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Abstract: Damage mapping using Synthetic Aperture Radar (SAR) imagery has been studied in
recent decades to support rapid response to natural disasters. Many researches have been developing
coherent and incoherent change detection. However, their performances can vary depending on
the types of the damages, the characteristics of the scatterers and the corresponding capability of
algorithms. In particular, the coherence-based methods have been used as promising detectors
over urban areas where high coherences are observed, but their detection accuracies still remain
controversial over the area where low coherences are mainly observed such as the 2018 Hokkaido
landslides. In order to understand the characteristics of landslide (damage) detectors for low-coherence
areas and find an alternative and complementary method, we designed the coherence difference,
coherence normalized difference, log-ratio, intensity correlation difference, and normalized differences
of the intensity correlation assuming limited availability of dataset, and also developed multi-temporal
algorithms using the coherence, intensity, and intensity correlation. They were tested and evaluated
using multiple polygons extracted from aerial photos. We were able to observe that the multi-temporal
intensity correlation method has the potential to detect the landslides over the low coherence region
and all types of land uses.

Keywords: landslide detection; coherent change detection; incoherent change detection; synthetic
aperture radar; natural disaster

1. Introduction

Damage mapping using a synthetic aperture radar (SAR) has been widely used for decades as
a key application in the remote sensing field. One of the strengths in the use of SAR imagery is the
availability regardless of the meteorological conditions and sun illumination. Thus, even though the
cloud-free optical imagery is unavailable in urgent event situations, SAR sensors can acquire imagery
over a region where severe damages are predicted. In addition, several recent and expected future
SAR satellite missions are designed as constellations of multiple SAR sensors. Such constellations
can provide better temporal sampling over the target region as well as respond quickly to the natural
disaster. Therefore, SAR imagery and its products have high potential and future SAR constellation
missions will dramatically open up an unprecedented opportunity for urgent disaster response.

In recent decades, a number of damage or change detection algorithms using SAR imagery have
been developed and used for a variety of natural disasters. These change detection algorithms can be
classified into two main categories—(1) coherent and (2) incoherent methods—depending on whether
or not interferometric phase information is used.
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The coherent change detection (CCD) technique uses the interferometric phase, enabling not only
measurement of the surface displacement [1–4] but also quantification of the change in the scattering
characteristics, namely interferometric coherence (hereafter coherence), between two SAR images.
The change detection techniques based on the coherence measurement have been developed and
adopted for a variety of natural disasters such as earthquakes [5–9], tsunami [10], volcanic ash [11],
landslide [12] and forest fire [13,14].

Incoherent change detection (ICD) methods utilize the amplitude or intensity values without
interferometric phase information by calculating how much backscatter brightness has changed due to
natural disaster events using the difference or ratio of SAR images acquired before and after the event.
The incoherent change detectors rely on the property that the backscattering signal is disturbed from
the changes in the dielectric characteristics such as soil moisture, ground electric conductivity, dielectric
permittivity [15] or surface roughness as well as the changes in the structural properties induced from
the construction/collapse of building and infrastructure and forest fall/growth. Since ICD is intuitive
and relatively simple to process the data, the techniques have a longer history of development than
CCD. The ICD techniques have been widely used for a variety of natural disasters such as flood [16–18],
forest fire [19,20], earthquake [10,21], landslide [22–25], etc.

The CCD and ICD approaches estimate different severity of the damage. The CCD has the potential
to detect the subtle damage unseen through the optic sensor by quantifying the phase disturbance,
and the ICD techniques are suitable for the relatively large-scale damage which is inducing the changes
in the backscatter intensity [26,27]. According to the literature [26], the coherence methods usually
show better performance than the amplitude-based methods in urban areas. However, CCD, which
detects the coherence drop (i.e., decorrelation), does not work well over an area where pre-event
coherence is already low. Moreover, the decorrelation often happens in nature. Flat surfaces such
as flat water body, paved roads, etc., show the low amplitude by mirroring the radiated microwave
away from the sensor. Accordingly, the low returned signal leads to the low signal-to-noise ratio
(SNR), i.e., thermal decorrelation. The volume structure such as trees may lead to the decorrelation by
distributing the height of backscattering. The relocation of scatterers in a resolution cell is also another
decorrelation source. Therefore, CCD analysis requires careful investigations over an area that is likely
to be decorrelated.

Conventionally, the damage assessment has been performed using the difference and ratio
between pre- and post-event images/products. The log intensity ratio, which is the simplest approach,
requires two images—one before and one after the event. Meanwhile, the coherence-based or intensity
correlation-based approach needs three images by pairing two images acquired before the event
(reference pair), and two images before and after the event (co-event pair). These procedures are
usually fast and efficient for rapid responses. When the stack of SAR imagery, which consists of
more than three images, is available, the multi-temporal approach can be adopted [11,28–30]. In the
multi-temporal approach, the historical and time-series changes induced by the natural phenomena,
such as seasonal change, and trend can be extracted and analyzed as well as alleviating the noise.
We can compare the reference data and post-event data and detect the abnormal signal assuming
the reference images as a representative signal without natural disasters. This procedure usually
ensures high reliability compared to conventional methods. Here, the choice of conventional methods
(hereafter, quick-product methods) and multi-temporal methods depends on how much data is
available. Therefore, the different scenarios based on the quick-product and multi-temporal approaches
need to be prepared to give a rapid response.

Landslides, one of the most destructive types of natural disasters, cause significant numbers
of economic damages and casualties. The M6.7 earthquake in Hokkaido, Japan, in September 2018,
induced ~6000 landslides, resulting in 41 casualties, injuring 691 people, and destroying 394 houses.
Therefore, timely information about the specific location and spatial extent is crucial for the rapid
response and urgent rescue. In the perspective of landslide mapping using SAR data, many types of
research have been focusing on a simple comparison of images before and after the landslides based
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on intensity and intensity correlation measurements. However, the quantitative analysis of landslide
mapping algorithms for the diverse land use types and the potential of the multi-temporal analysis
have not been fully documented.

In this paper, we adopted the proposed methodologies used for landslide detection from many
studies. In addition, we designed novel landslide detection algorithms, especially the multi-temporal
approaches based on coherence, intensity, and intensity correlation. We also tried to evaluate their
performances to identify which approach is the most informative considering the land use types
where the landslides occurred. We considered two different scenarios—the quick-product and
multi-temporal approaches—assuming a rapid response case. We test the algorithms on the Hokkaido
M6.7 seismic event (Eastern Iburi, Japan), which occurred in September 2018 and generated thousands
of landslides. We used a dataset of 17 ascending scenes of Advanced Land Observing Satellite 2 (ALOS
2), Phased Array type L-band Synthetic Aperture Radar-2 (PALSAR-2) images. The details of the
landslide are provided in Section 2. The methodologies to detect landslides are described in Section 3.
Their performances are evaluated in Section 4.

