farming and other human activities. Correspondingly, the land-use
intensity of Maqu, Luqu, and Zhuoni was relatively low. From these results, we detected that the
most noticeable land-use intensity in Gannan Prefecture was with regard to farmland. In addition,
the land-use intensity of Gannan Prefecture gradually increased between 2000–2018, but the change
was slight.
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3.5. Analysis of Driving Mechanisms in LULC Changes

Factor detection revealed the influence of each factor on land-use intensity. The calculated q values
of anthropogenic and natural factors (Table 4) indicate that the effect of each factor on land-use intensity
was significantly different. In general, from 2000 to 2018, the q values of elevation, population density,
and soil types all explained the land-use intensity by more than 0.36. Therefore, elevation was the
main natural factor affecting LULC changes in Gannan Prefecture. With economic developments, the
q values of GDP, livestock quantity, and chemical fertilizer consumption were greater than 0.1137 and
demonstrated an increasing trend. In 2018, the q values of these three variables were higher than 0.3117,
especially for livestock quantity (0.3757), indicating that grazing is an important factor driving LULC
changes. However, the influence of slope and aspect on LULC changes is very small. The q value of
vegetation type on LULC changes was maintained at approximately 0.36 to 0.39. In addition, each
driving factor of land-use intensity was tested by significance (p < 0.001), except slope and aspect.

Table 4. Influence of anthropogenic and natural factors on LULC changes between 2000–2018.

Year Anthropogenic Factors Natural Factors

2000
Factor X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

q 0.4062 0.2231 0.1930 0.3071 0.3575 0.0509 0.4689 0.0062 0.0041 0.2690 0.3848
p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 1 0.000 0.000

2009
q 0.3796 0.2601 0.1137 0.3904 0.3103 0.2432 0.4486 0.0083 0.0029 0.2572 0.3604

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 1 0.000 0.000

2018
q 0.3740 0.3117 0.3757 0.3731 0.2077 0.4013 0.4544 0.0086 0.0023 0.2780 0.3952

p value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1 1 0.000 0.000

Note: the q values indicate the explanatory power of each factor on LULC changes.
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4. Discussion

4.1. Analysis of LULC Classification Variable Importance and Result Verification

This study constructed various characteristic variables on the GEE platform and used the
RF machine algorithm to classify LULC in Gannan Prefecture. The RF algorithm provides
flexibility to include different data types in the modeling process and accurately classifies the LULC
heterogeneity [50,51]. The variable importance analysis shows that elevation makes the greatest
contribution to LULC classification (Figure 4), perhaps because of the high elevation and complex
topography of the area, which has a significant impact on the spatial distribution of precipitation,
temperature, and vegetation types [25]. The slope can be significant for the spatial distribution of
farmland, water body, and wetlands. Hoshikawa et al. [52] also found that terrain has a significant
influence on LULC classification. The MNDWI and NDVI are accurate and widely used in extracting
water bodies and vegetation [53,54].

The overall accuracy and kappa coefficient were reasonable, as, according to the USGS survey,
the recommended threshold is 85%, and Gashaw et al. [55] recommends 80%. However, we found
errors in LULC classification in some areas through manual visual interpretation. Accurate training
samples and validation samples are very important for classification accuracy [56], so the classification
errors in our results are partly due to impure training samples capturing mixed LULC types. From
2000 to 2018, according to the users’ accuracy and producers’ accuracy of LULC classification results,
the classification accuracies of grassland and forest land were the highest. This may be because the
grassland and forest land in the study area are relatively concentrated. To further validate the study, our
results were compared with those of Gong et al. [35], which were found to be consistent with our results;
in particular, the wetland classification effect of this study is more refined. However, some farmland
and grassland areas were misclassified, which may be caused by grassland degradation, resulting
in similar spectral characteristics between farmland and grassland, and generates “salt-and-pepper”
effects, which mainly occurred in Xiahe county.

4.2. Temporal-Spatial Variation of LULC Changes

LULC changes are influenced by the interaction between humans and the environment at different
spatial and temporal scales. Monitoring LULC changes can help us understand the causes of their
dynamic changes, and it supports land management and decision-making [57]. Our LULC classification
results indicated that grassland was the main LULC type in Gannan Prefecture, followed by forest land
and farmland, which was consistent with other existing global LULC products [35]. Comparing the
LULC changes in Gannan Prefecture in the periods of 2000–2009 and 2009–2018, the change trajectories
of the main LULC types in these two periods were the same. The grassland has continued to decline,
but the forest land shows the opposite trend. The farmland area expanded broadly before 2009 and
decreased after 2009. The difference can probably be attributed to the continuous implementation
of the Project of Grain for Green. The expansion of construction land was faster after 2009, which
might be due to the national development strategy promoting the accelerated development of western
China [34]. Moreover, the wetland area increased from 2009 to 2018, which was mainly due to the
increase in annual mean precipitation, but there was still a decreasing trend compared with 2000.