2. Hokkaido (Eastern Iburi) Landslides

On 6 September 2018, the M6.7 earthquake, with its epicenter located at 47.686 N, 141.929 E and a
depth of 35 km, struck the Hokkaido prefecture, Japan. The powerful ground motion of the earthquake
caused not only structural damage to buildings and liquefaction on the ground but also thousands of
landslides [31,32] (Figure 1). Those landslides killed 41 people and buried a number of houses and
buildings. Most of the landslides were caused by shallow failures and categorized as planar and spoon
types [32]. In the southeastern part of the area, the deep-seated landslides of dip-slipping were found.

Investigation revealed that the earthquake-induced ground motion, precipitation of Typhoon Jebi,
and geological setting jointly contributed to the massive number of landslides [32,33]. According to [33],
ground motion played a fundamental role in the massive number of landslides. Ground motion
show high-amplitude, low-frequency narrow band pulses that induce significant displacements and
accelerations on natural slopes [34]. The earthquake can cause the slopes to be unstable by causing a loss
of strength in the slope material. According to the Japan Meteorology Agency (JMA), the earthquake
triggered sudden slope failures [35]. In addition, the basement of the study area is composed of Neogene
sedimentary rocks and covered mostly with pumice layers with a thickness of 1.5 m. The surface
layers are inter-bedded with the pumice and ash, with a thickness of 4–5 m [32]. The volcanic deposits
are generally characterized as high mobility layer compared to non-volcanic deposits due to their
differences in granularity, collapsibility and water content [35]. Further, the Typhoon Jebi passed over
Japan a few days before the earthquake and its precipitation had reached approximately 100 mm for
3 days. The rapid increase in pore water pressure in the pumice of upper layers could have led to the
reduction in the shear resistance and played a role in the mobility of the landslides [33].

Immediately following the landslides, the Geospatial Information Authority of Japan (GSI)
acquired aerial imagery over the whole area affected by the landslides on 6, 11 and 12 September 2018.
The images clearly show the landslide scarps and debris deposits. Further, they manually extracted the
landslide area using visual inspection and released the polygon product on their website (Figure 1b).
They found more than 6000 landslide scarps and 1000 associated debris deposits [32]. We used these
products to evaluate the performance of the landslide detection algorithms explained in Section 3.
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Figure 1. (a) Aerial photo acquired over Hokkaido, Japan. Left upper figure shows the geolocation of 

Hokkaido, Japan and Left middle shows the amplitude of Synthetic Aperture Radar (SAR) imagery 

and Area of Interest (AOI). Yellow boxes represents three test case areas 1–3. (b) Polygons of 

landslides extracted from aerial photos acquired from Geospatial Information Authority of Japan 

(GSI). Red polygon represents the boundary of SAR coverage. 
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Their spatial resolutions are 3 m in range and 3 m in azimuth. The imagery was acquired with HH 

polarization and their incidence angles are approximately 43 degrees. All images are radiometrically 

calibrated and are co-registered using ISCE software [36–38].  

If we have N+1 SAR images assuming the major event occurs between image N and N+1, then 

the complex reflectivity of the Single Look Complex (SLC) stack can be expressed as follows 

Figure 1. (a) Aerial photo acquired over Hokkaido, Japan. Left upper figure shows the geolocation of
Hokkaido, Japan and Left middle shows the amplitude of Synthetic Aperture Radar (SAR) imagery
and Area of Interest (AOI). Yellow boxes represents three test case areas 1–3. (b) Polygons of
landslides extracted from aerial photos acquired from Geospatial Information Authority of Japan (GSI).
Red polygon represents the boundary of SAR coverage.

3. SAR data and Landslide Detection Methods

In order to detect landslides, we collected L-band ALOS2 PALSAR2 acquired from 11 January
2018 to 6 September 2018. The 17 scenes were acquired along the ascending orbit with left-looking
and Ultra-Fine-Beam mode. Among the dataset, only the last image was acquired after the landslides.
Their spatial resolutions are 3 m in range and 3 m in azimuth. The imagery was acquired with HH
polarization and their incidence angles are approximately 43 degrees. All images are radiometrically
calibrated and are co-registered using ISCE software [36–38].
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If we have N + 1 SAR images assuming the major event occurs between image N and N + 1, then
the complex reflectivity of the Single Look Complex (SLC) stack can be expressed as follows

Xk = b(k) exp( jθ(k)) + n(k) k = 1 · · ·N + 1 (1)

where b and θ represent the amplitude and phase, respectively, and n is the zero-mean circular
complex Gaussian random variable, with a standard deviation σk. The backscattered power
describes the interactions of the propagated electromagnetic wave with the scattering structure.
Meanwhile, the phase θ is contributed from the scattering phase and distance between sensor
and target including displacement, atmospheric phase delay, and topographic information. It is
worth noting that the SLC stack has only one image acquired after the event, assuming the rapid
response scenario.

In this study, we designed the landslide detection algorithms utilizing coherent and incoherent
sources from the SLC stack to obtain the measure of changes. Coherence, intensity and intensity
correlation are the representative measurements that have conventionally been used for change
detection. Furthermore, we considered two scenarios depending on the number of available
data: (1) a quick-product approach assuming a few images are available and (2) multi-temporal
approach assuming we have enough numbers to analyze the temporal behavior as shown in Figure 2.
Here, the quick-product scenario represents the comparison methods between the pre-event products
and co-event or post-event products. In the case of the multi-temporal approach, we compared the
reference group consisting of pre-event products to event groups consisting of co-event products.
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Figure 2. Workflows of quick-product and multi-temporal approaches. Here, a disaster event occurs
between Nth and (N + 1)th acquisition time. Quick products (green lines) include the coherence
difference, coherence normalized difference, log-ratio of intensity, intensity correlation difference,
and normalized difference of intensity correlation. The multi-temporal approach (bule lines) includes
the multi-temporal coherence method, multi-temporal intensity correlation method, and time-series
intensity method.

To preserve the consistency of the spatial resolution of each method, we obtained the intensity
value by multi-looking the SLC stack with 16 × 16 windows. Further, the coherences were estimated
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using the 16 × 16 multi-looked intensities and the 16 × 16 multi-looked interferograms. The intensity
correlations were calculated from the 16 × 16 window.

3.1. Coherence-Based Method

The complex coherence is defined as the correlation coefficient between two SAR scenes:

γm,n =

∣∣∣∣∣∣∣∣∣
E
{
XmXne− jϕmn

}
√

E
{
|Xm|

2
}
E
{
|Xn|

2
}
∣∣∣∣∣∣∣∣∣ m, n = 1 · · ·N + 1 (2)

where Xm and Xn denote the complex pixel values of mth and nth SAR scenes, respectively. We estimated
the topographic phase and flat-earth phase,ϕmn using from satellite orbits and Shuttle Radar Topography
Mission (SRTM) digital elevation model (DEM) [39]. Thus, the coherence estimator of Equation (2) uses
the phase of differential interferograms, which is correlated to displacement and atmospheric phase
delay, to prevent the decorrelation caused by high fringe rate due to the steep slopes. Further, we used
only the magnitude of coherence. In theory, the magnitude of the complex coherence is determined
by the physical conditions of the scatterers, radar parameters, and the imaging geometry of the
satellite. It is usually described as a product of four main components—geometric, thermal, volumetric,
and temporal decorrelation [40]. Thermal decorrelation is a function of the SNR, which is related to the
quality of the SAR imagery, and the backscattering characteristics responding to the electro-magnetic
microwave. The geometric decorrelation is induced by the slightly different positions of satellites
during the two acquisitions. The volumetric decorrelation is generally explained with the multiple
scattering within volumetric targets due to the complexity of the scattering mechanism. The Random
Volume over Ground (RVoG) model is one of the models to interpret the interferometric coherence
observed over the forest target [41–43]. The temporal decorrelation is caused by changes (dielectric
and/or structural properties) in targets on the ground. The abnormal signals from disaster events
are directly related to the temporal decorrelation. Therefore, we exploit the characteristics of the
temporal coherence.

Every change between the two acquisition times of the interferometric pair leads to the loss of
coherence. In the case of the pair with the short temporal baseline (less than a few hours), the relocation
of the scattering components in the pixel caused by the wind, especially in canopy, can lead to the
decorrelation [44,45]. For the long temporal baseline (more than several days), the complexity of the
natural changes including changes in the dielectric properties and location of the objects caused by
rain, snow, wind, moving objects, etc., need to be taken into account [14]. Since the SAR imagery
acquired at the satellite currently operating has a revisit time interval of several days, the scenario for
the long temporal baseline needs to be considered. The changes caused by the major natural disaster is
also one of the decorrelation sources.

In the aspect of the quick-product approach, the discrimination between decorrelations caused
by natural disasters and natural phenomena can be achieved through the coherence difference,
γCD, and the coherence normalized difference, γNCD, between the pre-event coherence and co-event
coherence [5,9,46].

γCD = γN−1,N − γN,N+1 (3)

γNCD =
γN−1,N − γN,N+1

γN−1,N + γN,N+1
(4)

These approaches have two assumptions: (1) the event-derived decorrelation is stronger than the
nature-derived decorrelation and (2) the decorrelation of the natural phenomenon can be negligible or
canceled out during the difference and ratio operator. In general, the identical temporal baselines for
two pairs are required to safely satisfy the second assumption.

However, the second assumption may not be guaranteed for all cases, in particular for pixels with
the objects easily affected by the natural changes. For example, the pre-event coherence may not be the
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representative value when temporal decorrelation caused by natural phenomenon is dominant. On this
point, we can find why the multi-temporal coherence analysis is necessary because the historical
behaviors to the natural changes can be exploited and the possibility can be estimated as to whether
the decorrelation is caused by natural phenomena or by the major disaster.

Several kinds of literature have developed the multi-temporal coherence analysis by making a
covariance matrix consisting of coherences for all interferometric combinations [11,14,28]. J. Jung et
al. [11] introduced the multi-temporal coherent change detection method incorporating the temporal
decorrelation model to interpret the temporal decorrelation patterns and isolate the contribution of
natural disasters from the natural phenomena. [11,14] The temporal decorrelation model was designed
from the basic frame of the RVoG model, which has volume and ground layers, by adding the temporal
decorrelation terms as below.

γ =
exp

[
−

∆T
τv

]
γv

t_rand + µ exp
[
−

∆T
τg

]
γ

g
t_rand

1 + µ
(5)

From the above equation, the temporal decorrelation model describes not only decreasing coherence
with time intervals as shown as a green line in Figure 3a, as well as the random loss of coherence.
The losses of the coherences with time intervals were modeled by the exponential functions with the
temporal baseline ∆T. The terms, τg and τv, indicate the characteristics of time-correlated decreases
for ground and volume layers, respectively. They are realistically assumed that the coherence of the
volume layer is fast decayed and the ground layer remains relatively stable, i.e., τg > τv. The model
also has the terms describing the random temporal changes that are not explained with the exponential
decay function, namely temporally uncorrelated changes, i.e., γv

t_rand and γg
t_rand. Since the coherence

is determined as the effective sum of the ground and volume layer contributions, the model has the
ground-to-volume ratio, µ, to balance their contributions. The role of this model in terms of anomaly
detection is that the event-derived decorrelation can be highlighted by estimating and detrending
the time-dependent decaying coherence. As shown in Figure 3a,b, the decorrelation caused by the
natural phenomena (blue circles in Figure 3a, and blue bars in Figure 3b can be characterized using
the temporal decorrelation model and statistical histogram. Meanwhile, the strong phase disturbance
caused by the natural hazards (red squares and red bar in Figure 3a,b respectively) drops the coherence
to zero with the loss of the coherent signal. Therefore, abnormal behaviors over the time intervals
can be isolated from the reference group and detected through the multi-temporal coherence analysis.
The model parameter estimations were carried out with the least-regression methods [11].

The estimated model parameters are reintroduced into the estimation of the anomaly possibility
map. The temporally uncorrelated terms indicate how the objects react to the natural changes without
the exponentially decaying behavior. Thus, if a certain phenomenon strongly affects the object in
the pixels, the method calculates the probability by comparing it with the historical decrease in the
coherence. If the calculated probability is located near the middle of the histogram, it can be recognized
as a casual phenomenon. In contrast, the probability is located at the end of the histogram, then one
can guess the unusual phenomenon may occur (red histograms in Figure 3b). Therefore, the algorithm
can isolate the landslide-induced signal from the natural-phenomenal signal based on the frequency
and its strength observed from historical observations. Eventually, the multi-temporal methods can
enhance the accuracy of landslide (anomaly) detection.

However, both the quick-product and multi-temporal approaches may fail when the observed
coherence is always low independently with the time intervals. In this case, the observed coherence
does not have the capability to detect the disaster-induced decorrelation because reference values
are already close to zero. This behavior is often observed over flat surface areas such as water
surface, road, etc., due to the low-returned signal as well as objects prone to decorrelation (ex. forest).
Hence, the robustness of the coherence-based methods can be found over man-made structures such
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as houses and buildings because they have high SNRs and they are unlikely to be decorrelated even in
long temporal baselines [47].
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reference group and event group.

3.2. Amplitude-Based Method

In this study, the two different approaches are designed for the incoherent landslide detector, i.e.,
intensity analysis and intensity correlation analysis. From Equation (1), the intensity can be obtained
as Ik = |Xk|

2.