The change in land-use intensity reflects the disturbance degree of human activities on natural
resources [58]. The land-use intensity of Gannan Prefecture has significant spatial differentiation
characteristics. The high land-use intensity is mainly concentrated in the northwest of Gannan
Prefecture, in which there are transition zones for agriculture, pastoral and forest areas, the terrain
is relatively flat, and the climate is suitable, which is conducive to the growth of crops, especially in
Lintan. These areas are dominated by farmland and construction land, so the regional land exploitation
is relatively high. However, the southwestern part of Gannan Prefecture is high in elevation, and
people’s livelihoods depend largely on grazing Tibetan sheep and yaks, so the degree of land use
development is low.
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4.3. Major Drivers of LULC Changes

LULC is a complex process affected by natural, social, and economic factors. Here, we explain
the driving mechanism of LULC changes by analyzing the relative importance of natural and human
disturbances. Generally, LULC changes are greatly affected by human activities. Our results showed that
from 2000 to 2018, population density explained much of the LULC changes. This finding agrees with
previous reports that the LULC changes driven by human activities are increasing [19]. Furthermore,
economic development significantly changed the LULC in Gannan Prefecture. Wang et al. [3] found
that the rapid development of tourism and infrastructure has attracted an increasing number of
agricultural workers to the urban areas on the TP. Similar to many other regions in China, construction
land expansion is mainly due to the conversion from farmland near the major cities [36]. Luan et al. [59]
also found that population growth significantly increased the rapid expansion of Pan-Third Pole cities
around the TP. Unlike other developed regions, livestock grazing activities are the most common factor
influencing LULC changes in Gannan Prefecture [18]. The factor detection showed that the impact of
livestock quantity on LULC changes in 2018 was second only to elevation. This result indicates that
grassland degradation is relatively severe where overgrazing and social productivity are high [60].
In addition, Meng et al. [25] reported that the grassland coverage in Xiahe has declined in the past
17 years.

LULC changes are also closely related to natural factors [18]. Our results showed that from
2000 to 2018, elevation was the most important natural factor, possibly because in alpine regions,
elevation determines human activities and affects the LULC pattern. The high elevation limits the
urbanization process in this area and generates an unsustainable land expansion model [59]. In addition,
Wang et al. [61] reported that topography affects the LULC classification of the Qilian Mountains. The
change in environmental conditions can control the process of LULC changes [62]. In our study, the
influence of vegetation and soil type on LULC change remained relatively stable, with explanatory
powers of 0.26 and 0.36, respectively. These results highlighted that the soil type in alpine regions is
difficult to change significantly in the short term, and that climate change is the main factor affecting
the distribution of vegetation in Gannan Prefecture [25]. Specifically, our results showed that the effects
of precipitation and temperature on LULC changes were different. From 2000 to 2018, the impact of
precipitation on LULC changes gradually increased, whereas the temperature showed the opposite
trend, especially in the wetland area. Wang et al. [63] similarly proposed that the significant increase of
wetland areas was primarily driven by the positive precipitation trend on the TP.

4.4. Advantages and Limitations of the Current Study

The GEE cloud computing platform has unique computing capabilities, free satellite images,
integrated APIs, and researchers can process massive geographic data [14]. In addition, the dense
time stack of Landsat images can solve the problems in analyzing the data from cloudy alpine regions.
Based on GEE, the image cloud removal method and the training sample can quickly and accurately be
applied to the Gannan Prefecture LULC classification. Although GEE contains a large number of image
archives, there are some computational limitations when processing images. For example, in some
cases, users will encounter internal problems when performing a large number of data calculations,
such as calculation timeout, exceeding user memory, and limitations of the output size [44].

Factor detection found that the influence of natural factors on LULC changes in Gannan Prefecture
is greater than the influence of the anthropogenic factors, which might be caused by the fragile ecological
environment and lack of investment and transportation [18]. However, with economic development,
the contribution of socioeconomic factors to LULC changes has increased. In addition, the statistical
data in this study are spatialized using the assignment method, which leads to the problem of data
uniformity in the spatial unit. Therefore, it is essential for the spatialization of socioeconomic data in
the future to establish a comprehensive model that integrates multi-source data.
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5. Conclusions

The study used the dense time stacking of multi-temporal Landsat images and the RF machine
learning algorithm to map the LULC in Gannan Prefecture, and then analyze potential driving forces
based on geographic detectors. Our results demonstrated that from 2000 to 2018, Gannan Prefecture
was dominated by grassland, followed by forest land and farmland. Grasslands and wetlands gradually
degraded from 2000 to 2018, while forest land, construction land, and unused land expanded. Grassland
was mainly converted to forest land. The high land-use intensity was distributed in Lintan, northern
Xiahe, and Hezuo. The overall land-use intensity of Gannan Prefecture was higher in the northeast
than in the southwest, and these areas are relatively flat, mainly consisting of cultivated land and
construction land. In addition, the importance analysis of all variables using the RF model found that
elevation was the most important characteristic variable for LULC classification in Gannan Prefecture.

The driving factor analysis also found that elevation was the most important factor affecting
the LULC in Gannan Prefecture. However, with economic development, the driving effects of
anthropogenic factors on the LULC have gradually expanded. In 2018, population density, GDP,
livestock quantity, and chemical fertilizer consumption had an explanatory power exceeding 0.3117
for LULC changes, which indicates that economic development has promoted LULC changes. In
conclusion, our study results indicate that elevation restricts the dominant factors of LULC changes in
alpine regions. The study provides results that revealed the land use mechanism in the northeastern TP.
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