3.2.1. Intensity (Amplitude) Analysis

When two SAR images are obtained before and after the major event, the log-ratio of intensity is
calculated as

Iratio = 10· log 10
(

E{IN}

E
{
IN+1

} ). (6)

Since this method is simple and robust for a variety of cases, the log-ratio has been often implemented
for many change or damage detection cases. The landslide detection using the log-ratio value is
based on the basic assumption that landslides change the dielectric characteristics of the land cover.
Depending on the property changes before and after the landslides, the log-ratio can be either positive
or negative [24]. When the surface roughness increases as a result of the landslide, the backscatter
signal increases, and the Iratio consequently decreases. In addition, since the moisture contents of the
top layer of the surface soil have a positive correlation to the backscatter power, the changes in the soil
moisture affect the log-ratio. Therefore, either positive or negative change can be recognized as a result
of changes.

However, the log-ratio method using the pre-event and post-event scenes may lead to inaccurate
results when the seasonal or natural phenomena prevail inducing the harmonic pattern of the time-series
backscatter coefficient. For example, the dielectric characteristic changes by the seasonal precipitation
trend could be a reason for false alarm [18]. Also, the growth and fall of the forest leaves, which is a
volume scattering component, contribute to the total backscattering constant. Thus, the man-made or
natural phenomena derive seasonal behavior or may be misinterpreted as the anomaly in the log-ratio
analysis. In order to cope with this weakness, the multi-temporal analysis can be introduced. In this
study, the multi-temporal intensity analysis is designed with two steps, which are the (1) temporal
trends analysis and (2) multi-temporal assessment based on statistical distributions of intensity. In order
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to exploit the temporal trends, we modeled two major components, which are harmonic change and
the temporally linear trend as following [48].

Iobervation(t) = I0(t) +
k∑

i=1

ρisin
(

2πit
f

+ δi

)
+ αt (7)

where the second term describes the seasonal change and the third term is the linear trend. The pure
signal without the temporal trend, I0, is the estimated value from observation, Iobervation, i.e.,
multi-temporal intensity. The harmonic change term consists of the amplitude of sine function,
ρi, the frequency, f , and phase δi. The linear trend is simply determined by the slope of the time series,
α. The number of cycles, k = n/2, is possible to estimate with the sampling frequency 1/ f . According to
literature, in practice, a value of k = 3 has been found to be sufficient to model the temporal trend
on the scale of approximately four months [18,48]. The coefficients can be estimated using the linear
regression method for the time series. In order to avoid the impact of the disturbance caused by the
major event, the regression processes are carried out with only the pre-event images.

After detrending and deseasonalizing the time-series intensity, we can successfully assume that
the variation of the time-series intensity is governed by the statistical distribution of the intensity.
According to the literature [49–51], the multi-looked intensity by averaging the L single-look intensity
are described as the gamma distribution, as

p
(
I0
)
=

1
Γ(L)

(L
λ

)L
I0L−1 exp

(
−L

I0

λ

)
(8)

where Γ(·) is the standard gamma function, L represents the equivalent number of looks and λ indicates
mean intensity. In order to determine whether an arbitrary scene is changed by the natural disaster,
or unchanged comparing the statistical distribution observed in pre-event images, we can apply
the hypothesis test method. Let us assume that a null hypothesis, Ho, indicates no change, and an
alternative hypothesis, H1, represents change. For the multi-temporal approach based on the rapid
response scenario, the joint probability density function can be formulated for the Ho and H1.
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Here, the alternative hypothesis assumes that the intensity values have a gamma distribution
without any changes before the Nth image, and that the changes occur for the N + 1 image. λ is given
by the maximum likelihood estimates by averaging the time series of intensity values [50], i.e.,

λ1 =

∑N+1
m=1 Io

m

N + 1
, λ2 =

∑N
m=1 Io

m

N
, λ3 = Io

N+1 (11)

Substituting Equation (11) into the probability density function (PDF), the generalized likelihood
ratio test can be obtained as

Λ =
p
(
I0
∣∣∣H0

)
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λ3(λ2)
N

(λ1)
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m
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L

(12)

log Λ = L(logλ3 + N logλ2 − (N + 1) logλ1) (13)
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When the intensity after the event, Io
N+1, is perfectly identical to the averaged intensity value of images

acquired before the event, Λ becomes 1. In contrast, the Λ is closer to zero as the Io
N+1 is more different

to the normal status. It is worth noting that both positive and negative changes result in decreases in Λ.

3.2.2. Intensity Correlation Analysis

Intensity correlation is a quantity to measure the correlation between two scenes over the given
windows and is described as [52,53]

ρm,n =
E
{
(Im − Im)(In − In)

}
√

E
{
(Im − Im)

2
}
E
{
(In − In)

2
} m, n = 1 · · ·N + 1 (14)

where Im and In are two single-look intensity images. The intensity correlation identifies the changes
in the textural modulation of the intensity measurement [52]. One may notice that the form of
the formulation of the intensity correlation is similar to the coherence estimation (Equation (2)).
Here, the difference between the intensity correlation and the coherence is that the coherence is
determined with the changes in the phase. This difference enables us to detect the different range of
the damages: the coherence may have the advantage to detect the subtle changes unseen through the
optical imagery [26]. However, the coherence tends to be decorrelated when the scattering phase in a
resolution cell is prone to the natural phenomenon. Therefore, the short temporal baseline is usually
required to retrieve the reliable comparison of pre- and post-event coherence. On the other hand,
the loss of the intensity correlation is related to the changes in the dielectric characteristics, which is the
amplitude, not by the phase. Thus, the intensity correlation may have the possibility to still provide
the change information even in the long temporal baseline.

Similar to the coherence-based methods, the landslide detection strategies based on intensity
correlation can be designed when three SAR images are available. The difference, ρID, and normalization
difference, ρNID, of the intensity correlation can be formulated as follows

ρID = ρIre − ρIco (15)

ρNID =
ρIre − ρIco

ρIre + ρIco

(16)

When the multi-temporal SAR images are available, the intensity correlations can be obtained from
the combination of pairs. Then, the multi-temporal intensity correlation measurements can be divided
into the reference group, which consists of SAR images before the event, and co-event groups, which
consists of the intensity correlations between SAR images before and after the event. The reference
group involves the decorrelated signal caused by the natural and man-induced changes. One way
to evaluate the possibility of landslides included in the event group is to compare the frequency and
strength of the natural and man-induced decorrelations to the event group. It can be achieved by
building the histogram of the reference group representing how often the strong decorrelation occurred
before the event. Here, their effects are actually difficult to model, but, alternatively, we can estimate
their behaviors using the kernel density estimation (KDE) method as shown in Figure 4a [54]. KDE is a
statistical way to estimate unknown probability density function (PDF) by smoothing the finite and
discrete samples. We estimated smoothed pdf using the KDE method for the reference group and we
can convert it to cumulative density function (CDF). Then, we can estimate the position along the
CDF line for the co-event group and obtain the possibility of landslides (anomalies) pixel by pixel
(Figure 4b). If the positions of the event group along the CDF line are close to the end of PDF or
1 of CDF, this event group is assumed to show abnormal behavior, which has a high probability of
landslide-affected area. Since the intensity correlations of the co-event group also have the undesired
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contributions, i.e., natural and man-induced signals, their effects can be mitigated by averaging the
stack of possibility maps along the time axis.
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Figure 4. (a) Intensity correlation histograms for reference and event groups. The black line is the
estimated distribution for the reference group using the Kernel Desity Estimation (KDE) method.
(b) The cumulative density function (CDF) is calculated from the estimated distribution and probability
of event (red circles and green square).

4. Experimental Results

According to the land use map (Figure 5a) provided by Japan Aerospace Exploration Agency
(JAXA) (https://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm), the study area has a variety of land
use-types including urban, paddy, crop, bare soil, grass, deciduous forest, and evergreen forest [55].
Figure 5b illustrates the portion of each category of land uses over the whole study area. The study area
is mainly covered by forest including evergreen and deciduous forest (~71%). Further, 15% of the whole
study area is used as the agricultural area including crop and rice paddy area. This observation indicates
that most pixels over the study area are covered by the vegetation. We also investigated which land uses
were mostly affected by the landslides. Here, approximately 93% of the destroyed and affected area by
the landslides were mainly covered by the forest as shown in Figure 5c. Only 1% of the landslide-induced
damage occurred over the houses. In order to understand the coherence characteristics of land uses,
we averaged the pre-event coherences for each land use category. The average coherences of the forest
area show relatively low values (~0.18). Thus, the detection capability over the low coherence area is a
key factor to accurately detect landslides. We divided the whole area into three test cases (Figure 1a,b)
and tested using the quick-product and multi-temporal approaches.

https://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm
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Figure 5. (a) Land use map provided by Japan Aerospace Exploration Agency (JAXA) (https://www.
eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm). Black polygons represent landslide areas manually extected
from aerial photo (Figure 1a). Pie charts showing the portions of each land use for (b) the whole study
area and (c) the landslide area. (d) Histogram of the averaged coherences for urban, agricultural area,
and forest.

4.1. Quick-Product Analysis

First, we assume that the available data is limited. When only two images are available, acquired
before and after the event, the log-ratio of the intensity can be applied. When the two images obtained
before the event are available, we can test the difference and normalized difference for coherence and
intensity correlation. In the log-ratio analysis, the images acquired on 23 August 2018 and 6 September
2018 were used as the pre- and post-event images, respectively. Further, the pre-event coherence
and intensity correlation are calculated from images acquired on 9 August 2018 and 23 August 2018.
The co-event coherence and intensity correlation are made using images acquired on 23 August
2018 and 6 September 2018. Hence, the temporal baselines of the pre-event and co-event are identically
made using pairs with a 14 day time interval.

Figure 6 shows the results of the landslide detection algorithms for three test cases. The first test
case represents an area where the landslide caused huge damage to houses, along the foot of hills,
and over the parts of the crop area. The coherence difference and normalized difference of coherence
show similar spatial patterns, with distinct signals over the houses. The difference between the two
methods is that the coherence difference has a high level of false alarms over the crop area, while the
coherence normalized difference has less noise. The log-ratio method shows the strong changes over

https://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm
https://www.eorc.jaxa.jp/ALOS/lulc/lulc_jindex.htm
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the house, but also has a strong false alarm over the crop area. This implies the dielectric characteristic
may change during the interval before and after the event. In comparison, between the log-ratio image
and the coherence-based methods, the log-ratio method has relatively lower noise over the forest area.
In test case 1, the intensity correlation difference and normalized difference have better performances
over the crop area, with a similar performance for the houses in comparison with the other methods.
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Figure 6. Results of damage (landslides) detection algorithms for quick-product analysis (scenario
assuming limited availability of data). Test case 1 (left column) consists of houses and crop areas.
Test cases 2 (middle column) is mainly covered by forest. Test cases 3 (right column) has crops and forest
area. All images are rescaled to the range 0 to 1 for visualization. Red color indicates the high possibility
(or large difference from reference product) of event-induced changes (landslides). Black polygons
depict the landslide area extracted from aerial photos.



Remote Sens. 2020, 12, 265 14 of 26

In the case of the forested regions (test case 2), the landslides are only observed through the log-ratio
and intensity correlation. This implies that the landslides affected the dielectric characteristics or/and
surface roughness, and the incoherent methods are capable of detecting them. The coherence-based
methods show the noise and high false alarm rate. As a result, the coherence-based method does not
provide useful information on this case of the landslide.

The third case is covered by 12% of the crop area and 88% of the forest. The results are identical to
the second case, meaning that the intensity correlation and log-ratio methods detected the landslide
signals over the forest region. In comparison, between the difference and normalized difference of
intensity correlation, the normalized difference of intensity correlation depicted the higher values over
the landslide area. However, both detectors show the intermediate level of the landslides possibility
over the crop area, which represents that the changes over the crop area are being recognized as
the landslides. Unfortunately, we were not able to see the clear signal of the landslides though the
coherence-based methods. The normalized difference of the coherence seems to better detect landslides
but it also shows high false alarms over the crop area as well. The coherence difference only depicts
the intermediate level of the possibility over landslides and crop areas.

Since the test cases 1–3 consist of many objects with diverse characteristics, the observation from
test cases shows some insights on how the landslide detections using coherence, intensity, and intensity
correlation perform for the different land uses. Overall, the coherence-based methods are capable of
detecting the landslides over the human-made structures as shown in test case 1. However, they may
poorly work over the forest area as test cases 2 and 3. This proves that the decorrelation caused by natural
phenomena can lead to significant decorrelation and also severely affect the detection performance.
The log-ratio has the capability to find landslides over the forest, implying that the landslides affected
the dielectric characteristics and/or surface roughness. However, this property may contribute to false
alarms over crop areas where the backscattering changes as well. Interestingly, the intensity correlation
methods are not significantly affected by the strength of the backscatter signal, showing the relatively
low level of landslide possibility over the crop area. Therefore, in the case of the quick-product
analysis, the intensity correlation-based methods can be robust for the heterogeneous area including
human-made structures and forest regions. We will discuss the quantitative performance of each
detector more in Section 4.3.

It is also worth noting that the normalized difference is usually better than the simple difference.
This is because the normalization process adjusts difference values to a notionally common scale. Let us
assume that we observe coherence drops at the two independent pixels with an intermediate and high
coherence of pre-event pair. Even though the two pixels are identically affected, the simple difference
method could show more changes on the pixel with high coherence (e.g., 0.5→ 0.1 ≥ 0.4 vs. 0.9→ 0.1
≥ 0.8). Meanwhile, the normalization adjusts the difference based on the sum of the pre- and co-event
values, and then it eliminates the effects of certain gross influences (e.g., 0.5→ 0.1 ≥ 0.67 vs. 0.9→ 0.1
≥ 0.8). Therefore, the normalization could be more beneficial for change detection.

4.2. Multi-Temporal Analysis

In the case of the multi-temporal analysis (more than three images), the approaches are designed to
detect the abnormal signal in comparison with the reference (pre-event) images. Hence, as introduced
in Section 3, we grouped the pre-event coherences/intensity correlations obtained from the pair-wise
combinations as the reference group. Meanwhile, the co-event group consists of coherence/intensity
correlation made from the images acquired before the event and one image after the event.
Thus, the reference group has 120 coherences/intensity correlations, and the co-event group has
16 coherences/intensity correlations. We used all coherences and intensity correlations for the
multi-temporal coherence and multi-temporal intensity correlation methods, respectively. Unlike the
multi-temporal coherence/intensity correlation methods, time-series intensity analysis uses each scene
as inputs of the algorithm. Therefore, only one intensity image is the post-event group and 16 pre-event
images are involved in the reference group.
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Figure 7 illustrated their results. We found that the multi-temporal methods overall produce
more accurate detection results in comparison with the quick-product methods. In test case 1,
the multi-temporal coherence reduces false alarms over the non-landslide area. However, it shows a
high probability over the landslide areas. However, the multi-temporal coherence method still has
a similar level of accuracy over the forest area in comparison with the quick-product approaches as
shown in test cases 2 and 3. Based on the visual interpretation, it is revealed that the time-series
intensity analysis slightly improves the performance compared to the log-ratio technique for the second
and third cases. However, the time-series approach even worsens the accuracy over the crop area due
to the abnormal signal of crop area. The multi-temporal intensity correlation approach is proven as the
most reliable detector. It not only gives lower false alarms over the crop and forest area comparing
the quick-approach of the intensity correlation but also most agrees with the polygons of landslides
among the approaches.
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Figure 7. Results of damage (landslides) detection algorithms for multi-temporal approaches. All results
are rescaled to the range 0 to 1 for visualization. Red color indicates the high possibility (or large
difference from reference product) of event-induced changes (landslides). Black polygons depict the
landslide area extracted from aerial photos.

From the test cases 1–3, we were able to see how the multi-temporal detectors work for different
land uses. Similar to quick-product analysis, the multi-temporal coherence and intensity correlation
method produced well-matched results with the polygon embedding the human-made structures,
as shown in first test case. This finding indicates pixels, where the human-made structures are
located, have stable and reliable coherence and intensity correlation values before the landslides.
Further, it represents that the landslides dropped significantly drop the coherence and intensity
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correlation. However, the time-series intensity did not work very well in the test case 1. This may
indicate the backscattering change was not enough large to be detected.

As revealed in test case 2 and 3, the landslides affected the backscattering characteristics over
the forest. Accordingly, the time-series intensity and multi-temporal intensity correlation approaches
are capable of detecting the landslides and resulting in the relatively reliable performances over the
forest area. These results are distinguishable from the multi-temporal coherence analysis which poorly
worked for the forest area due to the decorrelation of the reference group. This finding seems related to
the characteristics of measurements. Since coherence usually is too sensitive to the temporal changes
induced by natural phenomena, the temporal baseline can play a key role in the performance of change
detection. The unsuccessful detection performance of the multi-temporal coherence may represent
the 14 days repeat-pass cycle is not temporal sampling to obtain reliable temporal behaviors of forest
over our study area. In contrast, since the multi-temporal methods employing the amplitude are less
affected by the temporal baseline, they still have the potentials to monitor the change over the forest.

Interestingly, the performance of the time-series intensity analysis over the crop area seems
unsuccessful as shown in test cases 1 and 3. As consistently shown in the quick-product approach,
the relatively strong changes in backscattering intensity seem to be observed and result in the increase
in false alarms. At this point, we can differentiate the time-series intensity and multi-temporal intensity
correlation method. The intensity correlation is related to the texture variation over the observation
period rather than the backscatter value, unlike the time-series intensity analysis. This is why the
intensity correlation has better performance over the agricultural area.

Based on the finding of three test cases, we can extend our expectation to the entire area. Since the
Area Of Interest (AOI) mainy consists of forest and agricultural area, we can expect the multi-temporal
intensity would be a most powerful detector for the Hokkaido landslide. More detailed analysis will
be explained in Section 4.4.

4.3. Performance Test Using ROC Curve Analysis

Receiver Operating Characteristic (ROC) curves enable us to quantitatively analyze which
detection algorithms are capable of detecting the changes against the false positive rate at various
discrimination threshold settings. This analyzer can be more suitable to test the performance of the
method, resulting in the continuous values as our results rather than the binary classifier, by calculating
trade-off between the true positive rate (TPR) and the false positive rate (FPR) with the arbitrary
thresholds. From the ROC curve, it is also possible to calculate the Area Under the Curve (AUC) as a
measure of aggregated detection performance. The 0.5 of AUC represents that the algorithm does not
have the ability to detect the change and 1 of AUC indicates the perfect delineating the landslides.
The ROC curves were illustrated in Figure 8 for three test cases using the quick-product approach and
multi-temporal approaches.
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Figure 8. Receiver Operating Characteristic (ROC) curves of (a–c) the quick-product and (d–f)
multi-temporal approaches corresponding test cases 1 (a,d), 2 (b,e) and 3 (c,f). The numbers on the
graphs represents Area Under Curve (AUC) values.

Depending on the portion of land uses for each case, the ROC curves of each detector show
different levels of TPR as the FPR increases, because the scatterers belonging to each category
of land uses differently react to the natural disaster and natural phenomena. In the case of
the quick-product approaches, the normalized difference of intensity correlation shows the best
performances among the methods. We found its AUCs for the three cases are 0.84, 0.74, and 0.77,
respectively. Interestingly, the log-ratio method seems to have a slightly lower performance compared to
the intensity correlation methods, but still provides meaningful AUCs, showing 0.82, 0.72, and 0.76 for
three cases, repectively. In contrast, for our test cases 2 and 3, the coherence-based methods seem not
to provide reliable information about landslides over the forest area. As listed in Table 1, the AUCs
of coherence-based methods range from 0.58 to 0.6, meaning that these detection algorithms have
poor capabilities to discriminate the decorrelations caused by the natural disaster from the natural
phenomena over the forest area. In our analysis, the coherence-based methods are only reliable when
the pixels have a relatively high coherences as the test area 1 in which the high coherence is observed
due to the artificial structure such as houses. In comparison to the other detection algorithms, we found
that the coherence-based methods were relatively less powerful. As a result, the delineating only the
landslides may be difficult through the coherence-based methods over the forest area.

Among the multi-temporal approaches, the multi-temporal coherence methods dramatically
increase the performance compared to the quick-product coherence-methods for test case 1.
However, it still suffers from the ambiguity between the decorrelation caused by the natural phenomena
and landslides, resulting in the low performance, i.e.,0.58–0.67 over test cases 2 and 3, as shown in
Figure 8d, and Table 1. It is worth noting that the time-series intensity method does not significantly
impact the performance in comparison with log-ratio method. In contrast, the multi-temporal intensity
correlation method improves the performance from the quick-products of intensity correlation methods
leading to the most robust method as shown in Figure 8f and Table 1.
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Table 1. Area Under Curve (AUC) of Receiver Operating Characteristic (ROC) curves of each method.

Methods Test Case 1 Test Case 2 Test Case 3

Quick-Product
Approaches

Coherence difference 0.682 0.590 0.544
Coherence norm. diff.1 0.751 0.602 0.595

Log-ratio 0.817 0.724 0.758
Intensity corr. diff. 2 0.815 0.724 0.751

Intensity corr. norm. diff. 3 0.841 0.735 0.769

Multi-Temporal
Approaches

Multi-temp. coherence 4 0.884 0.579 0.675
T.S. intensity 5 0.793 0.724 0.765

Multi-temp. intensity corr. 6 0.927 0.767 0.832
1 Coherence normalized difference, 2 intensity correlation difference, 3 intensity correlation normalized difference,
4 multi-temporal coherence, 5 time-series intensity, and 6 multi-temporal intensity correlation.

In order to quantify the performance of the detectors as a function of the coherence, we reanalyzed
the ROC curve analysis with the different levels of coherence. First, we average the pre-event coherences
to generalize the characteristics of each pixel. Then, we grouped the pixels with the coherence level
ranging from 0.1 to 0.6 with the steps of 0.05. We carried out the ROC curve analysis and calculated
corresponding AUC for each step. We plotted the diagnostic ability as a function of the coherence for
the landslide detection algorithms as shown in Figure 9.
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landslide (red) and non-landslide (blue) areas for the coherence levels.

As shown in Figure 9a, the coherence-based methods show a monotonic increase as the coherence
level increases. This observation implies that the coherence-based methods are more reliable at the
higher coherence. However, it has severe drawbacks in low-coherence areas. In this study area,
the observed coherence over the forest area was approximately 0.18 as shown in Figure 5d and 71% of
land cover is forest. This is why the coherence-based methods poorly detect landslides. The AUC
of the log-ratio test increases in the range of 0.1 to 0.25 of coherence level, decreases in the range
of 0.25 to 0.45 and again increases over 0.45. It is worth noting that the log-ratio method better
detects the disturbance for the low-coherence pixels, and also less affected by the coherence level.
Interestingly, the intensity correlation methods tend to have better performance for the higher coherence
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group as similar to the coherence-based techniques. However, the intensity correlation shows the
overwhelmed performance comparing with the coherence-based and log-ratio techniques.

The AUCs of the multi-temporal approaches are also compared with the quick-product analysis
as shown in Figure 9b. The multi-temporal approaches except the time-series intensity analysis result
in the higher accuracy over the low coherence as well as the high coherence. It is worth noting that the
multi-temporal intensity correlation approach produced the highest AUC over the whole coherence
level. In contrast, the multi-temporal intensity approach does not significantly improve the accuracy
compared with the log-ratio test.

The ROC curve analysis for three test cases shows that the coherence-based methods including
quick-product and multi-temporal approaches may be unsuccessful to detect the meaningful signal as
shown in Figure 8 and Table 1. However, the analysis between the coherence level and AUC (Figure 9)
provides another aspect of the potential of coherence-based methods. More precisely, the AUCs
are larger than 0.9 for the pixels with the average coherence more than 0.35 as shown in Figure 9a.
This finding shows that the coherence-based methods still have great potential for the intermediate-
and high-coherence region. One may question why the coherence-based detectors poorly operated for
the three test cases. The answer can be found in the pixel number of high coherence. As illustrated in
Figure 9c, more than 90% of the pixels are concentrated on the coherence below 0.3. Hence, the poor
performance of the coherence-based detectors over the low coherence level is affecting the test case
analysis, as shown in Figure 8. Therefore, it would be difficult to identify the robustness of the
coherence-based method in these test cases. In addition, the performance of the intensity correlation
methods, in particular, multi-temporal intensity correlation, seem better than the coherence-based
methods. However, one needs to pay attention to the number of pixels with high coherence, and the
portion of the landslide and non-landslide areas (Figure 9d). Only ~2% of the pixels have a coherence
over the 0.4 and the landslide areas are less than 8%. Therefore, the comparison between the intensity
correlation and coherence-based methods for high-coherence regions could be a hasty generalization.
Here, the most distinct finding seems, from our study, that the multi-temporal intensity correlation
method gives very good results, even for very weak coherences, and is close to 1 as soon as the
coherence is greater than 0.5. In addition, it also seems to work very well in forest areas.

4.4. Overall Accuracy Comparison

From the experimental results, we observed that the log-ratio has relatively low performance
in comparison with the intensity correlation methods. Moreover, the time-series intensity method
is sometimes worse than the quality of the results from the log-ratio test. For further clarification,
we produced the landslide detection maps depicting the landslides and non-landslide areas using
the thresholds corresponding to 0.2 of the false positive rate for each algorithm (Figure 10).
Then, we calculated the overall accuracy metric for the two types of land uses, i.e.,rice paddy
and crop and forest area. The overall accuracy (OA) is calculated as

OA =
TP + TN

TP + TN + FP + FN
(17)

where TP, TN FP, and FN are true positive, true negative, false positive, and false negative, respectively.
The overall accuracy is listed in Table 2. We found that the multi-temporal coherence and intensity
correlation methods have good accuracies over the rice paddy and crop area. In contrast, the accuracies
of the log-ratio and time-series intensity correlation are severely lower than the other methods.
The log-ratio method assumes that an area unaffected by the natural disaster has a similar level
of intensity values to the pre-event image. However, the changes in the dielectric characteristics
and surface roughness caused by agricultural activities including irrigation, drainage, and harvest
induce the variation of the intensity values. Further, the heavy precipitation of the typhoon Jebi
can be another reason to modulate the intensity. This reason can be also applied to time-series
intensity methods. Hence, the GRLT method assumes no changes over the observation period
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before the event. When the variation of intensity is not fully modeled by the temporal trend model
(Equation (7)), the assumption does not hold. In addition, when unpredicted natural phenomena,
but not related to natural disasters, happen before the post-event scene, it may be recognized as
changed. Hence, its underlying assumption might not be valid for the long-term time series for the
crop area. Accordingly, the intensity variation before the target landslide would lead to inaccurate
performance over the whole range of coherence levels.
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Table 2. Overall accuracy over the land use categories.

Methods Entire Area Rice Paddy and Crop Forest

Quick-Product
Approaches

Coherence difference 75.9% 65.5% 75.5%
Coherence norm. diff. 75.9% 80.9% 76.0%

Log-ratio 79.4% 57.4% 80.1%
Intensity corr. diff. 77.7% 70.6% 78.8%

Intensity corr. norm. diff. 78.1% 72.5% 79.2%

Multi-Temporal
Approaches

Multi-temp. coherence 76.3% 93.3% 76.5%
T.S. intensity 78.9% 52.8% 83.2%

Multi-temp. intensity corr. 80.0% 83.9% 80.7%

In comparison, between the binary images of the time-series intensity and multi-temporal
intensity correlation methods, as shown in Figure 10, the time-series intensity tends to highlight the
backscattering changes over the crop area. This is because the time-series intensity estimates the
changes in backscattering signals themselves. Meanwhile, the intensity correlation estimates the
changes in texture rather than the amplitude of signals.

Another point we need to clarify in this paper is that the multi-temporal intensity correlation
method is more reliable than the multi-temporal coherence approaches over the forest area. This is
because the coherence of the forest is easily decorrelated due to the relocation of the scatterer inducing
the phase disturbance. Further, the change in the dielectric characteristics of the ground layer and
volume layer could induce the phase disturbance by changing the scattering phase center. In contrast,
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the intensity correlation could survive even in the strong wind unless the texture variation over the
estimation window changes. Figure 11 shows the comparison between the coherence matrix and
intensity correlation matrix derived from all interferometric combinations for the landslide pixel.
We can clearly see the decorrelation signal at the last epoch for both matrixes (Figure 11a,b) when
the average coherence is 0.47. However, it is almost impossible to distinguish the changes in the
coherence matrix with low coherence (0.12). Meanwhile, there is still a possibility to observe the
decorrelation through the intensity correlation matrix. Therefore, the intensity correlation methods
could be complement detectors for low coherence area.
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5. Discussion

The purpose of this paper was to investigate the potentials of the change detection algorithms
based on coherence, intensity, and intensity correlation calculated from SAR images. These evaluations
were carried out assuming circumstances when data availability is limited and multi-temporal data is
available. To date, various studies using SAR imagery for landslide detection have been proposed.
Many researches found that the amplitude difference and intensity correlation can be more practical
and effective tools rather than coherence methods because of mountainous forest area and its severe
decorrelation [23–25,56]. Moreover, [23] concluded that the intensity correlation could be better than the
amplitude difference by investigating a landslide event on Kii Peninsula, Japan using two SAR images.
Even though they used the single intensity correlation and we used two intensity correlations, this
finding is consistent with our results. In addition, we compared the simple difference and normalized
difference of the intensity correlation and found that the latter is better than the former.

Another noteworthy point in our paper is that multi-temporal analysis can improve the landslide
detection accuries. We were not able to directly compare our study with other research due to the lack
of case studies for the landslides. However, we definitely found the multi-temporal analysis can have
a higher potential for landslide detection than quick-product analysis through the ROC curve and
overall accuracy for diverse land uses. This benefit comes from the capability to discriminate against
the natural hazards from the natural phenomena by statistically analyzing the normal status of each
scatterer. Here, we can find the novelty and strength of our research.
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The multi-temporal algorithms we developed have different performances for landslides that
occurred over the diverse land uses. The multi-temporal coherence worked well for the human-made
structures with high coherence. Meanwhile, the time-series intensity method shows a good agreement
with the landslide polygons over the forest area but has poorly worked for the agricultural area.
Interestingly, the multi-temporal intensity correlation method shows good enough to be applied to a
variety of cases. Here, due to the lack of a sufficient amount of the high-coherence pixels, we were
not able to carry out the profound and depth-in comparison analysis. According to [14], they proved
the multi-temporal coherence analysis can provide a reliable burnt area caused by wildfire over the
forest area. This shows that the performance of the multi-temporal coherence is more related to the
coherence level rather than land use type. Therefore, the multi-temporal coherence may be applied for
the landslide detection if the intermediate- or high-level coherence of the reference group is guaranteed.

For accurate performance analysis, the geometric distortion of the SAR image also needs to be
considered. Two major distortions could affect the quality of landslide detection. First is the shadow
region, where the radar signal cannot illuminate behind slopes because of the incidence angle and
slope angle in the mountain area, and second is the layover region, where the top of a reflecting object
is closer than the lower part to the radar. We generated a shadow/layover map from SRTM 30 m data,
but found that our AOI does not have such effects.

6. Conclusions

This paper designed and evaluated landslide mapping algorithms using SAR images based on
coherence and intensity information. For the rapid response scenario, the frameworks were divided
into two cases, i.e., quick-product analysis and multi-temporal analysis. We adopted the conventional
algorithms such as the coherence difference, normalized difference of coherence, log-ratio, intensity
correlation difference, and normalized difference of intensity correlation for quick-product analysis.
In the case of multi-temporal analysis, we developed and designed novel methods to differentiate the
abnormal signals against the normal status by statistically analyzing the history of multi-temporal
reference measurements. We carried out these algorithms for the Hokkaido landslides detection using
L-band ALOS2 PALSAR2 images.

Our investigation reveals that the CCD may be unreliable when the coherences of the pre-event
pair or reference group are not high enough. However, CCD worked well for the intermediate-
and high-coherence regions. Further, we found that multi-temporal coherence analysis enhances
the landslides detection performance. The log-ratio of intensity and time-series intensity methods
proved their capability of landslide detection over the forest but may produce high false alarm
over agricultural. Unlike the coherence-based methods, the intensity correlation methods seem to
more accurately discriminate the landslide and non-landslide areas. Similar to the quick-product
analysis, the multi-temporal intensity correlation method better distinguishes the landslide area from
the non-landslide areas than the multi-temporal coherence method for all conditions of coherences.
Besides, the multi-temporal approach improved the detection accuracy by reducing the false alarm
rate compared to the difference and normalization of the intensity correlation. This finding implies
that the intensity correlation methods can alternatively be used for the low-coherence region when the
coherence is too low. Further, we were able to find high potential in the multi-temporal approaches to
delineate the landslides.

In general, several considerations should be taken into account for the accurate detection of
damages including landslides using SAR images. For instance, different types of natural disasters cause
different levels of damage severities. Further, the successful delineation of the damages for a variety of
cases is determined with the response of scatterer to radar signal before and after natural disasters.
Thus, the types of changes as well as the characteristics of scatterers regarding the amplitude and
coherence should be considered for the damage and change assessment analysis. Here, the Hokkaido
landslides produced immense damage, turning the forest into bare soil, and the coherence was too
low to generalize and obtain the characteristics before the event. Therefore, the performance of
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the change detection algorithms we tested may not be identical to the different cases. For example,
the coherence-based methods could be better than the intensity based algorithms for the damage to
urban areas as the other literature investigated. Therefore, compressive analysis and scenarios are
prepared and need to be performed in order to rapidly respond to the natural disasters.

In this research, we tested the coherence, intensity, and intensity correlation independently.
However, it is also possible to combine their workflows to improve accuracy. Since the data used
in this experiment has single polarization, we were not able to study the advantage of additional
polarizations such as dual-or full-polarization. Therefore, further research is needed for other SAR
images, such as Sentinel-1, UAVSAR, and NISAR.
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